
1 © Copyright 2012 EMC Corporation. All rights reserved.

MR+
A Technical Overview

Ralph H. Castain
Wangda Tan
Greenplum/EMC

2 © Copyright 2012 EMC Corporation. All rights reserved.

What is MR+?
Port of Hadoop’s MR classes to the general

computing environment
• Allow execution of MapReduce programs on any

cluster, under any resource manager, without
modification

• Utilize common HPC capabilities
–  MPI-based libraries
–  Fault recovery, messaging

• Co-exist with other uses
–  No dedicated Hadoop cluster required

3 © Copyright 2012 EMC Corporation. All rights reserved.

What MR+ is NOT
• An entire rewrite of Hadoop

–  Great effort was made to minimize changes on the
Hadoop side

–  No upper-level API changes were made
•  Pig, Hive, etc. do not see anything different

• An attempt to undermine the Hadoop community
–  We want to bring Hadoop to a broader community by

expanding its usability and removing barriers to adoption
–  We hope to enrich the Hadoop experience by enabling

use of a broader set of tools and systems
•  Increase Hadoop’s capabilities w/o reinventing the wheel

4 © Copyright 2012 EMC Corporation. All rights reserved.

Why did we write it?
• Scalability issues with Hadoop/YARN

–  Launch and file positioning scales linearly
–  Wireup scales quadratically
–  No inherent MPI support

• Performance concerns
–  Data transfer done via http
–  Low performance (high latency, many small transfers)

• Barriers to adoption
–  Integrated RM, dictating use of dedicated system
–  Only supports Ethernet/http

5 © Copyright 2012 EMC Corporation. All rights reserved.

Hadoop 1.0
Task

Tracker

Task

JobTracker

Client

Task
Tracker

Task

Task
Tracker

Task

heartbeat

No global state info!

6 © Copyright 2012 EMC Corporation. All rights reserved.

Hadoop 1.0
Task

Tracker

Task

JobTracker

Client

Client

Task
Tracker

Task

Task
Tracker

Task

heartbeat

•  JobTracker receives client request
•  Assigns tasks to nodes based on node

resource availability data in heartbeat

7 © Copyright 2012 EMC Corporation. All rights reserved.

Hadoop 1.0
Task

Tracker

Task

JobTracker

Client

Client

Task
Tracker

Task

Task
Tracker

Task

heartbeat

•  TaskTracker receives assignment
•  JobTracker transfers all reqd files
•  Execution managed by TaskTracker

Task

Task

8 © Copyright 2012 EMC Corporation. All rights reserved.

Hadoop 1.0

� Task assignment done upon heartbeat
–  JobTracker uses synchronous processing of heartbeats
▪  Max transaction rate 200 beats/sec

–  No global status info must wait for beat to assign tasks
to any node

–  Linear launch scaling

� No internode communication
–  Hub-spoke topology
–  Precludes collective communication for wireup exchange
–  Wireup scales quadratically

� Simple fault recover model

9 © Copyright 2012 EMC Corporation. All rights reserved.

Hadoop 2.0

� Cleaner separation of roles
– Node manager: manages nodes, not tasks
– Create new application master role

� Event-driven async processing of heartbeats
–  Improve throughput for better support of large

clusters

10 © Copyright 2012 EMC Corporation. All rights reserved.

Hadoop 2.0 (YARN)
Node

Manager

Proc
Ctr

Resource
Manager

Client

Node
Manager

App
Mstr

Node
Manager

Proc
Ctr

Proc
Ctr

No global state info!

heartbeat

11 © Copyright 2012 EMC Corporation. All rights reserved.

Hadoop 2.0 (YARN)
Node

Manager

Proc
Ctr

Resource
Manager

Client

Node
Manager

App
Mstr

Node
Manager

Proc
Ctr

Proc
Ctr

heartbeat

Client

•  RM receives client request
•  Assigns a container for Application

Master to a node based on resource
availability data in heartbeat

12 © Copyright 2012 EMC Corporation. All rights reserved.

Hadoop 2.0 (YARN)
Node

Manager

Proc
Ctr

Resource
Manager

Client

Node
Manager

App
Mstr

App
Mstr

Node
Manager

Proc
Ctr

Proc
Ctr

heartbeat

Client

•  Client launches AppMstr via
corresponding NM

•  AppMstr contacts RM with resource
requirements, including preferred
locations etc.

