

## Scalable and Modular Parallel I/ O for Open MPI

#### Edgar Gabriel

Parallel Software Technologies Laboratory Department of Computer Science, University of Houston gabriel@cs.uh.edu









## Outline

- Motivation
- MPI I/O: basic concepts
- OMPIO module and parallel I/O frameworks in Open MPI
- Parallel I/O research
- Conclusions and future work







## Motivation

- Study by LLNL (2005):
  - 1 GB/s I/O bandwidth required per Teraflop compute capability
  - Write to the filesystem dominates reading from it by a factor of 5
- Current High-End Systems:
  - K Computer: ~11 PFLOPS, ~96 GB/s I/O bandwidth using 864 OSTs
  - Jaguar (2010): ~1 PFLOPS, ~90 GB/s I/O bandwidth using 672 OSTs

Gap between available I/O performance and required I/O performance.





## **Application Perspective**

- Sequential I/O
  - A single process executes file operations
  - Leads to load imbalance
- Individual I/O
  - Each process has its own files
  - Pre/Post-processing required
- Parallel I/O
  - Multiple processes access (different parts of) the same file (efficiently)

|   | 7   1 |  |
|---|-------|--|
| L |       |  |
|   | Γ.    |  |

|            | r – Giobal Time | eline       |            |            |            |            |             | •           |
|------------|-----------------|-------------|------------|------------|------------|------------|-------------|-------------|
|            | PCM-C           | rayMPI.bpv: | Global Ti  | meline (3. | 811 s - 18 | .749 s = 1 | .4.938 s)   |             |
|            |                 |             | 10.0       | s          | L          | 15.0 s     |             |             |
| Process U  | User_Code       | User_Code   | User_Code  | User_Cod   | User_Code  | User_Code  | User_Code U | Application |
| Process 1  | MP1_Wait        | MPI_Wait    | HP1_Wait   | MPI Wast   | MP1_Wart   | MPI_Wait   | MP1_Walt    |             |
| Process 2  | MPI_Wait//      | MPI_Wait    | MPI_Wark   | MPI_Wait   | MPI_Vait   | MPI_Wait   | MPI_Wait    |             |
| Process 3  | MPI_Vait        | MPI_Wait    | MPI_Waik   | MPI_Gas    | MPI_Vaix   | MPI_Wait   | MPI_Wast    |             |
| Process 4  | MPI_Wait        | WPI_Wait    | MPI_Waix   | MP1/Wast   | MPI_Wai    | MPI_Wait   | WP1_Vax     |             |
| Process 5  | MPI_Wait        | MPI_Wait    | MPI_Wait   | MPT/WAST   | MPI_Wax    | MPJ_Qais   | MPI_Wax:    |             |
| Process 6  | MPI_Wait        | 109.1_Wass  | MP I_Waite | MP1/Wart   | MPI_Wallt  | MPX_Watt   | MPX_WASE    |             |
| Process 7  | MPI_Waik        | MPI_Past    | MP1_Wash   | M2T/Walt   | MPI_Wayt   | MPI/Waxt   | MPI/RALt /  |             |
| Process 8  | MPI_Waity       | M21_Walt    | MPI/WARE   | MPT/Wait   | MPT_Walt   | MPI_Wait   | MPI_Wait    |             |
| Process 9  | X02X_W43X       | MPI/Wait    | MPI/Waat   | MPT/Wait   | M2I_Wait   | MPX/Wait   | MPI//Wait / |             |
| Process 10 | MPI_WAYE        | MPY_Weit    | MPX/Wait   | MPJ//Wait  | MPT/Mait   | MPX/Wait   | MT Mait     |             |
| Process 11 | MPI/Wait        | MFT_Wait    | MFT/Wait   | MP.N_Wait  | MPI_Wait   | MPI_Wait   | MPL/Wait    |             |
| Process 12 | 2 MP1/Wait      | MPL/Wait    | MPI//Wait  | MPT Wait   | MPN/Wait   | MP1_Wait   | MPN_Wait // |             |
| Process 13 | MTLWAIT         | MPN_Wait    | MP.U/Wait  | MCT Wait   | MPT Wait   | MPN_Wait   | MPT Wait // |             |
| Process 14 | MPT/Wait        | MPT_Wait    | MPX Wait   | MFX Wait   | MUI//Wait  | MPT Wait   | MUI Wait // |             |
| Process 15 | MPI Wait        | MWE_Wait    | MPH Wait   | MPN_Wait   | MPX_Wait   | MPX_Wait   | MPN_Wait // |             |
| Process 16 | MP1_Wait        | MFX_Wait    | MWI Wait   | MWT_Wait   | MP1_Wait   | MPI_Wait   | MPN_Wait // |             |
| Process 17 | MPN_Wait        | MPN_Wait    | MPX_Wait   | MWX_Wait   | HPI_Wait   | MWN_Wait   | MPT_Wait // |             |
| Process 18 | MPT_Wait        | MW1_Wait    | HPI_Wait   | MWI_Wait   | 1001_Wait  | MPT_Wait   | M#I_Wait // |             |
| Process 19 | MWI_Wait        | MWI_Wait    | MPI_Wait   | MPI_Wait   | M#I_Wait   | MWI_Wait   | M#I_Wait    |             |
| Process 20 | MFI_Wait        | MPI_Wait    | MPI_Wait   | MPI_Wait   | MPI_Wait   | MPI_Wait   | MPI_Wait // |             |
| Process 21 | MPI_Wait        | MPI_Wait    | MPI_Wait   | WPI_Wait   | MPI_Wait   | MPI_Wait   | MPI_Wait    |             |
| Process 22 | MPI_Wait        | MPI_Wait    | MPI_Wait   | MPI_Wait   | MPI_Wait   | MPI_Wait   | MPI_Wait    |             |
| Process 23 | MPI_Wait        | MPI_Wait    | MPI_Wait   | MPI_Wait   | MPI_Wait   | MPI_Wait   | MPI_Wait    |             |
|            |                 |             |            |            |            |            |             |             |
|            |                 |             |            |            |            |            |             |             |
|            |                 |             |            |            |            |            |             |             |





