PSTL

Scalable and Modular Parallel |/
O for Open MPI

Edgar Gabriel

Parallel Software Technologies Laboratory
Department of Computer Science,
University of Houston
gabriel@cs.uh.edu

Edgar Gabriel

PSTL
Outline

Motivation

MPI1 1/0: basic concepts

OMPIO module and parallel I/0 frameworks in Open MPI

Parallel I/0 research

Conclusions and future work

@

PSTL
Motivation

e Study by LLNL (2005):
- 1 GB/s I/0 bandwidth required per Teraflop compute
capability
- Write to the filesystem dominates reading from it by a
factor of 5

e Current High-End Systems:

- K Computer: ~11 PFLOPS, ~96 GB/s |/0 bandwidth using
864 OSTs

- Jaguar (2010): ~1 PFLOPS, ~90 GB/s I/0 bandwidth using
672 OSTs

—> Gap between available 1/0 performance and required 1/0
llll performance.

Edgar Gabriel m
@

e s DT
—

6lobal Timeline (3.811 s - 18.749 s = 14.938 s)
10.0 s 15.0 s

e Sequential I/0
- A single process et

Process 3

executes file operations |

- Leads to load imbalance |
e Individual I/0 rrees 1

Process 14,
Process 15§

- Each process has its own |

° Process 18 i i i i i
f.l l e S Process 19 i i] _WVai it
I} MPI_Wait M2I_Wait _Wait

_ P re / Post - p rocessi n g —;MPI:Wait MPI:Ua;t MPI:Ua;t:
required

e Parallel I/0

- Multiple processes access (different parts of) the same
file (efficiently)

Edgar Gabriel

- PSTL

Part |: MPI |/0O

CSeUH

PSTL
MPI1 /0

e MPI (Message Passing Interface) version 2 introduced the
notion of parallel I/0

- Collective 1/0 : group I/0 operations

- File view: registering an access plan to the file in
advance

- Hints: application hints on the lanned usage of the

- Relaxed consistency semantics: updates to a file might
initially only be visible to the process performing the
action

- Non-blocking I/0: asynchronous 1/0 operations

@

PSTL
General file manipulation functions

MPI File open (MPI Comm comm, char *filename,
int amode, MPI Info info,
MPI File *fh);

e Collective operation
- All processes have to provide the same amode
— comm must be an intra-communicator

e Values for amode
- MPI MODE RDONLY, MPI MODE WRONLY, MPI MODE RDWR,
- MPI MODE CREATE, MPI MODE APPEND,

« Combination of several amodes possible, e.g
- C: (MPI MODE CREATE | MPI MODE WRONLY)
- Fortran: MPI MODE CREATE + MPI MODE WRONLY

@

PSTL
File View

e File view: portion of a file visible to a process
- Processes can share a common view
- Views can overlap or be disjoint
- Views can be changed during runtime

- A process can have multiple instances of a file open
using different file views

Process 0
Process 1
Process 2
Process 3

File

Edgar Gabriel m
(@

by the program

File View

e Elementary type (etype) : basic unit of the data accessed

« File type: datatype used to construct the file view

- consists logically of a series of etypes

PSTL

- must not have overlapping regions if used in write
operations

- displacements must increase monotonically

o Default file view:

- displacement =0
- etype = file type = MPI Byte

m Edgar Gabriel

File type
/\
/ N
etype etype etype

PSTL
Setting a file view

MPI File set view (MPI File fh, MPI Offset disp,
MPI Datatype etype, MPI Datatype filetype,
char *datarep, MPI Info info);

« The argument list
— disp: start of the file view
— etype and filetype: as discussed previously
— datarep: data representation used
— info: hints to the MPI library (discussed later)
e Collective operation

— datarep and extent of et ype have to be identical on all
processes

- filetype, disp and info might vary
e Resets file pointers to zero

Edgar Gabriel m
@

PSTL
File Interoperability

o Fifth parameter of MPI File set view sets the data
representation used:

- native: data is stored in a file exactly as it is in
memory
— internal: data representation for heterogeneous

environments using the same MPI I/0O
implementation

- external32: portable data representation across
multiple platforms and MPI I/0 libraries.

e User can register its own data representation, providing the
according conversion functions (MPI Register datarep)

@

PSTL
General file manipulation functions

MPI File read (MPI File fh, void *buf, int cnt,
MPI Datatype dat, MPI Status *stat);

MPI File write (MPI File fh, void *buf, int cnt,
MPI Datatype dat, MPI Status *stat);

4

o Buffers described by the tuple of
- Buffer pointer
- Number of elements
- Datatype
e Interfaces support data conversion if necessary

