
1 © Copyright 2012 EMC Corporation. All rights reserved. 

MR+ 
A Technical Overview 

Ralph H. Castain 
Wangda Tan 
Greenplum/EMC 



2 © Copyright 2012 EMC Corporation. All rights reserved. 

What is MR+? 
Port of Hadoop’s MR classes to the general 

computing environment 
• Allow execution of MapReduce programs on any 

cluster, under any resource manager, without 
modification 

• Utilize common HPC capabilities 
–  MPI-based libraries 
–  Fault recovery, messaging 

• Co-exist with other uses 
–  No dedicated Hadoop cluster required 
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What MR+ is NOT 
• An entire rewrite of Hadoop 

–  Great effort was made to minimize changes on the 
Hadoop side 

–  No upper-level API changes were made 
•  Pig, Hive, etc. do not see anything different 

• An attempt to undermine the Hadoop community 
–  We want to bring Hadoop to a broader community by 

expanding its usability and removing barriers to adoption 
–  We hope to enrich the Hadoop experience by enabling 

use of a broader set of tools and systems 
•  Increase Hadoop’s capabilities w/o reinventing the wheel 
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Why did we write it? 
• Scalability issues with Hadoop/YARN 

–  Launch and file positioning scales linearly 
–  Wireup scales quadratically 
–  No inherent MPI support 

• Performance concerns 
–  Data transfer done via http 
–  Low performance (high latency, many small transfers) 

• Barriers to adoption 
–  Integrated RM, dictating use of dedicated system 
–  Only supports Ethernet/http 
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•  JobTracker receives client request 
•  Assigns tasks to nodes based on node 

resource availability data in heartbeat 
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Hadoop 1.0 

� Task assignment done upon heartbeat 
–  JobTracker uses synchronous processing of heartbeats 
▪  Max transaction rate 200 beats/sec 

–  No global status info     must wait for beat to assign tasks 
to any node 

–  Linear launch scaling 

� No internode communication 
–  Hub-spoke topology 
–  Precludes collective communication for wireup exchange 
–  Wireup scales quadratically 

� Simple fault recover model 
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Hadoop 2.0 

� Cleaner separation of roles 
– Node manager: manages nodes, not tasks 
– Create new application master role 

� Event-driven async processing of heartbeats 
–  Improve throughput for better support of large 

clusters 
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•  RM receives client request 
•  Assigns a container for Application 

Master to a node based on resource 
availability data in heartbeat 
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•  Client launches AppMstr via 
corresponding NM 

•  AppMstr contacts RM with resource 
requirements, including preferred 
locations etc. 
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•  RM returns node/container 
assignments to AppMstr 

•  AppMstr launches procs on allocated 
containers via corresponding NM 
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Hadoop 2.0 

� Two levels of task assignment done upon heartbeat 
–  Faster, but now have to do it twice 
–  No global status info     must wait for beat to assign AM 

and tasks to any node 
–  Linear launch scaling 

� No internode communication 
–  Hub-spoke topology with AM now at the hub 
–  Precludes collective communication for wireup exchange 

� Simple fault recover model 

� Security concerns 
–  Nodemanagers are heavyweight daemons operating at 

privileged level 
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Observations 
MR+ 

� SLURM 
–  16,000 processes across 

1000 nodes launched in 
~20 milliseconds* 

–  Wired and running in 
~10 seconds 

� Cray 
–  139,000 processes 

across 8500 nodes 
launched in ~1 second 

–  Wired and running in 
~60 seconds* 

� Hadoop 2.0 
� 2 processes on separate 

nodes 
–  Launched in ~5-10 

seconds 

� 12,768 processes on 
3,192 nodes 

–  Launched in ~10 min 
–  Wired and running in 

~45 minutes* 

*prepositioned files 
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MR+ Approach 
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Differences 
�  RMs maintain system state 

–  Don’t rely on heartbeats to avoid scalability issues 
▪  Look at connection state 
▪  Use multi-path connection topology 

–  High availability based on redundant “masters” 
–  Allocation can be performed immediately, regardless of scale 

�  Scalable launch 
–  Internode communication allows collective launch and wireup 

(logN scaling) 

�  Reduced security concern 
–  RM daemons very lightweight 

▪  Consist solely of fork/exec (no user-level comm or API) 
▪  Minimal risk for malware penetration 