## Part I: MPI I/O









## MPI I/O

- MPI (Message Passing Interface) version 2 introduced the notion of parallel I/O
  - **Collective I/O** : group I/O operations
  - File view: registering an access plan to the file in advance
  - Hints: application hints on the lanned usage of the
  - **Relaxed consistency semantics:** updates to a file might initially only be visible to the process performing the action
  - Non-blocking I/O: asynchronous I/O operations







## General file manipulation functions

- Collective operation
  - All processes have to provide the same amode
  - comm must be an intra-communicator
- Values for amode
  - MPI\_MODE\_RDONLY, MPI\_MODE\_WRONLY, MPI\_MODE\_RDWR,
  - MPI MODE CREATE, MPI MODE APPEND, ...
- Combination of several amodes possible, e.g
  - C: (MPI\_MODE\_CREATE | MPI\_MODE\_WRONLY)
  - Fortran: MPI\_MODE\_CREATE + MPI\_MODE\_WRONLY







## File View

- File view: portion of a file visible to a process
  - Processes can share a common view
  - Views can overlap or be disjoint
  - Views can be changed during runtime
  - A process can have multiple instances of a file open using different file views









## File View

- Elementary type (etype) : basic unit of the data accessed by the program
- File type: datatype used to construct the file view
  - consists logically of a series of etypes
  - must not have overlapping regions if used in write operations
  - displacements must increase monotonically
- Default file view:
  - displacement = 0
  - **etype = file type =** MPI\_Byte







**Edgar Gabriel** 



## Setting a file view

- The argument list
  - disp: start of the file view
  - etype and filetype: as discussed previously
  - datarep: data representation used
  - info: hints to the MPI library (discussed later)
- Collective operation
  - datarep and extent of etype have to be identical on all processes
  - filetype, disp and info might vary
- Resets file pointers to zero







## File Interoperability

- Fifth parameter of MPI\_File\_set\_view sets the data representation used:
  - native: data is stored in a file exactly as it is in
    memory
  - internal: data representation for heterogeneous environments using the same MPI I/O implementation
  - external32: portable data representation across multiple platforms and MPI I/O libraries.
- User can register its own data representation, providing the according conversion functions (MPI\_Register\_datarep)







