|  « Return to documentation listingTable of Contents 
MPI_Type_vector - Creates a vector (strided) datatype. 
 
 #include <mpi.h>
int MPI_Type_vector(int count, int blocklength, int stride,
    MPI_Datatype oldtype, MPI_Datatype *newtype)
 
 INCLUDE ’mpif.h’
MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,
        IERROR)
    INTEGER    COUNT, BLOCKLENGTH, STRIDE, OLDTYPE
    INTEGER    NEWTYPE, IERROR
 
 #include <mpi.h>
Datatype Datatype::Create_vector(int count, int blocklength,
    int stride) const
 
count      Number of blocks (nonnegative integer). blocklength
      Number of elements in each block (nonnegative integer). stride
   Number of elements between start of each block (integer). oldtype
   Old datatype (handle). 
   
The function MPI_Type_vector
is a general constructor that allows replication of a datatype into locations
that consist of equally spaced blocks. Each block is obtained by concatenating
the same number of copies of the old datatype. The spacing between blocks
is a multiple of the extent of the old datatype.newtype       New datatype (handle).
IERROR Fortran only: Error status (integer).
  
Example 1: Assume, again,
that oldtype has type map {(double, 0), (char, 8)}, with extent 16. A call
to  MPI_Type_vector(2, 3, 4, oldtype, newtype) will create the datatype
with type map  
     {(double, 0), (char, 8), (double, 16), (char, 24),
    (double, 32), (char, 40),
    (double, 64), (char, 72),
    (double, 80), (char, 88), (double, 96), (char, 104)}
That is, two blocks with three copies each of the old type, with a stride
of 4 elements (4 x 6 bytes) between the blocks.     
Example 2:  A call to
 MPI_Type_vector(3, 1, -2, oldtype, newtype) will create the datatype 
     {(double, 0), (char, 8), (double, -32), (char, -24),
    (double, -64), (char, -56)}
In general, assume that oldtype has type map
     {(type(0), disp(0)), ..., (type(n-1), disp(n-1))},
with extent ex. Let bl be the blocklength. The newly created datatype has
a type map with count x bl x  n entries:
     {(type(0), disp(0)), ..., (type(n-1), disp(n-1)),
    (type(0), disp(0) + ex), ..., (type(n-1), disp(n-1) + ex), ...,
    (type(0), disp(0) + (bl -1) * ex),...,
    (type(n-1), disp(n-1) + (bl -1)* ex),
    (type(0), disp(0) + stride * ex),..., (type(n-1),
    disp(n-1) + stride * ex), ...,
    (type(0), disp(0) + (stride + bl - 1) * ex), ...,
    (type(n-1), disp(n-1) + (stride + bl -1) * ex), ...,
    (type(0), disp(0) + stride * (count -1) * ex), ...,
    (type(n-1), disp(n-1) + stride * (count -1) * ex), ...,
    (type(0), disp(0) + (stride * (count -1) + bl -1) * ex), ...,
    (type(n-1), disp(n-1) + (stride * (count -1) + bl -1) * ex)}
A call to MPI_Type_contiguous(count, oldtype, newtype) is equivalent to
a call to MPI_Type_vector(count, 1, 1, oldtype, newtype), or to a call
to MPI_Type_vector(1, count, n, oldtype, newtype), n arbitrary.
Almost
all MPI routines return an error value; C routines as the value of the
function and Fortran routines in the last argument. C++ functions do not
return errors. If the default error handler is set to MPI::ERRORS_THROW_EXCEPTIONS,
then on error the C++ exception mechanism will be used to throw an MPI::Exception
object. 
Before the error value is returned, the current MPI error handler
is called. By default, this error handler aborts the MPI job, except for
I/O function errors. The error handler may be changed with MPI_Comm_set_errhandler;
the predefined error handler MPI_ERRORS_RETURN may be used to cause error
values to be returned. Note that MPI does not guarantee that an MPI program
can continue past an error.
 
 
MPI_Type_create_hvector MPI_Type_hvector
 
   
 
 
Table of Contents 
  « Return to documentation listing |