–  Orteds are heavier, but operate at user level 
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How does it work? 
•  “Overlay” JobClient class 

–  JNI-based integration to Open MPI’s run-time (ORTE) 
–  ORTE provides virtualized shim on top of native resource manager 

•  Launch, monitoring, and wireup at logN scaling 
•  Inherent MPI support, but can run non-MPI apps 
•  “Staged” execution to replicate MR behavior 

–  Preposition files using logN-scaled system 

•  Extend FileSystem class 
–  Remote access to intermediate files 
–  Open, close, read, write access 
–  Pre-wired TCP-based interconnect, other interconnects (e.g., 

Infiniband, UDP) automatically utilized to maximize performance 
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What are the biggest differences? 
It’s all in the daemons… 

•  Hadoop’s node-level daemons do not communicate with 
each other 

–  Only send “heartbeats” to the YARN resource manager 
–  Have no knowledge of state of rest of nodes 
–  Results in bottleneck at RM, linear launch scaling, quadratic wireup 

of application processes…but relatively easy fault tolerance 

•  ORTE’s daemons wireup into a communication fabric 
–  Relay messages in a logN pattern across the system 
–  Retain independent snapshot of state of system 
–  Results in logN launch scaling, logN wireup, coordinated action to 

respond to faults…but more complex fault tolerance design 
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What are the biggest differences? 
…and in the RM 

•  Hadoop’s RM retains no global state info 
–  Allocation requests are queued and wait for heartbeats from nodes 

that indicate appropriate resources available 
–  Results in delays until heartbeats arrive, suboptimal resource 

allocation unless wait to hear from all nodes (complication: nodes 
may have failed)…but easy to recover RM on failure 

•  HPC RMs maintain global state 
–  Can immediately allocate, optimize assignment 
–  Results in very fast allocation times (>100K/sec)…but more difficult 

to recover RM on failure (methods have been field proven, but are 
non-trivial) 

 



23 © Copyright 2012 EMC Corporation. All rights reserved. 

Three new pieces 
•  Jobclient.c 

–  Contains JNI integration to ORTE 
–  Serves as “HNP” in the ORTE system 

•  Manages launch and sequencing of MR stages 
•  Replaces Hadoop execution enging 

• Filesystem.c 
–  Support distributed file operations (open, close, read, 

write) using ORTE daemons for shuffle stage 

• Mapred.c 
–  Send and receive mapper output partition metadata 
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Overview of operation: defining the job 
�  jc = New jobClient 

–  If OMPI libs not loaded, then load them and initialize ORTE system 
–  Create a new map/reduce instance 

�  jc.addMapper/addReducer 
–  Call as many times as you like, each with its own cmd line 
–  Typically called once for each split 
–  Includes param indicating relative expected run time 

�  jc.addFile, addJar 
–  Indicate files to be transferred to remote nodes for use by mappers and 

reducers (archives automatically expanded on remote end) 
–  Separately tracked for each map/reduce pair 

�  jc.runJob 
–  Execute this map/reduce pair 
–  Execution will commence as resources become available 
–  Returns upon completion 
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Map/Reduce staging 

� Current 
– Only one map/reduce pair can be executing at a 

time 
– Any number of pairs can be defined in parallel 
– Any sequencing of M/R pairs is allowed 
▪  Results-based steering 

� Future 
– Map/reduce pairs can operate in parallel 
▪  Sequenced according to resource availability 

–  runJob will queue job and immediately return 
▪  isComplete() polled to determine completion 



26 © Copyright 2012 EMC Corporation. All rights reserved. 

Resource definition 
�  Current 

–  Allocation must be defined in advance 
▪  Obtained from external RM 
▪  Specified in hostfile – number of slots automatically set to number of 

cores on each node 
–  Java-layer determines what, if any, location preference 

▪  Can use HDFS to determine locations 
–  Provided to jobClient as non-binding “hint” for each M/R split 

▪  Highest priority given to placing procs there, but will use other nodes 
if not available 

�  Future option 
–  ORTE can obtain allocation from external RM based on file 

specifications 
▪  RM will treat file locations as non-binding “hint”, callback with allocation when 

number of desired slots is met (working on SLURM and Moab integration now) 
▪  If you give allocation, we will use it 
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Some details/constraints 