## General file manipulation functions

- Buffers described by the tuple of
  - Buffer pointer
  - Number of elements
  - Datatype
- Interfaces support data conversion if necessary







## MPI I/O non-collective functions

| Positioning              | Synchronism  | Function               |
|--------------------------|--------------|------------------------|
| Individual file pointers | Blocking     | MPI_File_read          |
|                          |              | MPI_File_write         |
|                          | Non-blocking | MPI_File_iread         |
|                          |              | MPI_File_iwrite        |
| Explicit offset          | Blocking     | MPI_File_read_at       |
|                          |              | MPI_File_write_at      |
|                          | Non-blocking | MPI_File_iread_at      |
|                          |              | MPI_File_iwrite_at     |
| Shared file pointers     | Blocking     | MPI_File_read_shared   |
|                          |              | MPI_File_write_shared  |
|                          | Non-blocking | MPI_File_iread_shared  |
|                          |              | MPI_File_iwrite_shared |







## Individual I/O in parallel applications

#### Process 2:

| 1  | 2  | س  | 4  | 5  | 6  | 7  | 8  |
|----|----|----|----|----|----|----|----|
| 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |

| read(, | offset=Ø,      | length=2) |
|--------|----------------|-----------|
| read(, | offset= $\$$ , | length=2) |
| read(, | offset=20,     | length=2) |
| read(, | offset=20,     | length=2) |

- Individual Read/Write operations on a joint file often lead to many, small I/O requests from each process
- Arbitrary order of I/O requests from the file system perspective
  - Will lead to suboptimal performance







Ŧ

## Collective I/O in parallel applications

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|----|----|----|----|----|----|----|----|
| 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |

#### Process 0:

```
read(..., offset=0, length=4)
MPI_Send (...,length=2,dest=3,...)
read(..., offset=82, length=4)
MPI_Send (...,length=2,dest=3,...)
read(..., offset=20, length=4)
MPI_Send (...,length=2,dest=3,...)
read(..., offset=28, length=4)
MPI_Send (...,length=2,dest=3,...)
```

- Collective I/O:
  - Offers the potential to rearrange I/O requests across processes, e.g. minimize file pointer movements, minimize locking occurring on the file system level
  - Offers performance benefits if costs of additional data movements < benefit of fewer repositioning of file pointers</li>



## Collective I/O: Two-phase I/O algorithm

- Re-organize data across processes to match data layout in file
- Combination of I/O and (MPI level) communication used to read/write data from/to file
- Only a subset of processes actually touch the file (aggregators)
- Large read/write operations split into multiple cycles internally
  - Limits the size of temporary buffers
  - Overlaps communication and I/O operations







## Shared File Pointer Operations

- Shared file pointers: a file pointer shared by a the group of processes that has been used to open the file
  - All processes must have identical file view
  - Might lead to non-deterministic behavior
- Shared file pointer must not interfere with the individual file pointer of each process
- Typical usage scenarios
  - Writing a parallel log-file
  - Work distribution across processes by reading data from a joint file











## Consistency of file operation

- MPI does not provide sequential consistency across all processes per default
  - Write on one process is initially just visible on the same process
- Two possibilities to change this behavior

```
MPI_File_set_atomicity ( MPI_File fh, int flag );
```

- If flag = true, all write operations are atomic
- Collective operation

```
MPI_File_sync ( MPI_File fh );
```

- Flushes all write operations on the calling process' file instance







## Hints supported by MPI I/O (I)

| Hint                 | Explanation                                                        | Possible values                                                                                                 |
|----------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| access_style         | Specifies manner in which the file is accessed                     | <pre>read_once, write_once,<br/>read_mostly, write_mostly,<br/>sequential,<br/>reverse_sequential, random</pre> |
| collective_buffering | Use collective<br>buffering ?                                      | true, false                                                                                                     |
| cb_block_size        | Block size used for<br>collective buffering                        | Integer                                                                                                         |
| cb_buffer_size       | Total buffer space that<br>can be used for<br>collective buffering | Integer, multiple of cb_block_size                                                                              |
| cb_nodes             | Number of target<br>nodes used for<br>collective buffering         | Integer                                                                                                         |







