

Screencast: Openib BTL v1.3 Sneak Peak

Jeff Squyres May 2008

v1.3 Upcoming Features

- This presentation is a "sneak peak"
 - ...and is therefore subject to change
 - These slides show what is likely to be included
 - But nothing is definite until v1.3 ships ©
- Features shown here are in addition to all the other Goodness coming in v1.3...
 - Performance improvements
 - Tool integration
 - ...much more

New Hardware Support

- iWARP supported
 - Tested with Chelsio T3 adapters
- Support for Mellanox ConnectX XRC
 - Reduce number of QPs, increase performance
- OpenFabrics Connection Managers
 - RDMA CM: works with both IB and iWARP
 - IB CM: "better" connection wireup over IB

v1.2 Long Message Params

v1.3 Long Message Params

Include / Exclude Interfaces

- if_include / if_exclude
 - Comma-delimited list of devices / ports to use or not use

```
mpirun --mca btl_openib_if_include \
    mthca0:1,mthca1 ...
```

```
mpirun --mca btl_openib_if_exclude \
    mthca0 ...
```


New Receive Queue System: "Bucket" SRQ (BSRQ)

- Based on idea from Cray Portals
 - Different SRQ message sizes allow for much more efficient use of registered memory
 - BSRQ + XRC = fewer QPs, better memory utilization = better performance

Specifying the BSRQ List

- receive_queues:
 - Comma-delimited list of RQs for each peer
 - Specifying queue sizes and types for "smaller than large" (RDMA) messages
 - Replaces "use_srq" and "rd_num" (and others)
- Default value for some IB HCAs
 P,128,256,192,128:S,2048,256,128,32:\
 S,12288,256,128,32:S,65536,256,128,32

BSRQ Parameter List

- P: Per-peer queues (precious)
 - Size of buffers
 - Number of buffers
 - Optional: Low watermark buffer count
 - Optional: Credit window size
 - Optional: Credit "reserve" buffers
- S: Shared receive queues
 - Size of buffers
 - Number of buffers
 - Optional: Low watermark buffer count
 - Optional: Max number of outstanding sends

Flow Control

- IB/iWARP are "lossless" networks
 - Must have [hardware] credits to send
 - However, receivers can still be overwhelmed
 - Packets can be dropped due to congestion
 - Or receivers might not be ready (not enough posted receiver buffers)
- Open MPI has software flow control
 - Explicit FC for per-peer receive queues
 - Implicit FC for SRQs (relies on RNR; excellent performance when SRQ not filled)
- Sum of all "reserve" buffers added to smallest PP QP for flow control messages

Small Message Coalescing

- use_message_coalescing:
 - Boolean enabling small message coalescing
- Defaults to 1
 - Only effective if sending many short messages of same MPI signature very rapidly (i.e., faster than HCA can transmit)
 - Some benchmarks show performance gain
 - Only applicable to some real-world apps

NUMA-Aware Device Selection

- In NUMA architectures (e.g., AMD servers)
 - Choose the HCAs / NICs that are "closest"
 - Prevents crossing extra busses
 - Makes the most sense when enabled with processor affinity
- NUMA architecture specified by text config file
 - Can "fake" a NUMA configuration to share devices in high-core count servers

More Information

- Open MPI FAQ
 - General tuning

http://www.open-mpi.org/faq/?category=tuning

OpenFabrics tuning

http://www.open-mpi.org/faq/?category=openfabrics

#