“Verbs” API (VAPI)

- IB/iWARP actions known as “verbs”
 - Send verb, receive verb, etc.
- First IB VAPI was Mellanox VAPI (mVAPI)
 - Now deprecated
- OpenFabrics has different VAPI
 - Similar concepts, but different API
No Unexpected Receives

- All messages *must* be “expected”
- Receiver must pre-allocate resources
 - Pool of buffers to receive messages
 - Pool of buffers as target for RDMA
- Unexpected message triggers an error

Virtual Lanes / Service Levels

- OpenFabrics traffic divided into virtual “lanes”
 - Virtual separation of traffic
 - Analogous to MPI communicators (!)
 - Can be assigned QoS-like attributes
 - Weighting, etc.
- Service levels maps to lanes
Some OpenFabrics Queues

- Queue Pair (QP)
 - Unit of connection in OpenFabrics
 - Think of as “sockets” for OpenFabrics
 - Send queue + receive queue
- Completion queue
 - Most OF verbs are non-blocking
 - OF driver puts events on this queue to signal when a verb has completed

Registered Memory

- InfiniBand/iWARP are RDMA-based networks
 - Directly sends / receives from RAM
 - Without involvement from main CPU
- But…
 - Operating system can change virtual ↔ physical RAM mapping at any time
Race Condition

1. MPI says “IB: send this buffer”
2. HCA obtains physical address
3. HCA starts sending
4. OS changes physical mapping
5. HCA now sending garbage!

Race Condition

1. MPI says “IB: send this buffer”
2. HCA obtains physical address
3. HCA starts sending
4. OS changes physical mapping
5. HCA now sending garbage!
Race Condition

1. MPI says “IB: send this buffer”
2. HCA obtains physical address
3. HCA starts sending
4. OS changes physical mapping
5. HCA now sending garbage!
“Registering” Memory

- Solution: tell OS not to change mapping
 - “Pinning” ("locking") memory
 - Guarantees that the message will stay in the same physical location until HCA is done
- “Registering” memory does two things:
 1. Pinning virtual ↔ physical mapping
 2. Notifying HCA of the mapping

Registered Memory Problems

- Registering and unregistering is slow
- OS can only support so much registered memory at a time
 - Pinned pages are unswappable
- Must be careful to set ulimits properly (OFED)
Registered Memory Footprint

• How much registered memory does Open MPI use?
 ▪ A complicated answer
 ▪ Requires some background information first…

• For reference:
 ▪ Complete answer (for v1.2 and beyond):
 http://www.open-mpi.org/faq/?category=openfabrics#limiting-registered-memory-usage

Common MPI Trick

• MPI_SEND (buffer, …)
 ▪ Register the buffer
 ▪ Do the send
 ▪ Return (leaving the buffer registered)

• Rationale: next time you send from that buffer, do not pay registration cost again
 ▪ Great for benchmarks!
 ▪ Usually not great for real applications

• OMPI does not do this (…by default)
Problems of User Registration

• Can run out of registered memory
 ▪ MPI must implement eviction policies

• Application can free buffer
 ▪ MPI *must* intercept free() or sbrk() to unregister memory before given back to OS
 ▪ Extremely problematic

• So just say “No!”
 ▪ …except for benchmarks 😊

More Information

• Open MPI FAQ
 ▪ General tuning
 http://www.open-mpi.org/faq/?category=tuning
 ▪ InfiniBand / OpenFabrics tuning
 http://www.open-mpi.org/faq/?category=openfabrics