## Hints supported by MPI I/O (II)

| Hint            | Explanation                                                          | Possible values                 |
|-----------------|----------------------------------------------------------------------|---------------------------------|
| io_node_list    | List of I/O nodes that should be used                                | Comma separated list of strings |
| nb_proc         | Specifies the number<br>of processes typically<br>accessing the file | Integer                         |
| num_io_nodes    | Number of I/O nodes<br>available in the<br>system                    | Integer                         |
| striping_factor | Number of I/O nodes<br>that should be used<br>for file striping      | Integer                         |
| striping_unit   | Stripe depth                                                         | integer                         |







# Part II: OMPIO









### OMPIO Design Goals (I)

- Highly modular architecture for parallel I/O
  - Maximize code reuse, minimize code replication
- Generalize the selection of modules
  - Collective I/O algorithms
  - Shared file pointer operations
- Tighter Integration with Open MPI library
  - Derived data type optimizations
  - Progress engine for non-blocking I/O operations
  - External data representations etc.







### OMPIO Design Goals (II)

- Adaptability
  - Enormous diversity of I/O hardware and software solutions
    - Number of storage server, bandwidth of each storage server
    - Network connectivity in-between I/O nodes, between compute and I/O nodes, and message passing network between compute nodes
  - Ease the modification of module parameters
  - Ease the development and dropping in of new modules









## **Open MPI Architecture**









## **OMPIO** frameworks overview





## OMPIO

- Main I/O component
- 'Understands' MPI semantics
- Translates MPI write/read operations into lower layer operations
- Provides the implementation and the operation of the
  - MPI\_File handle
  - File view operations
  - (MPI\_Request structures)
- Triggers upon selection the fcoll, fs, fbtl and sharedfp selection logic







## fbtl: file byte transfer layer

- Abstraction for individual read and write operations
- A process will have per MPI file one or more fbtl modules loaded
- Main interfaces work with the tuple of <br/><br/>buffer pointer, length, position in file>
- Interface:

- preadv()

- pwritev() ipwritev()
  - ipreadv()
    - progress()







## fcoll: collective I/O framework

- Provides implementations of the collective I/O operations of the MPI specification
  - read\_all() read\_all\_begin()/end()
  - write\_all() write\_all\_begin()/end()
  - read\_at\_all() read\_at\_all\_begin()/end()
  - write\_at\_all() write\_at\_all\_begin()/end()
- Selection logic triggered upon setting the file view









## fcoll: selection logic

- Decision between different collective modules based on:
  - ss: stripe size of the file system
  - c: average contiguous chunk size in file view
  - k: minimum data size to saturate write/read bandwidth from one process
  - size of gap in the file view between processes.

| Characteristic                                               | Gap Size | Algorithm            |
|--------------------------------------------------------------|----------|----------------------|
| c>k and c>ss                                                 | any      | individual           |
| c<= k and c>ss                                               | 0        | dynamic segmentation |
| c <k and="" c<ss<="" td=""><td>0</td><td>two-phase</td></k>  | 0        | two-phase            |
| c <k< td=""><td>&gt; 0</td><td>static segmentation</td></k<> | > 0      | static segmentation  |







## fs: file system framework

- Handles all file-system related operation
  - Interfaces have mostly collective notion
- Interface:
  - open()
  - close()
  - delete()
  - sync()
- Current Lustre and PVFS2 fs components allow to modify stripe size, stripe depth and I/O servers used







## Current status









## Performance results: Tile I/O

Shark cluster at University of Houston (PVFS2):

| No. of procs. | Tile Size | fcoll module  | OMPIO<br>bandwidth | ROMIO<br>bandwidth |
|---------------|-----------|---------------|--------------------|--------------------|
| 81            | 64 Bytes  | Two-phase     | 591 MB/s           | 303 MB/s           |
| 81            | 1 MB      | Dynamic Segm. | 625 MB/s           | 290 MB/s           |

