|  « Return to documentation listingTable of Contents 
MPI_Reduce_local - Perform a local reduction 
 
 #include <mpi.h>
int MPI_Reduce_local(const void *inbuf, void *inoutbuf, int count,
    MPI_Datatype datatype, MPI_Op op)
 
 INCLUDE ’mpif.h’
MPI_REDUCE_LOCAL(INBUF, INOUTBUF, COUNT, DATATYPE, OP, IERROR)
    <type>    INBUF(*), INOUTBUF(*)
    INTEGER    COUNT, DATATYPE, OP, IERROR
 
 #include <mpi.h>
void MPI::Op::Reduce_local(const void* inbuf, void* inoutbuf,
    int count, const MPI::Datatype& datatype, const MPI::Op& op) const
 
inbuf Address of input buffer (choice). count Number of
elements in input buffer (integer). datatype Data type of elements of input
buffer (handle). op Reduce operation (handle).
  
The MPI_Reduce_local function is proposed for MPI-2.2 and (as
of 10 Jan 2009) has not yet been ratified.  Use at your own risk.  See https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/24.inoutbuf
Address of in/out buffer (choice). IERROR Fortran only: Error status (integer).
  
The global reduce functions (MPI_Reduce_local, MPI_Op_create, MPI_Op_free,
MPI_Allreduce, MPI_Reduce_local_scatter, MPI_Scan) perform a global reduce
operation (such as sum, max, logical AND, etc.) across all the members of
a group. The reduction operation can be either one of a predefined list
of operations, or a user-defined operation. The global reduction functions
come in several flavors: a reduce that returns the result of the reduction
at one node, an all-reduce that returns this result at all nodes, and a
scan (parallel prefix) operation. In addition, a reduce-scatter operation
combines the functionality of a reduce and a scatter operation.  
MPI_Reduce_local
combines the elements provided in the input and input/output buffers of
the local process, using the operation op, and returns the combined value
in the inout/output buffer. The input buffer is defined by the arguments
inbuf, count, and datatype; the output buffer is defined by the arguments
inoutbuf, count, and datatype; both have the same number of elements, with
the same type. The routine is a local call.  The process can provide one
element, or a sequence of elements, in which case the combine operation
is executed element-wise on each entry of the sequence. For example, if the
operation is MPI_MAX and the input buffer contains two elements that are
floating-point numbers (count = 2 and datatype = MPI_FLOAT), then inoutbuf(1)
= global max (inbuf(1)) and inoutbuf(2) = global max(inbuf(2)).   
The use of MPI_IN_PLACE is disallowed with MPI_Reduce_local. 
 
The set of predefined operations provided by
MPI is listed below (Predefined Reduce Operations). That section also enumerates
the datatypes each operation can be applied to. In addition, users may define
their own operations that can be overloaded to operate on several datatypes,
either basic or derived. This is further explained in the description of
the user-defined operations (see the man pages for MPI_Op_create and MPI_Op_free).
 
The operation op is always assumed to be associative. All predefined operations
are also assumed to be commutative. Users may define operations that are
assumed to be associative, but not commutative. The ‘‘canonical’’ evaluation
order of a reduction is determined by the ranks of the processes in the
group. However, the implementation can take advantage of associativity,
or associativity and commutativity, in order to change the order of evaluation.
This may change the result of the reduction for operations that are not
strictly associative and commutative, such as floating point addition.
  
Predefined operators work only with the MPI types listed below (Predefined
Reduce Operations, and the section MINLOC and MAXLOC, below).  User-defined
operators may operate on general, derived datatypes. In this case, each
argument that the reduce operation is applied to is one element described
by such a datatype, which may contain several basic values. This is further
explained in Section 4.9.4 of the MPI Standard, "User-Defined Operations."
  The following predefined operations are supplied for MPI_Reduce_local
and related functions MPI_Allreduce, MPI_Reduce_scatter, and MPI_Scan. These
operations are invoked by placing the following in op:  
     Name                Meaning
     ---------           --------------------
    MPI_MAX             maximum
    MPI_MIN             minimum
    MPI_SUM             sum
    MPI_PROD            product
    MPI_LAND            logical and
    MPI_BAND            bit-wise and
    MPI_LOR             logical or
    MPI_BOR             bit-wise or
    MPI_LXOR            logical xor
    MPI_BXOR            bit-wise xor
    MPI_MAXLOC          max value and location
    MPI_MINLOC          min value and location
The two operations MPI_MINLOC and MPI_MAXLOC are discussed separately below
(MINLOC and MAXLOC). For the other predefined operations, we enumerate below
the allowed combinations of op and datatype arguments. First, define groups
of MPI basic datatypes in the following way:  
     C integer:            MPI_INT, MPI_LONG, MPI_SHORT,
                          MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
                          MPI_UNSIGNED_LONG
    Fortran integer:      MPI_INTEGER
    Floating-point:       MPI_FLOAT, MPI_DOUBLE, MPI_REAL,
                          MPI_DOUBLE_PRECISION, MPI_LONG_DOUBLE
    Logical:              MPI_LOGICAL
    Complex:              MPI_COMPLEX
    Byte:                 MPI_BYTE
 