� Execute in ORTE session directory 
– Unique “scratch” directory tree on each node 
–  Includes temporary directory for each process 
– All files preloaded to top-level location, and then 

linked to the individual process’ directory 

� Jars automatically added to classpath 
� Paths must be set* 

–  “hadoop” must be in PATH on all nodes 
– OMPI must be installed and in PATH and 

LD_LIBRARY_PATH on all nodes 
*Typical HPC requirement 
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Overview of operation: execution 

� For each pair, mappers go first 
–  Longest expected running mappers have higher priority 
▪  Executed in priority order as resources permit, so lower 

priority could run first if resources for higher priority not 
available 

–  Location “hint” used to prioritize available resources 
▪  If desired location available, it is used 
▪  Otherwise, alternative locations used 

–  “strict” option 
▪  Limits execution strictly to desired locations 

� When mappers fully completed, associated reducer 
is executed 

–  Uses same “hint” rule as mappers 
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Resource competition 

Variety of schemes by user option 
�  “eldest”: priority to the longest waiting process across all 

executing M/R pairs 

�  “greedy”: priority to the process expected to require longest 
running time in the same M/R pair* 

�  “sequential”: priority to the next defined process in the same 
M/R pair, rotating to next M/R pair if all done 

�  “eager”: priority to process expected to require shortest 
running time across all executing M/R pairs 

�  Many schemes can be supported by simply adding components 

*current, default 
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Overview of operation: data transfer 

� Reducers access mapper output via extensions to 
FileSystem class 

–  Open, close, read, write APIs 
–  Daemons on remote nodes transfer the data using ORTE/

OMPI transports 
▪  Fastest method used, point-to-point 

� Also support streaming mode 
–  Requires mappers and reducers both execute at same time 
▪  Must have adequate resources to do so 

–  Stdout of mappers connected to stdin of reducers 

� Future 
–  Look at MPI-I/O like solution 
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What about MPI? 

� MPI permitted when all procs can be run in 
parallel 

– ORTE detects if MPI attempted and errors out if it 
cannot be supported 

– Mapper and reducer are treated separately 

� MPI support always available 
– No special request required 
– Add flag at some point to indicate “all splits must 

be executed in parallel”? 
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What about faults? 
• Processes automatically restarted 

–  Time from failure to relocation and restart 
•  Hadoop: ~5-10 seconds 
•  MR+: ~5 milliseconds 

–  Relocation based on fault probabilities 
•  Avoid cascading failures 

• Future state recovery based on HPC methods 
–  Process periodically saves “bookmark” 
–  Restart provided with bookmark so it knows where to 

start processing 
–  Prior intermediate results are preserved, appended to 

new results during communication 
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Why would someone use it? 
•  Flexibility 

–  Let customer select their preferred environment 
•  Moab/Maui, SLURM, LSF, Gridengine, simple rsh, … 

–  Share resources 

•  Scalability 
–  Launch scaling: Hadoop (~N), MR+ (~logN) 
–  Wireup: Hadoop (~N2), MR+ (~logN) 

•  Performance 
–  Launches ~1000x faster, potentially runs ~10x faster 
–  Enables interactive use-case 

•  MPI library access 
–  ScaLAPACK, CompLearn, PetSc, … 
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TPCH: 50G (Hive benchmark) 
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TPCH:100G (Hive benchmark) 
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TPCH: 256G (Hive benchmark) 
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Other Benchmarks 
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Lessons Learned 

� Running MR using ORTE is feasible, provides benefits 
–  Performance, security, execute anywhere 
–  Access to MPI 
–  Performance benefit drops as computation time increases 

� Need improvement 
–  Shuffle operation 
▪  Pre-position data for reducers that haven’t started yet 
▪  Requires pre-knowledge of where reducers are going to 

execute 
▪  More efficient, parallel file read access (perhaps MPI-IO) 

–  Overlap mappers and reducers (resources permitting) 
▪  Don’t require all mappers to complete before starting 

corresponding reducers 



39 © Copyright 2012 EMC Corporation. All rights reserved. 

Future Directions 

� Complete the port 
– Extend range of validated Hadoop tools 
– Add support for HD2.0 

� Continue testing and benchmarks 
– Demonstrate fault recovery 
– Large-scale demonstration 

� “Alpha” release of code 
– Gain early-adopter feedback 

� Pursue improvements 
– Shuffle, simultaneous operations 



40 © Copyright 2012 EMC Corporation. All rights reserved. 