Deimos cluster at TU Dresden (Lustre):

| No. of procs. | Tile Size | fcoll module  | OMPIO<br>bandwidth | ROMIO<br>bandwidth |
|---------------|-----------|---------------|--------------------|--------------------|
| 256           | 64 Bytes  | Two-phase     | 2167 MB/s          | 411 MB/s           |
| 256           | 1 MB      | Dynamic Segm. | 2491 MB/s          | 517 MB/s           |







## Tuning parallel I/O performance

- OTPO (Open Tool for Parameter Optimization): optimize the Open MPI parameter space for a particular benchmark and/ or application
- Tuning for Latency I/O benchmark on shark/PVFS2
  - Parameters tuned: collective module used, number of aggregators used, cycle buffer size
- 64 different parameter combinations evaluated
- 2 parameter combinations were determined to lead to best performance:
  - dynamic segm., 20 aggregators, 32 MB cycle buffer size
  - static segm. 20 aggregators, 32 MB cycle buffer size







## sharedfp framework

- Focuses around the management of a shared file pointer
  - Using a separate file and locking
  - Additional process (e.g. mpirun?)
  - Separate files per processes + metadata
  - Shared memory segment
- Collective shared filepointer operations mapped to regular collective I/O operations
- Decision logic based on
  - Location of processes
  - Availability of features (e.g. locking)
  - Hints by the user






#### Current status (II)

- Code committed to Open MPI repository in August 2011
- Will be part of the 1.7 release series
- Missing MPI level functionality:
  - Split collective operations (\*)
  - Shared file pointer operations: developed in a separate library, currently being integrated with OMPIO (\*)
  - Non-blocking individual I/O
  - Atomic access mode







## Part III: Research topics









#### **OMPIO Optimizations**

- Automated selection logic for collective I/O modules
- Optimization of collective I/O operations
  - <u>Development of new communication-optimized collective</u>
     <u>I/O algorithms (dynamic segmentation, static</u>
     <u>segmentation</u>)
  - <u>Automated setting of number of aggregators for</u> <u>collective I/O operations</u>
  - <u>Optimizing process placement based on I/O access</u> <u>pattern</u>
- Non-blocking collective I/O operations
- <u>Multi-thread I/O operations</u>







#### Dynamic segmentation algorithm with 2 aggregators











#### Automated setting no. of aggregators

- No. of aggregators has enormous influence on performance, e.g.
  - Tile I/O benchmark using two-phase I/O, 144 processes, Lustre file system









#### Performance considerations

- Contradicting goals:
  - Generate large consecutive chunks
    - -> fewer aggregators
  - Increase throughput
    - -> more aggregators
- Setting number of aggregators
  - Fixed number: 1, number of processes, number of nodes, number of I/O servers
  - Tune for a particular platform and application







# Determining the number of aggregators

- 1) Determine the minimum data size *k* for an individual process which leads to maximum write bandwidth
- 2) Determine initial number of aggregators taking file view and/or process topology into account.
- 3) Refine the number of aggregators based on the overall amount of data written in the collective call









## 1. Determining the saturation point

- Loop of individual write operations with increasing data size
  - Avoid caching effects
  - MPI\_File\_write() vs. POSIX write()
  - Performed once, e.g. by system administrator
- Saturation point: first element which achieves (close to) maximum bandwidth





Edgar Gabriel

## 2. Initial assignment of aggregators

- Based on fileview
  - Based on 2-D access pattern
  - 1 aggregator per row of processes
- Based on Cartesian process topology
  - Assumption: process topology related to file access

Group 4

17

- Based on hints
  - Not implemented at this time
- Without fileview or Cartesian topology:
  - Every process is an aggregator



13

PARALLEL SOFTWARE



15

14





#### 3. Refinement step

- Based on actual amount of data written across all processes in one collective call
- k < no. of bytes written in group
  - -> split group
- k > no. of bytes written in group
  - -> merge groups

Group 1 Group 2 3 2 1 Group 3 Group 4 4 5 6 7 Group 5 Group 6 8 9 11 10 Group 8 Group 7 12 15 13 14 2 3 1 Group 1 7 5 4 6 8 9 10 11 Group 2 15 12 13 14







