MR+ A Technical Overview

Ralph H. Castain Wangda Tan Greenplum/EMC

What is MR+?

Port of Hadoop's MR classes to the general computing environment

- Allow execution of MapReduce programs on any cluster, under any resource manager, without modification
- Utilize common HPC capabilities
 - MPI-based libraries
 - Fault recovery, messaging
- Co-exist with other uses
 - No dedicated Hadoop cluster required

What MR+ is NOT

- An entire rewrite of Hadoop
 - Great effort was made to minimize changes on the Hadoop side
 - No upper-level API changes were made
 - Pig, Hive, etc. do not see anything different
- An attempt to undermine the Hadoop community
 - We want to bring Hadoop to a broader community by expanding its usability and removing barriers to adoption
 - We hope to enrich the Hadoop experience by enabling use of a broader set of tools and systems
 - Increase Hadoop's capabilities w/o reinventing the wheel

Why did we write it?

- Scalability issues with Hadoop/YARN
 - Launch and file positioning scales linearly
 - Wireup scales quadratically
 - No inherent MPI support
- Performance concerns
 - Data transfer done via http
 - Low performance (high latency, many small transfers)
- Barriers to adoption
 - Integrated RM, dictating use of dedicated system
 - Only supports Ethernet/http

- Task assignment done upon heartbeat
 - JobTracker uses synchronous processing of heartbeats
 - Max transaction rate 200 beats/sec
 - No global status info → must wait for beat to assign tasks to any node
 - Linear launch scaling
- No internode communication
 - Hub-spoke topology
 - Precludes collective communication for wireup exchange
 - Wireup scales quadratically
- Simple fault recover model

Hadoop 2.0

- Cleaner separation of roles
 - Node manager: manages nodes, not tasks
 - Create new application master role
- Event-driven async processing of heartbeats
 - Improve throughput for better support of large clusters

Hadoop 2.0 (YARN)

Hadoop 2.0 (YARN)

Hadoop 2.0

- Two levels of task assignment done upon heartbeat
 - Faster, but now have to do it twice
 - No global status info → must wait for beat to assign AM and tasks to any node
 - Linear launch scaling
- No internode communication
 - Hub-spoke topology with AM now at the hub
 - Precludes collective communication for wireup exchange
- Simple fault recover model
- Security concerns
 - Nodemanagers are heavyweight daemons operating at privileged level

Observations

MR+

- SLURM
 - 16,000 processes across
 1000 nodes launched in
 ~20 milliseconds*
 - Wired and running in ~10 seconds
- Cray
 - 139,000 processes across 8500 nodes launched in ~1 second
 - Wired and running in ~60 seconds*

- Hadoop 2.0
- 2 processes on separate nodes
 - Launched in ~5-10 seconds
- 12,768 processes on 3,192 nodes
 - Launched in ~10 min
 - Wired and running in ~45 minutes*

*prepositioned files

MR+ Approach

Differences

- RMs maintain system state
 - Don't rely on heartbeats to avoid scalability issues
 - Look at connection state
 - Use multi-path connection topology
 - High availability based on redundant "masters"
 - Allocation can be performed immediately, regardless of scale
- Scalable launch
 - Internode communication allows collective launch and wireup (logN scaling)
- Reduced security concern
 - RM daemons very lightweight
 - Consist solely of fork/exec (no user-level comm or API)
 - Minimal risk for malware penetration
 - Orteds are heavier, but operate at user level

How does it work?

- "Overlay" JobClient class
 - JNI-based integration to Open MPI's run-time (ORTE)
 - ORTE provides virtualized shim on top of native resource manager
 - Launch, monitoring, and wireup at logN scaling
 - Inherent MPI support, but can run non-MPI apps
 - "Staged" execution to replicate MR behavior
 - Preposition files using logN-scaled system
- Extend FileSystem class
 - Remote access to intermediate files
 - Open, close, read, write access
 - Pre-wired TCP-based interconnect, other interconnects (e.g., Infiniband, UDP) automatically utilized to maximize performance

What are the biggest differences?

It's all in the daemons...

- Hadoop's node-level daemons do not communicate with each other
 - Only send "heartbeats" to the YARN resource manager
 - Have no knowledge of state of rest of nodes
 - Results in bottleneck at RM, linear launch scaling, quadratic wireup of application processes...but relatively easy fault tolerance
- ORTE's daemons wireup into a communication fabric
 - Relay messages in a logN pattern across the system
 - Retain independent snapshot of state of system
 - Results in logN launch scaling, logN wireup, coordinated action to respond to faults...but more complex fault tolerance design

What are the biggest differences?

...and in the RM

- Hadoop's RM retains no global state info
 - Allocation requests are queued and wait for heartbeats from nodes that indicate appropriate resources available
 - Results in delays until heartbeats arrive, suboptimal resource allocation unless wait to hear from all nodes (complication: nodes may have failed)...but easy to recover RM on failure
- HPC RMs maintain global state
 - Can immediately allocate, optimize assignment
 - Results in very fast allocation times (>100K/sec)...but more difficult to recover RM on failure (methods have been field proven, but are non-trivial)

Three new pieces

- Jobclient.c
 - Contains JNI integration to ORTE
 - Serves as "HNP" in the ORTE system
 - Manages launch and sequencing of MR stages
 - Replaces Hadoop execution enging
- Filesystem.c
 - Support distributed file operations (open, close, read, write) using ORTE daemons for shuffle stage
- Mapred.c
 - Send and receive mapper output partition metadata