Now, the valid datatypes for each option is specified below.  
     Op                          Allowed Types
     ----------------         ---------------------------
    MPI_MAX, MPI_MIN        C integer, Fortran integer,
                        floating-point
    MPI_SUM, MPI_PROD         C integer, Fortran integer,
                        floating-point, complex
    MPI_LAND, MPI_LOR,        C integer, logical
    MPI_LXOR
    MPI_BAND, MPI_BOR,        C integer, Fortran integer, byte
    MPI_BXOR
The operator MPI_MINLOC is used to compute a global minimum
and also an index attached to the minimum value. MPI_MAXLOC similarly computes
a global maximum and index. One application of these is to compute a global
minimum (maximum) and the rank of the process containing this value.   
The operation that defines MPI_MAXLOC is   
          ( u )    (  v )      ( w )
         (   )  o (    )   =  (   )
         ( i )    (  j )      ( k )
where
    w = max(u, v)
and
         ( i            if u > v
         (
   k   = ( min(i, j)    if u = v
         (
         (  j           if u < v)
MPI_MINLOC is defined similarly:
         ( u )    (  v )      ( w )
         (   )  o (    )   =  (   )
         ( i )    (  j )      ( k )
where
    w = min(u, v)
and
         ( i            if u < v
         (
   k   = ( min(i, j)    if u = v
         (
         (  j           if u > v)
  Both operations are associative and commutative. Note that if MPI_MAXLOC
is applied to reduce a sequence of pairs (u(0), 0), (u(1), 1), ..., (u(n-1),
n-1), then the value returned is (u , r), where u= max(i) u(i) and r is
the index of the first global maximum in the sequence. Thus, if each process
supplies a value and its rank within the group, then a reduce operation
with op = MPI_MAXLOC will return the maximum value and the rank of the
first process with that value. Similarly, MPI_MINLOC can be used to return
a minimum and its index. More generally, MPI_MINLOC computes a lexicographic
minimum, where elements are ordered according to the first component of
each pair, and ties are resolved according to the second component.  
The
reduce operation is defined to operate on arguments that consist of a pair:
value and index. For both Fortran and C, types are provided to describe
the pair. The potentially mixed-type nature of such arguments is a problem
in Fortran. The problem is circumvented, for Fortran, by having the MPI-provided
type consist of a pair of the same type as value, and coercing the index
to this type also. In C, the MPI-provided pair type has distinct types and
the index is an int.  
In order to use MPI_MINLOC and MPI_MAXLOC in a reduce
operation, one must provide a datatype argument that represents a pair
(value and index). MPI provides nine such predefined datatypes. The operations
MPI_MAXLOC and MPI_MINLOC can be used with each of the following datatypes:
 
     Fortran:
    Name                     Description
    MPI_2REAL                pair of REALs
    MPI_2DOUBLE_PRECISION    pair of DOUBLE-PRECISION variables
    MPI_2INTEGER             pair of INTEGERs
    C:         
    Name                    Description
    MPI_FLOAT_INT            float and int
    MPI_DOUBLE_INT           double and int
    MPI_LONG_INT             long and int
    MPI_2INT                 pair of ints
    MPI_SHORT_INT            short and int
    MPI_LONG_DOUBLE_INT      long double and int
The data type MPI_2REAL is equivalent to: 
     MPI_TYPE_CONTIGUOUS(2, MPI_REAL, MPI_2REAL)
 
Similar statements apply for MPI_2INTEGER, MPI_2DOUBLE_PRECISION, and MPI_2INT.
 
The datatype MPI_FLOAT_INT is as if defined by the following sequence of
instructions.  
     type[0] = MPI_FLOAT
    type[1] = MPI_INT
    disp[0] = 0
    disp[1] = sizeof(float)
    block[0] = 1
    block[1] = 1
    MPI_TYPE_STRUCT(2, block, disp, type, MPI_FLOAT_INT)
Similar statements apply for MPI_LONG_INT and MPI_DOUBLE_INT.    
All MPI
objects (e.g., MPI_Datatype, MPI_Comm) are of type INTEGER in Fortran.
  The reduction operators ( MPI_Op ) do not return
an error value.  As a result, if the functions detect an error, all they
can do is either call  MPI_Abort or silently skip the problem.  Thus, if
you change the error handler from MPI_ERRORS_ARE_FATAL to something else,
for example,  MPI_ERRORS_RETURN , then no error may be indicated.
  The reason
for this is the performance problems in ensuring that all collective routines
return the same error value.
 
Almost all MPI routines return an error
value; C routines as the value of the function and Fortran routines in
the last argument. C++ functions do not return errors. If the default error
handler is set to MPI::ERRORS_THROW_EXCEPTIONS, then on error the C++ exception
mechanism will be used to throw an MPI::Exception object. 
Before the error
value is returned, the current MPI error handler is called. By default,
this error handler aborts the MPI job, except for I/O function errors. The
error handler may be changed with MPI_Comm_set_errhandler; the predefined
error handler MPI_ERRORS_RETURN may be used to cause error values to be
returned. Note that MPI does not guarantee that an MPI program can continue
past an error.
 
 
MPI_Allreduce MPI_Reduce
 MPI_Reduce_scatter
 MPI_Scan
 MPI_Op_create
 
 MPI_Op_free
 
 
   
 
 
Table of Contents 
  « Return to documentation listing |