#### Discussion of algorithm

- Number of aggregators depends on overall data volume being written
  - Different calls to MPI\_File\_write\_all with different data volumes will result in different number of aggregators used
- For fixed problem size, number of aggregators is independent of the number of processes used
- Approach usable for two-phase I/O and some of its variants (e.g. dynamic segmentation)







Results

Tile I/O, PVFS2@shark, 81 processes, two-phase I/O

■ 64x2048x1600 ■ 1024x512x400 ■ 1Mx20x15



BT I/O, Lustre@deimos, 36 processes, dynamic segmentation



- 134 tests executed in total with 4 different benchmarks
  - 88 tests lead to best or within 10% of optimal performance, 110 within 25% of best performance
- Focusing on two-phase I/O algorithm only:
  - 29 out of 45 test cases outperformed one aggregator per node strategy on average by 41% (default setting by ROMIO)





#### I/O Access based Process Placement

- Goal: optimized placement of processes to minimize I/ O time
- Three required components
  - Application Matrix: contains communication volumes between each pair of processes based on the I/O access pattern
  - Architecture Matrix: contains communication costs (bandwidth, latency) between each pair of nodes/cores
  - Mapping Algorithm: how to map application processes to underlying node architecture such that communication cost are minimized







#### Application Matrix

- Goal: predict communication occurring in collective I/O algorithm based on the access pattern of the application
- General case:
  - OMPIO extended to dump the order on how processes access the file
  - Assumption: processes which access neighboring parts of the file will have to communicate with the same aggregators
- Special case:
  - Regular access pattern (e.g. 2D data distribution and process topology)
  - Dynamic segmentation algorithm used for collective I/O
  - Communication occurs only within the outer dimension of the process topology







#### **Application Matrix**

3

36 40 44 48

• Simple Example : 4 processes with 2x2 tiles, each 4 bytes

3

32

• Generic Case: The file layout

16 20 24 28

12

8

• Translates to :

4

0

$$\begin{array}{c|cccc} 0 & 7 & 0 & 0 \\ \hline 7 & 0 & 1 & 0 \\ \hline 0 & 1 & 0 & 7 \\ \hline 0 & 0 & 7 & 0 \end{array}$$

- Special Case : Can be represented by topology 2x2 in this case
   100 | 100 | 0
- Which translates to :

3

3

64

60

52 56





Edgar Gabriel



## Mapping Algorithms

- Any algorithm from literature could be used
- MPIPP Process Placement Algorithm [1]
  - Randomized algorithm based on Heuristic to exchange processes and calculate gain
  - Generic can support any kind of application and topology matrix
  - Expensive for larger number of processes
- New SetMatch Algorithm for the special case:
  - Create independent sets and matches the sets
  - Very quick even for larger number of processes
  - Greedy approach, and works for specific scenarios
  - Can be generalized by having a clustering algorithm to split

[1] Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and H. Kuhn. 2006. MPIPP: an automatic profile-guided parallel process placement toolset for SMP clusters and multiclusters. InProceedings of the 20th annual international conference on Supercomputing (ICS '06).







#### Preliminary Results

- Crill cluster at the University of Houston
  - Distributed PVFS2 file system using with 16 I/O servers
  - 4x SDR InfiniBand message passing network (2 ports per node)
  - 4x SDR Infiniband (1 port) I/O network
  - 18 nodes, 864 compute cores
- Focusing on collective write operations
- Modified OpenMPI trunk rev. 26077
  - Added a new rmaps component
  - Extensions to OMPIO component to extract fileview information







#### Tile I/O Results

- Benchmark : Tile I/O
- Tile Size 1KB
- File size 128 processes 75G, 256 processes 150G



■256 (8x32) ■128 (4x32)







#### Tile I/O Results - II

- Benchmark : Tile I/O
- Tile Size 1MB
- File size 128 processes 75G, 256 processes 150G



■256 (8x32) ■128 (4x32)







#### Non-blocking collective operations

- Non-blocking collective Operations
  - Hide communication latency by overlapping
  - Better usage of available bandwidth
  - Avoid detrimental effects of pseudo-synchronization
  - Demonstrated benefits for a number of applications
- Was supposed to be part of the MPI-3 specification
  - Passed 1<sup>st</sup> vote, failed in 2<sup>nd</sup> vote

Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI, Supercomputing 2007.