Overview of operation: defining the job

- jc = New jobClient
 - If OMPI libs not loaded, then load them and initialize ORTE system
 - Create a new map/reduce instance
- jc.addMapper/addReducer
 - Call as many times as you like, each with its own cmd line
 - Typically called once for each split
 - Includes param indicating relative expected run time
- jc.addFile, addJar
 - Indicate files to be transferred to remote nodes for use by mappers and reducers (archives automatically expanded on remote end)
 - Separately tracked for each map/reduce pair
- jc.runJob
 - Execute this map/reduce pair
 - Execution will commence as resources become available
 - Returns upon completion

Map/Reduce staging

Current

- Only one map/reduce pair can be executing at a time
- Any number of pairs can be defined in parallel
- Any sequencing of M/R pairs is allowed
 - Results-based steering

Future

- Map/reduce pairs can operate in parallel
 - Sequenced according to resource availability
- runJob will queue job and immediately return
 - isComplete() polled to determine completion

Resource definition

Current

- Allocation must be defined in advance
 - Obtained from external RM
 - Specified in hostfile number of slots automatically set to number of cores on each node
- Java-layer determines what, if any, location preference
 - Can use HDFS to determine locations
- Provided to jobClient as non-binding "hint" for each M/R split
 - Highest priority given to placing procs there, but will use other nodes if not available

Future option

- ORTE can obtain allocation from external RM based on file specifications
 - RM will treat file locations as non-binding "hint", callback with allocation when number of desired slots is met (working on SLURM and Moab integration now)
 - If you give allocation, we will use it

Some details/constraints

- Execute in ORTE session directory
 - Unique "scratch" directory tree on each node
 - Includes temporary directory for each process
 - All files preloaded to top-level location, and then linked to the individual process' directory
- Jars automatically added to classpath
- Paths must be set*
 - "hadoop" must be in PATH on all nodes
 - OMPI must be installed and in PATH and LD_LIBRARY_PATH on all nodes

*Typical HPC requirement

Overview of operation: execution

- For each pair, mappers go first
 - Longest expected running mappers have higher priority
 - Executed in priority order as resources permit, so lower priority could run first if resources for higher priority not available
 - Location "hint" used to prioritize available resources
 - If desired location available, it is used
 - Otherwise, alternative locations used
 - "strict" option
 - Limits execution strictly to desired locations
- When mappers fully completed, associated reducer is executed
 - Uses same "hint" rule as mappers

Resource competition

Variety of schemes by user option

- "eldest": priority to the longest waiting process across all executing M/R pairs
- "greedy": priority to the process expected to require longest running time in the same M/R pair*
- "sequential": priority to the next defined process in the same M/R pair, rotating to next M/R pair if all done
- "eager": priority to process expected to require shortest running time across all executing M/R pairs
- Many schemes can be supported by simply adding components

*current, default

Overview of operation: data transfer

- Reducers access mapper output via extensions to FileSystem class
 - Open, close, read, write APIs
 - Daemons on remote nodes transfer the data using ORTE/ OMPI transports
 - Fastest method used, point-to-point
- Also support streaming mode
 - Requires mappers and reducers both execute at same time
 - Must have adequate resources to do so
 - Stdout of mappers connected to stdin of reducers
- Future
 - Look at MPI-I/O like solution

What about MPI?

- MPI permitted when all procs can be run in parallel
 - ORTE detects if MPI attempted and errors out if it cannot be supported
 - Mapper and reducer are treated separately
- MPI support always available
 - No special request required
 - Add flag at some point to indicate "all splits must be executed in parallel"?

What about faults?

- Processes automatically restarted
 - Time from failure to relocation and restart
 - Hadoop: ~5-10 seconds
 - MR+: ~5 milliseconds
 - Relocation based on fault probabilities
 - Avoid cascading failures
- Future state recovery based on HPC methods
 - Process periodically saves "bookmark"
 - Restart provided with bookmark so it knows where to start processing
 - Prior intermediate results are preserved, appended to new results during communication

Why would someone use it?

- Flexibility
 - Let customer select their preferred environment
 - Moab/Maui, SLURM, LSF, Gridengine, simple rsh, ...
 - Share resources
- Scalability
 - Launch scaling: Hadoop (~N), MR+ (~logN)
 - Wireup: Hadoop (~N²), MR+ (~logN)
- Performance
 - Launches ~1000x faster, potentially runs ~10x faster
 - Enables interactive use-case
- MPI library access
 - ScaLAPACK, CompLearn, PetSc, ...

TPCH: 50G (Hive benchmark)

TPCH:100G (Hive benchmark)

TPCH: 256G (Hive benchmark)

Other Benchmarks

Lessons Learned

- Running MR using ORTE is feasible, provides benefits
 - Performance, security, execute anywhere
 - Access to MPI
 - Performance benefit drops as computation time increases
- Need improvement
 - Shuffle operation
 - Pre-position data for reducers that haven't started yet
 - Requires pre-knowledge of where reducers are going to execute
 - More efficient, parallel file read access (perhaps MPI-IO)
 - Overlap mappers and reducers (resources permitting)
 - Don't require all mappers to complete before starting corresponding reducers

Future Directions

- Complete the port
 - Extend range of validated Hadoop tools
 - Add support for HD2.0
- Continue testing and benchmarks
 - Demonstrate fault recovery
 - Large-scale demonstration
- "Alpha" release of code
 - Gain early-adopter feedback
- Pursue improvements
 - Shuffle, simultaneous operations

