openib BTL Parameters

- `ompi_info --param btl openib`
 - Shows all openib BTL MCA parameters
 - ...there are a lot!
 - Also try:
 - `ompi_info --param btl openib \ --parsable`

- What do they all mean?
openib BTL Parameter Prefix

• All parameter names are prefixed
 ▪ Guarantees uniqueness between components
 ▪ “btl_openib_”
• Prefix will not be shown here for brevity
 ▪ “foo” → “btl_openib_foo”

Simple Parameters

• max_btls: integer
 ▪ -1 (use all, default) or >0
 ▪ Max number of IB ports to use (start: port 0)
• mtu: integer (default per hardware)
 ▪ 1=256 bytes, 2=512 bytes, 3=1024 bytes, 4=2048 bytes, 5=4096 bytes
• ib_service_level: integer (default 0)
 ▪ Direct mapping to virtual lane
Receive Queues

Per-peer receive queues
For peer 1:
For peer 2:
For peer 3:
For peer 4:

Shared receive queue

Less than NxM buffers

Receive Parameters (v1.2.x)

- `rd_num`: integer
 - Number per-peer receive buffers
- `use_srq`: 0 or 1
 - `srq_rd_max`: integer
 - Max number of posted receives in the SRQ
 - Set absolute limits
 - `srq_rd_max_per_peer`: integer
 - Max number of posted receives per peer
 - Uses "stats game" -- log2(num_MPI_procs)
 - `srq_sd_max`: integer
 - Max number of posted sends to peer SRQ
Short Eager RDMA Params

- use_eager_rdma: 0 or 1
- eager_rdma_threshold: integer
 - Number of receives before setup eager RDMA
- max_eager_rdma: integer
 - Max number of peers to use eager RDMA
- eager_rdma_num: integer
 - Number of posted receive buffers per peer

Num peers: 2
Num buffers: 12
Threshold: 5
Long Message Protocol

- Match fragment
- Send / receive fragments
- RDMA fragments

Long Message Parameters

- `eager_limit`: integer
 - Max size of “eager” (short) messages
- `max_send_size`: integer
 - Max size of “prime the pipeline” fragments
- `min_rdma_size`: integer
 - Offset where to start RDMA
- `max_rdma_size`: integer
 - Max size of long message RDMA fragments
v1.2 Long Message Params

- **eager_limit**
 - Fragments of size up to `max_send_size`
 - Fragments of size up to `max_rdma_size`
 - Fragments of size up to `max_rdma_size`

Disabling “Eager” Completion

- **pml_ob1_use_early_completion**
 - “Early completion” latency optimization
 - Enabled (set to 1) by default
 - Behavior can be disabled by setting this MCA parameter to 0
 - Can cause problems (hangs) in some applications that do not enter the MPI library frequently
Timeout Parameters

- All are directly given to verbs API
- `btl_openib_ib_min_rnr_timer`: 0-31
 - Receiver not ready timer (seconds)
- `btl_openib_ib_timeout`: 0-31
 - InfiniBand transmit timeout, plugged into: $4.096\mu s \times 2^{btl_openib_ib_timeout}$
- `btl_openib_ib_retry_count`: 0-7
- `btl_openib_ib_rnr_retry`: 0-7

Freelist Parameters

- “Freelists” maintained of registered memory buffers
 - Indexed by `count` of buffers (not size)
- `free_list_max`: integer
 - Max number of buffers in freelist (-1 = infinite)
- `free_list_num`: integer
 - Initial number of buffers
- `free_list_inc`: integer
 - Number of buffers to add when empty
Memory Pool Parameter

- mpool_rdma_cache_size_limit: integer
 - In “rdma” mpool component; not openib BTL
 - Memory pool
 - Max limit on user-registered memory
- Used in conjunction with openib BTL parameters, can establish a maximum limit of all registered memory

Registered Memory Footprint

- Still quite complicated!
 - Sum of combinations of many MCA parameters
 - FAQ web page gives good description
- Total registered memory can be limited
 - May need to use an Excel spreadsheet…
MPI Layer Parameters

• mpi_leave_pinned: 0 (default) or 1
 ▪ Leave user buffers registered (“pinned”)
 ▪ ** Extremely important for benchmarks that re-use buffers! **
• mpi_paffinity_alone: 0 or 1
 ▪ Must be manually set
 ▪ Assume MPI job is “alone” on the node
 ▪ Pin MPI processes→processors starting with 0
• mpi_yield_when_idle: 0 or 1
 ▪ When busy-polling, call yield()

Sidenote: Portable Linux Processor Affinity (PLPA)

• Sub-project of Open MPI
• Small library to do processor affinity
 ▪ Pin process A to processor X
 ▪ API for processor affinity has changed 3 times
 ▪ Depends on glibc, kernel, and distro versions
• PLPA provides stable API
• New version can map (socket, core) tuples to Linux virtual processor ID
 ▪ plpa_taskset(1) command
More Information

- Open MPI FAQ
 - General tuning
 http://www.open-mpi.org/faq/?category=tuning
 - InfiniBand / OpenFabrics tuning
 http://www.open-mpi.org/faq/?category=openfabrics