Screencast: Openib BTL v1.3 Sneak Peak

Jeff Squyres
May 2008
v1.3 Upcoming Features

• This presentation is a “sneak peak”
 ▪ …and is therefore subject to change
 ▪ These slides show what is **likely** to be included
 ▪ **But nothing is definite until v1.3 ships 😊**

• Features shown here are in addition to all the other Goodness coming in v1.3…
 ▪ Performance improvements
 ▪ Tool integration
 ▪ …much more
New Hardware Support

- iWARP supported
 - Tested with Chelsio T3 adapters
- Support for Mellanox ConnectX XRC
 - Reduce number of QPs, increase performance
- OpenFabrics Connection Managers
 - RDMA CM: works with both IB and iWARP
 - IB CM: “better” connection wireup over IB
v1.2 Long Message Params

- \text{eager_limit}
- \text{min_rdma_size}
- Fragments of size up to \text{max_send_size}
- Fragments of size up to \text{max_rdma_size}
v1.3 Long Message Params

- eager_limit
- Fragments of size up to max_send_size
- Fragments of size up to rdma_pipeline_frag_size
- rdma_pipeline_send_length
Include / Exclude Interfaces

- if_include / if_exclude
 - Comma-delimited list of devices / ports to use or not use

```
mpirun --mca btl_openib_if_include \mthca0:1,mthca1 ...
```

```
mpirun --mca btl_openib_if_exclude \mthca0 ...
```
New Receive Queue System: “Bucket” SRQ (BSRQ)

- Based on idea from Cray Portals
 - Different SRQ message sizes allow for much more efficient use of registered memory
 - BSRQ + XRC = fewer QPs, better memory utilization = better performance

 Lots of small message buffering

 Multiple medium size bufferings (all smaller than RDMA/large messages)
Specifying the BSRQ List

- **receive_queues:**
 - Comma-delimited list of RQs for each peer
 - Specifying queue sizes and types for “smaller than large” (RDMA) messages
 - Replaces “use_srq” and “rd_num” (and others)

- Default value for some IB HCAs
 - P,128,256,192,128:S,2048,256,128,32:
 - S,12288,256,128,32:S,65536,256,128,32
BSRQ Parameter List

• **P**: Per-peer queues (precious)
 - Size of buffers
 - Number of buffers
 - *Optional*: Low watermark buffer count
 - *Optional*: Credit window size
 - *Optional*: Credit “reserve” buffers

• **S**: Shared receive queues
 - Size of buffers
 - Number of buffers
 - *Optional*: Low watermark buffer count
 - *Optional*: Max number of outstanding sends
Flow Control

• IB/iWARP are “lossless” networks
 ▪ Must have [hardware] credits to send
 ▪ However, receivers can still be overwhelmed
 ▪ Packets can be dropped due to congestion
 ▪ Or receivers might not be ready (not enough posted receiver buffers)

• Open MPI has software flow control
 ▪ Explicit FC for per-peer receive queues
 ▪ Implicit FC for SRQs (relies on RNR; excellent performance when SRQ not filled)

• Sum of all “reserve” buffers added to smallest PP QP for flow control messages
Small Message Coalescing

- `use_message_coalescing`:
 - Boolean enabling small message coalescing
- Defaults to 1
 - Only effective if sending many short messages of same MPI signature very rapidly (i.e., faster than HCA can transmit)
 - Some benchmarks show performance gain
 - Only applicable to some real-world apps
NUMA-Aware Device Selection

• In NUMA architectures (e.g., AMD servers)
 ▪ Choose the HCAs / NICs that are “closest”
 ▪ Prevents crossing extra busses
 ▪ Makes the most sense when enabled with processor affinity

• NUMA architecture specified by text config file
 ▪ Can “fake” a NUMA configuration to share devices in high-core count servers
More Information

- Open MPI FAQ
 - General tuning
 http://www.open-mpi.org/faq/?category=tuning
 - OpenFabrics tuning
 http://www.open-mpi.org/faq/?category=openfabrics