13 © Copyright 2012 EMC Corporation. All rights reserved.

Hadoop 2.0 (YARN)
Node

Manager

Proc
Ctr

Resource
Manager

Client

Node
Manager

App
Mstr

App
Mstr

Node
Manager

Proc
Ctr

Proc
Ctr

heartbeat

Client

•  RM returns node/container
assignments to AppMstr

•  AppMstr launches procs on allocated
containers via corresponding NM

14 © Copyright 2012 EMC Corporation. All rights reserved.

Hadoop 2.0 (YARN)
Node

Manager

Proc
Ctr

Resource
Manager

Client

Node
Manager

App
Mstr

App
Mstr

Node
Manager

Proc
Ctr

Proc
Ctr

heartbeat

Client

•  Proc is launched and reports contact
info to AppMstr

•  AppMstr manages job, connections

Proc
Ctr

15 © Copyright 2012 EMC Corporation. All rights reserved.

Hadoop 2.0

� Two levels of task assignment done upon heartbeat
–  Faster, but now have to do it twice
–  No global status info must wait for beat to assign AM

and tasks to any node
–  Linear launch scaling

� No internode communication
–  Hub-spoke topology with AM now at the hub
–  Precludes collective communication for wireup exchange

� Simple fault recover model

� Security concerns
–  Nodemanagers are heavyweight daemons operating at

privileged level

16 © Copyright 2012 EMC Corporation. All rights reserved.

Observations
MR+

� SLURM
–  16,000 processes across

1000 nodes launched in
~20 milliseconds*

–  Wired and running in
~10 seconds

� Cray
–  139,000 processes

across 8500 nodes
launched in ~1 second

–  Wired and running in
~60 seconds*

� Hadoop 2.0
� 2 processes on separate

nodes
–  Launched in ~5-10

seconds

� 12,768 processes on
3,192 nodes

–  Launched in ~10 min
–  Wired and running in

~45 minutes*

*prepositioned files

17 © Copyright 2012 EMC Corporation. All rights reserved.

MR+ Approach
Task

Tracker

Task

JobTracker

Client

Client

Task
Tracker

Task

Task
Tracker

Task

heartbeat

Task

Task

•  Remove the Hadoop resource manager
system

18 © Copyright 2012 EMC Corporation. All rights reserved.

MR+ Approach
RMdaemon

Task

System RM

Client

Client

RMdaemon

RMdaemon

Task

•  Utilize the system resource manager,
with ORTE as the abstraction layer

•  Add a JNI-based extension to the
existing JobClient class to interface to
the RM

Task

orted orted

Task Task

orted orted

lightweight

orted

Task

19 © Copyright 2012 EMC Corporation. All rights reserved.

Differences
�  RMs maintain system state

–  Don’t rely on heartbeats to avoid scalability issues
▪  Look at connection state
▪  Use multi-path connection topology

–  High availability based on redundant “masters”
–  Allocation can be performed immediately, regardless of scale

�  Scalable launch
–  Internode communication allows collective launch and wireup

(logN scaling)

�  Reduced security concern
–  RM daemons very lightweight

▪  Consist solely of fork/exec (no user-level comm or API)
▪  Minimal risk for malware penetration

–  Orteds are heavier, but operate at user level

20 © Copyright 2012 EMC Corporation. All rights reserved.

How does it work?
•  “Overlay” JobClient class

–  JNI-based integration to Open MPI’s run-time (ORTE)
–  ORTE provides virtualized shim on top of native resource manager

•  Launch, monitoring, and wireup at logN scaling
•  Inherent MPI support, but can run non-MPI apps
•  “Staged” execution to replicate MR behavior

–  Preposition files using logN-scaled system

•  Extend FileSystem class
–  Remote access to intermediate files
–  Open, close, read, write access
–  Pre-wired TCP-based interconnect, other interconnects (e.g.,

Infiniband, UDP) automatically utilized to maximize performance

21 © Copyright 2012 EMC Corporation. All rights reserved.

