v1.3 Upcoming Features

• This presentation is a “sneak peak”
 ▪ …and is therefore subject to change
 ▪ These slides show what is likely to be included
 ▪ But nothing is definite until v1.3 ships 😊
• Features shown here are in addition to all the other Goodness coming in v1.3…
 ▪ Performance improvements
 ▪ Tool integration
 ▪ …much more
New Hardware Support

• iWARP supported
 ▪ Tested with Chelsio T3 adapters
• Support for Mellanox ConnectX XRC
 ▪ Reduce number of QPs, increase performance
• OpenFabrics Connection Managers
 ▪ RDMA CM: works with both IB and iWARP
 ▪ IB CM: “better” connection wireup over IB

v1.2 Long Message Params

min_rdma_size

Fragments of size up to max_rdma_size

Fragments of size up to max_send_size

eager_limit
v1.3 Long Message Params

- eager_limit
- rdma_pipeline_send_length
 - Fragments of size up to max_send_size
 - Fragments of size up to rdma_pipeline_frag_size

Include / Exclude Interfaces

- if_include / if_exclude
 - Comma-delimited list of devices / ports to use or not use

```
mpirun --mca btl_openib_if_include \
    mthca0:1,mthca1 ...

mpirun --mca btl_openib_if_exclude \
    mthca0 ...
```
New Receive Queue System: “Bucket” SRQ (BSRQ)

• Based on idea from Cray Portals
 ▪ Different SRQ message sizes allow for much more efficient use of registered memory
 ▪ BSRQ + XRC = fewer QPs, better memory utilization = better performance

Specifying the BSRQ List

• receive_queues:
 ▪ Comma-delimited list of RQs for each peer
 ▪ Specifying queue sizes and types for “smaller than large” (RDMA) messages
 ▪ Replaces “use_srq” and “rd_num” (and others)
• Default value for some IB HCAs
 P,128,256,192,128:S,2048,256,128,32:\n S,12288,256,128,32:S,65536,256,128,32
BSRQ Parameter List

• P: Per-peer queues (precious)
 ▪ Size of buffers
 ▪ Number of buffers
 ▪ Optional: Low watermark buffer count
 ▪ Optional: Credit window size
 ▪ Optional: Credit “reserve” buffers

• S: Shared receive queues
 ▪ Size of buffers
 ▪ Number of buffers
 ▪ Optional: Low watermark buffer count
 ▪ Optional: Max number of outstanding sends

Flow Control

• IB/iWARP are “lossless” networks
 ▪ Must have [hardware] credits to send
 ▪ However, receivers can still be overwhelmed
 ▪ Packets can be dropped due to congestion
 ▪ Or receivers might not be ready (not enough posted receiver buffers)

• Open MPI has software flow control
 ▪ Explicit FC for per-peer receive queues
 ▪ Implicit FC for SRQs (relies on RNR; excellent performance when SRQ not filled)
 ▪ Sum of all “reserve” buffers added to smallest PP QP for flow control messages
Small Message Coalescing

• use_message_coalescing:
 ▪ Boolean enabling small message coalescing
• Defaults to 1
 ▪ Only effective if sending many short messages of same MPI signature very rapidly (i.e., faster than HCA can transmit)
 ▪ Some benchmarks show performance gain
 ▪ Only applicable to some real-world apps

NUMA-Aware Device Selection

• In NUMA architectures (e.g., AMD servers)
 ▪ Choose the HCAs / NICs that are “closest”
 ▪ Prevents crossing extra busses
 ▪ Makes the most sense when enabled with processor affinity
• NUMA architecture specified by text config file
 ▪ Can “fake” a NUMA configuration to share devices in high-core count servers
More Information

• Open MPI FAQ
 ▪ General tuning
 http://www.open-mpi.org/faq/?category=tuning
 ▪ OpenFabrics tuning
 http://www.open-mpi.org/faq/?category=openfabrics

May 2008

Screencast: Openib BTL v1.3 Sneak Peak 13

CISCO