#### Overview of LibNBC

- Implements non-blocking versions of all MPI collective operations
- Schedule based design: a process-local schedule of p2p operations is created



#### Pseudocode for schedule at rank 1:

NBC\_Sched\_recv(buf, cnt, dt, 0, sched); NBC\_Sched\_barr(sched); NBC\_Sched\_send(buf, cnt, dt, 3, sched); NBC\_Sched\_barr(sched); NBC\_Sched\_send(buf, cnt, dt, 5, sched);

See <u>http://www.unixer.de/publications/img/hoefler-hlrs-nbc.pdf</u> for more details



#### Overview of LibNBC

- Schedule execution is represented as a state machine
- State and schedule are attached to every request
- Schedules might be cached/reused
- Progress is most important for efficient overlap
  - Progression in NBC\_Test/NBC\_Wait







#### Collective I/O operations

- Collective operation for reading/writing data allows to combine data of multiple processes and optimize diskaccess
- Most popular algorithm: two-phase I/O
- Algorithm for a collective write operation
  - Step 1:
    - gather data from multiple processes on aggregators
    - Sort data based on the offset in the file
  - Step 2: aggregators write data







## Nonblocking collective I/O operations

```
MPI_File_iwrite_all (MPI_File file,
    void *buf, int cnt, MPI_Datatyep dt,
    MPI_Request *request);
```

- Difference to nonblocking collective communication operations:
  - Every process is allowed to provide different amounts of data per collective read/write operation
  - No process has a 'global' view how much data is read/written







#### Nonblocking collective I/O operations

- Total amount of data necessary to determine
  - How many cycles are required
  - How much data a process has to contribute in each cycle
  - schedule for libNBC can not be constructed in
    MPI\_File\_iwrite\_all
- Further consequence:
  - some temporary buffer required internally by the algorithm can not be allocated when posting the operation







#### Nonblocking collective I/O operations

- Create a schedule for a non-blocking Allgather(v)
  - Determine the overall amount of data written across all processes
  - Determine the offsets for each data item within each group
- Upon completion:
  - Create a new schedule for the shuffle and I/O steps
  - Schedule can consist of multiple cycles







#### Extensions to libNBC

- New internal libNBC operations for:
  - Non-blocking read/write operation
  - Compute operations for sorting and merging entries
  - Buffer management (allocating, freeing buffers)
  - New nonblocking send/recv primitives with additional level of buffer indirections for dynamically allocated buffers
- Progressing multiple, different types of requests simultaneously







#### Caching of schedules

- Very difficult for I/O operations
  - Subsequent calls to MPI\_File\_iwrite\_all will have different offsets into the file
    - Amount of data provided by a process in a cycle depends on the offset in the file
  - Processes allowed to mix individual and collective I/ O calls
  - > Not possible to predict offsets of other processes and to reuse a schedule







## Caching of schedules (II)

- When using different files
  - offsets might be the same across multiple function calls, but different file handles will be used
  - Caching typically done on communicator / file handle
  - $\implies$  Caching across different file handles difficult, but no impossible







#### Experimental evaluation

- Crill cluster at the University of Houston
  - Distributed PVFS2 file system using with 16 I/O servers
  - 4x SDR InfiniBand message passing network (2 ports per node)
  - Gigabit Ethernet I/O network
  - 18 nodes, 864 compute cores
- LibNBC integrated with OpenMPI trunk rev. 24640
- Focusing on collective write operations







#### Latency I/O tests

- Comparison of blocking and nonblocking versions
  - No overlap
  - Writing 1000 MB per process
  - 32 aggregator processes, 4MB cycle buffer size
  - Average of 3 runs

| No. of processes | Blocking Bandwidth<br>[MB/s] | Non-blocking bandwidth<br>[MB/s] |
|------------------|------------------------------|----------------------------------|
| 64               | 703                          | 660                              |
| 128              | 574                          | 577                              |