What are the biggest differences?
It’s all in the daemons…

•  Hadoop’s node-level daemons do not communicate with
each other

–  Only send “heartbeats” to the YARN resource manager
–  Have no knowledge of state of rest of nodes
–  Results in bottleneck at RM, linear launch scaling, quadratic wireup

of application processes…but relatively easy fault tolerance

•  ORTE’s daemons wireup into a communication fabric
–  Relay messages in a logN pattern across the system
–  Retain independent snapshot of state of system
–  Results in logN launch scaling, logN wireup, coordinated action to

respond to faults…but more complex fault tolerance design

22 © Copyright 2012 EMC Corporation. All rights reserved.

What are the biggest differences?
…and in the RM

•  Hadoop’s RM retains no global state info
–  Allocation requests are queued and wait for heartbeats from nodes

that indicate appropriate resources available
–  Results in delays until heartbeats arrive, suboptimal resource

allocation unless wait to hear from all nodes (complication: nodes
may have failed)…but easy to recover RM on failure

•  HPC RMs maintain global state
–  Can immediately allocate, optimize assignment
–  Results in very fast allocation times (>100K/sec)…but more difficult

to recover RM on failure (methods have been field proven, but are
non-trivial)

23 © Copyright 2012 EMC Corporation. All rights reserved.

Three new pieces
•  Jobclient.c

–  Contains JNI integration to ORTE
–  Serves as “HNP” in the ORTE system

•  Manages launch and sequencing of MR stages
•  Replaces Hadoop execution enging

• Filesystem.c
–  Support distributed file operations (open, close, read,

write) using ORTE daemons for shuffle stage

• Mapred.c
–  Send and receive mapper output partition metadata

24 © Copyright 2012 EMC Corporation. All rights reserved.

Overview of operation: defining the job
�  jc = New jobClient

–  If OMPI libs not loaded, then load them and initialize ORTE system
–  Create a new map/reduce instance

�  jc.addMapper/addReducer
–  Call as many times as you like, each with its own cmd line
–  Typically called once for each split
–  Includes param indicating relative expected run time

�  jc.addFile, addJar
–  Indicate files to be transferred to remote nodes for use by mappers and

reducers (archives automatically expanded on remote end)
–  Separately tracked for each map/reduce pair

�  jc.runJob
–  Execute this map/reduce pair
–  Execution will commence as resources become available
–  Returns upon completion

25 © Copyright 2012 EMC Corporation. All rights reserved.

Map/Reduce staging

� Current
– Only one map/reduce pair can be executing at a

time
– Any number of pairs can be defined in parallel
– Any sequencing of M/R pairs is allowed
▪  Results-based steering

� Future
– Map/reduce pairs can operate in parallel
▪  Sequenced according to resource availability

–  runJob will queue job and immediately return
▪  isComplete() polled to determine completion

26 © Copyright 2012 EMC Corporation. All rights reserved.

Resource definition
�  Current

–  Allocation must be defined in advance
▪  Obtained from external RM
▪  Specified in hostfile – number of slots automatically set to number of

cores on each node
–  Java-layer determines what, if any, location preference

▪  Can use HDFS to determine locations
–  Provided to jobClient as non-binding “hint” for each M/R split

▪  Highest priority given to placing procs there, but will use other nodes
if not available

�  Future option
–  ORTE can obtain allocation from external RM based on file

specifications
▪  RM will treat file locations as non-binding “hint”, callback with allocation when

number of desired slots is met (working on SLURM and Moab integration now)
▪  If you give allocation, we will use it

27 © Copyright 2012 EMC Corporation. All rights reserved.

Some details/constraints

� Execute in ORTE session directory
– Unique “scratch” directory tree on each node
–  Includes temporary directory for each process
– All files preloaded to top-level location, and then

linked to the individual process’ directory

� Jars automatically added to classpath
� Paths must be set*

–  “hadoop” must be in PATH on all nodes
– OMPI must be installed and in PATH and

LD_LIBRARY_PATH on all nodes
*Typical HPC requirement

28 © Copyright 2012 EMC Corporation. All rights reserved.

Overview of operation: execution

� For each pair, mappers go first
–  Longest expected running mappers have higher priority
▪  Executed in priority order as resources permit, so lower

priority could run first if resources for higher priority not
available

–  Location “hint” used to prioritize available resources
▪  If desired location available, it is used
▪  Otherwise, alternative locations used

–  “strict” option
▪  Limits execution strictly to desired locations

� When mappers fully completed, associated reducer
is executed

–  Uses same “hint” rule as mappers

29 © Copyright 2012 EMC Corporation. All rights reserved.

