

Screencast: OpenFabrics Concepts

Jeff Squyres May 2008

"Verbs" API (VAPI)

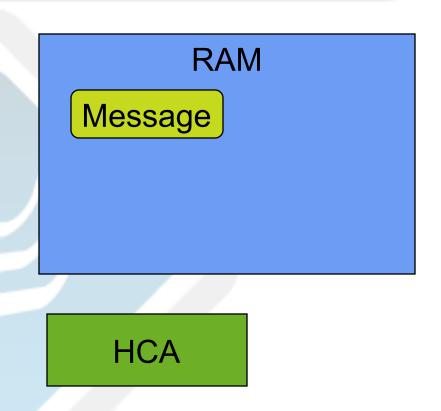
- IB/iWARP actions known as "verbs"
 - Send verb, receive verb, etc.
- First IB VAPI was Mellanox VAPI (mVAPI)
 - Now deprecated
- OpenFabrics has different VAPI
 - Similar concepts, but different API

No Unexpected Receives

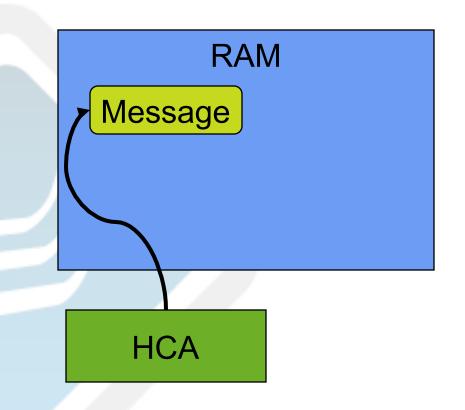
- All messages must be "expected"
- Receiver must pre-allocate resources
 - Pool of buffers to receive messages
 - Pool of buffers as target for RDMA
- Unexpected message triggers an error

Virtual Lanes / Service Levels

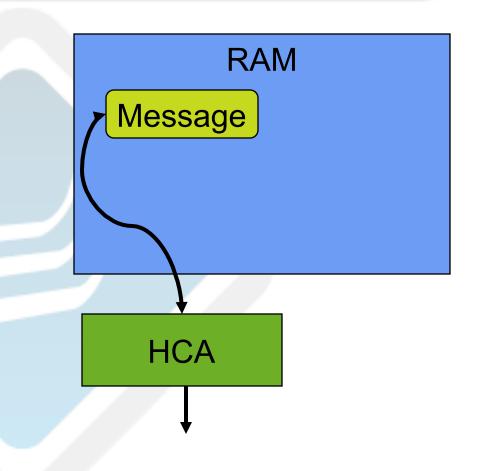
- OpenFabrics traffic divided into virtual "lanes"
 - Virtual separation of traffic
 - Analogous to MPI communicators (!)
 - Can be assigned QoS-like attributes
 - Weighting, etc.
- Service levels maps to lanes

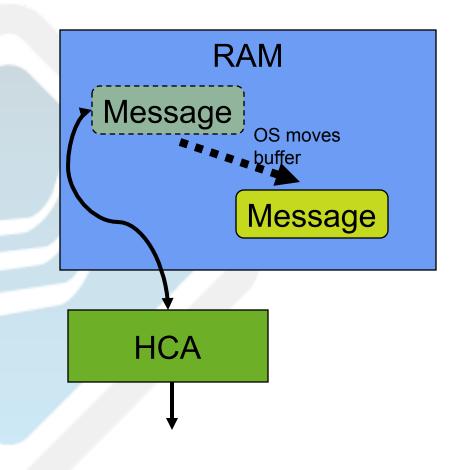

Some OpenFabrics Queues

- Queue Pair (QP)
 - Unit of connection in OpenFabrics
 - Think of as "sockets" for OpenFabrics
 - Send queue + receive queue
- Completion queue
 - Most OF verbs are non-blocking
 - OF driver puts events on this queue to signal when a verb has completed


Registered Memory

- InfiniBand/iWARP are RDMA-based networks
 - Directly sends / receives from RAM
 - Without involvement from main CPU
- But...
 - Operating system can change virtual ↔ physical RAM mapping at any time


- 1. MPI says "IB: send this buffer"
- 2. HCA obtains physical address
- 3. HCA starts sending
- OS changes physical mapping
- HCA now sending garbage!


- 1. MPI says "IB: send this buffer"
- 2. HCA obtains physical address
- 3. HCA starts sending
- OS changes physical mapping
- HCA now sending garbage!

- 1. MPI says "IB: send this buffer"
- 2. HCA obtains physical address
- 3. HCA starts sending
- 4. OS changes physical mapping
- 5. HCA now sending garbage!

- 1. MPI says "IB: send this buffer"
- 2. HCA obtains physical address
- 3. HCA starts sending
- OS changes physical mapping
- 5. HCA now sending garbage!

"Registering" Memory

- Solution: tell OS not to change mapping
 - "Pinning" ("locking") memory
 - Guarantees that the message will stay in the same physical location until HCA is done
- "Registering" memory does two things:
 - 1. Pinning virtual ↔ physical mapping
 - 2. Notifying HCA of the mapping

Registered Memory Problems

- Registering and unregistering is slow
- OS can only support so much registered memory at a time
 - Pinned pages are unswappable
- Must be careful to set ulimits properly (OFED)

Registered Memory Footprint

- How much registered memory does Open MPI use?
 - A complicated answer
 - Requires some background information first...
- For reference:
 - Complete answer (for v1.2 and beyond):

http://www.open-mpi.org/faq/?category=openfabrics#limiting-registered-memory-usage

Common MPI Trick

• MPI_SEND(buffer, ...)

- Register the buffer
- Do the send
- Return (leaving the buffer registered)
- Rationale: next time you send from that buffer, do not pay registration cost again
 - Great for benchmarks!
 - Usually not great for real applications
- OMPI does not do this (...by default)

Problems of User Registration

- Can run out of registered memory
 - MPI must implement eviction policies
- Application can free buffer
 - MPI must intercept free() or sbrk() to unregister memory before given back to OS
 - Extremely problematic
- So just say "No!"
 - ...except for benchmarks 😕

More Information

- Open MPI FAQ
 - General tuning

http://www.open-mpi.org/faq/?category=tuning

InfiniBand / OpenFabrics tuning

http://www.open-mpi.org/faq/?category=openfabrics

#