#### Latency I/O overlap tests

- Overlapping nonblocking coll. I/O operation with equally expensive compute operation
  - Best case: overall time = max (I/O time, compute time)
- Strong dependence on ability to make progress
  - Best case: time between subsequent calls to NBC\_Test = time to execute one cycle of coll. I/O

| No. of processes | I/O time   | Time spent in computation | Overall time |
|------------------|------------|---------------------------|--------------|
| 64               | 85.69 sec  | 85.69 sec                 | 85.80 sec    |
| 128              | 205.39 sec | 205.39 sec                | 205.91 sec   |







#### Parallel Image Processing Application

- Used to assist in diagnosing thyroid cancer
- Based on microscopic images obtained through Fine Needle Aspiration (FNA)
- Slides are large
  - typical image: 25K x 70K pixels, 3-6 Gigabytes/slide
  - multispectral imaging to analyze cytological smears









#### Parallel Image Processing Application

• Texture based image segmentation

For each Gabor Filter

- Forward FFT of Gabor Filter
- Convolution operation of Filter and Image
- Backward FFT of the convolution result
- Optionally: write result of backward FFT to file
- FFT operations based on FFTW 2.1.5







#### Parallel Image Processing Application

- Code modified to overlap write of iteration *i* with computations of iteration *i*+1
- Two code versions generated:
  - *NBC*: Additional calls to progress engine added between different code blocks
  - **NBC w/FFTW:** Modified FFTW to insert further calls to progress engine







#### Application Results (I)

- 8192 x 8192 pixels, 21 spectral channels
- 1.3 GB input data, ~3 GB output data
- 32 aggregators with 4 MB cycle buffer size








## Application Results (II)

- 12281 x 12281 pixels, 21 spectral channels
- 2.95 GB input data, ~7 GB output data
- 32 aggregators with 4 MB cycle buffer size









# Multi-threaded I/O optimization

- Currently no support for parallel I/O in OpenMP
- Need for threads to be able to read/write to the same file
  - Without locking file handle
  - Without having to write to separate files to obtain higher bandwidth
  - Applicable for all languages supported by OpenMP
- API specification:
  - All routines are library functions (not directives)
  - Routines implemented as collective functions
  - Shared file pointer between threads
  - Support for List I/O Interfaces







### Overview of Interfaces (write)

| File Manipulation   |             | omp_file_open_all              |  |
|---------------------|-------------|--------------------------------|--|
|                     |             | omp_file_close_all             |  |
| Different Arguments | Regular I/O | omp_file_write_all             |  |
|                     |             | omp_file_write_at_all          |  |
|                     | List I/O    | omp_file_write_list_all        |  |
|                     |             | omp_file_write_list_at_all     |  |
| Common arguments    | Regular I/O | omp_file_write_com_all         |  |
|                     |             | omp_file_write_com_at_all      |  |
|                     | List I/O    | omp_file_write_com_list_all    |  |
|                     |             | omp_file_write_com_list_at_all |  |







### Results - omp\_file\_write\_all







### Performance Results

- OpenMP version of the NAS BT Benchmark
- Extended to include I/O operations

| No. of Threads | PVFS2 [sec] | PVFS2-SSD [sec] |
|----------------|-------------|-----------------|
| 1              | 410         | 691             |
| 2              | 305         | 580             |
| 4              | 168         | 386             |
| 8              | 164         | 368             |
| 16             | 176         | 368             |
| 32             | 172         | 368             |
| 48             | 168         | 367             |







### Summary and Conclusions

- I/O is one of the major challenges for current and upcoming high-end systems
- Huge potential for performance improvements
- OMPIO provides a highly modular architecture for parallel I/O
- To improve out-of-the-box performance of I/O libraries
  - Algorithmic developments necessary
  - Handling fat multi-core nodes still a challenge







#### Contributors

- Vishwanath Venkatesan
- Kshitij Mehta
- Carlos Vanegas
- Mohamad Chaarawi
- Ketan Kulkarni
- Suneet Chandok
- Rainer Keller (University of Applied Sciences Stuttgart)