Resource competition

Variety of schemes by user option
�  “eldest”: priority to the longest waiting process across all

executing M/R pairs

�  “greedy”: priority to the process expected to require longest
running time in the same M/R pair*

�  “sequential”: priority to the next defined process in the same
M/R pair, rotating to next M/R pair if all done

�  “eager”: priority to process expected to require shortest
running time across all executing M/R pairs

�  Many schemes can be supported by simply adding components

*current, default

30 © Copyright 2012 EMC Corporation. All rights reserved.

Overview of operation: data transfer

� Reducers access mapper output via extensions to
FileSystem class

–  Open, close, read, write APIs
–  Daemons on remote nodes transfer the data using ORTE/

OMPI transports
▪  Fastest method used, point-to-point

� Also support streaming mode
–  Requires mappers and reducers both execute at same time
▪  Must have adequate resources to do so

–  Stdout of mappers connected to stdin of reducers

� Future
–  Look at MPI-I/O like solution

31 © Copyright 2012 EMC Corporation. All rights reserved.

What about MPI?

� MPI permitted when all procs can be run in
parallel

– ORTE detects if MPI attempted and errors out if it
cannot be supported

– Mapper and reducer are treated separately

� MPI support always available
– No special request required
– Add flag at some point to indicate “all splits must

be executed in parallel”?

32 © Copyright 2012 EMC Corporation. All rights reserved.

What about faults?
• Processes automatically restarted

–  Time from failure to relocation and restart
•  Hadoop: ~5-10 seconds
•  MR+: ~5 milliseconds

–  Relocation based on fault probabilities
•  Avoid cascading failures

• Future state recovery based on HPC methods
–  Process periodically saves “bookmark”
–  Restart provided with bookmark so it knows where to

start processing
–  Prior intermediate results are preserved, appended to

new results during communication

33 © Copyright 2012 EMC Corporation. All rights reserved.

Why would someone use it?
•  Flexibility

–  Let customer select their preferred environment
•  Moab/Maui, SLURM, LSF, Gridengine, simple rsh, …

–  Share resources

•  Scalability
–  Launch scaling: Hadoop (~N), MR+ (~logN)
–  Wireup: Hadoop (~N2), MR+ (~logN)

•  Performance
–  Launches ~1000x faster, potentially runs ~10x faster
–  Enables interactive use-case

•  MPI library access
–  ScaLAPACK, CompLearn, PetSc, …

34 © Copyright 2012 EMC Corporation. All rights reserved.

TPCH: 50G (Hive benchmark)

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 AVG

MR+

HADOOP

35 © Copyright 2012 EMC Corporation. All rights reserved.

TPCH:100G (Hive benchmark)

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 AVG

MR+

HADOOP

36 © Copyright 2012 EMC Corporation. All rights reserved.

TPCH: 256G (Hive benchmark)

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 AVG

MR+

HADOOP

37 © Copyright 2012 EMC Corporation. All rights reserved.

Other Benchmarks

0

50

100

150

200

250

300

350

400

450

Movie's Histogram
(30G)

Rating's Histogram
(30G)

wordcount (wikipedia
150G)

inverted-index
(wikipedia 150G)

MR+

Apache

38 © Copyright 2012 EMC Corporation. All rights reserved.

Lessons Learned

� Running MR using ORTE is feasible, provides benefits
–  Performance, security, execute anywhere
–  Access to MPI
–  Performance benefit drops as computation time increases

� Need improvement
–  Shuffle operation
▪  Pre-position data for reducers that haven’t started yet
▪  Requires pre-knowledge of where reducers are going to

execute
▪  More efficient, parallel file read access (perhaps MPI-IO)

–  Overlap mappers and reducers (resources permitting)
▪  Don’t require all mappers to complete before starting

corresponding reducers

39 © Copyright 2012 EMC Corporation. All rights reserved.

Future Directions

� Complete the port
– Extend range of validated Hadoop tools
– Add support for HD2.0

� Continue testing and benchmarks
– Demonstrate fault recovery
– Large-scale demonstration

� “Alpha” release of code
– Gain early-adopter feedback

� Pursue improvements
– Shuffle, simultaneous operations

40 © Copyright 2012 EMC Corporation. All rights reserved.