(@

PSTL

MPI 1/0 non-collective functions

Positioning Synchronism Function
Individual file pointers | Blocking MPI File read
MPI File write
Non-blocking MPI File iread
MPI=File=iwrite
Explicit offset Blocking MPI File read at
MPI File write at
Non-blocking MPI File iread at
MPI File iwrite at
Shared file pointers Blocking MPI File read shared
MPI File write shared
Non-blocking MPI File iread shared

MPI_File_iwrite_shared

Edgar Gabriel

PSTL

Individual 1/0 in parallel applications

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Process 2:
read (..,
read (..,
read (..,
read (..,

offset=4,

coffset=33,
coffset=28,
coffset=28,

length=2)
length=2)
length=2)
length=2)

« Individual Read/Write operations on a joint file often
lead to many, small I/0 requests from each process

o Arbitrary order of 1/0 requests from the file system
perspective

- Will lead to suboptimal performance

w Edgar Gabriel

L

PSTL

Collective I/0 in parallel applications

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Collective 1/0:

- Offers the potential to rearrange I/0 requests across processes,
e.g. minimize file pointer movements, minimize locking
occurring on the file system level

- Offers performance benefits if costs of additional data
movements < benefit of fewer repositioning of file pointers

Process 2:

read (.., offset=08, length=4)
MPI Send (..,length=2,dest=3,..)
read (.., offset=82, length=4)
MPI Send (..,length=2,dest=3,..)
read (.., offset=206, length=4)
MPI Send (..,length=2,dest=3,..
read (.., offset=28, length=4)
MPI Send (..,length=2,dest=3,..

PSTL
Collective I/0: Two-phase |/0
algorithm

e Re-organize data across processes to match data layout
in file

e Combination of 1/0 and (MPI level) communication used
to read/write data from/to file

e Only a subset of processes actually touch the file
(aggregators)

e Large read/write operations split into multiple cycles
internally

- Limits the size of temporary buffers
- Overlaps communication and I/0 operations

@

PSTL
Shared File Pointer Operations

e Shared file pointers: a file pointer shared by a the
group of processes that has been used to open the file

- All processes must have identical file view
- Might lead to non-deterministic behavior

e Shared file pointer must not interfere with the
individual file pointer of each process

e Typical usage scenarios
- Writing a parallel log-file

- Work distribution across processes by reading data from a
joint file

@

PSTL
Shared file pointer example

Time Process 0 Process 1
step

T1 MPI_File_read_shared (..., 4, -
MPI_INT,...)

o |12 (3 (4 |5 |6 |7 |8 |9 |10|11

T2 - MPI_File_read_shared (..., 1, MPI_INT,...)

o |12 (3 (4 |5 |6 |7 |8 |9 |10|11

T3 MPI_File_read_sharedl(..., MPI_File_read_sharedl(...,2,MPI_INT,)
1,MPI_INT,...)

w Edgar Gabriel ? ? m

Time Action by process 0 Action by process 1
step

Access to shared file pointer is serialized and execute either as...
T3a MPI_File_read_shared (..., 2, MPL_INT,...)

o |12 (3 (4 |5 |6 |7 |8 |9 |10|11

T3b MPI_File_read_shared (..., 1, MPI_INT,...)

o |12 (3 (4 |5 |6 |7 |8 |9 |10|11

...or the other way around. Which ever process gets hold of the shared file
pointer first is allowed to execute first the read operation

T3a MPI_File_read_shared (..., 1, MPI_INT,...)

o |12 (3 (4 |5 |6 |7 |8 |9 |10|11

T3b MPI_File_read_shared (..., 2, MPL_INT,...)

[ﬂlEdGb"01234567891011
gar Gabrie

PSTL
Consistency of file operation

e MPI does not provide sequential consistency across all
processes per default

- Write on one process is initially just visible on the same
process

e Two possibilities to change this behavior

MPI File set atomicity (MPI File fh, int flag); J

- If flag = true, all write operations are atomic
- Collective operation

MPI File sync (MPI File fh); J

- Flushes all write operations on the calling process’ file
instance

@

PSTL

Hints supported by MPI 1/0 (I)

Hint

Explanation

Possible values

access style

Specifies manner in
which the file is
accessed

read once, write once,
read mostly, write mostly,
sequential,

reverse sequential, random

collective buffering

Use collective
buffering ?

true, false

cb block size

Block size used for
collective buffering

Integer

cb buffer size

Total buffer space that
can be used for
collective buffering

Integer, multiple of cb_block_size

cb nodes

Number of target
nodes used for
collective buffering

Integer

m Edgar Gabriel

PSTL

Hints supported by MPI /0 (II)

Hint

Explanation

Possible values

1o node list

List of I/O nodes that
should be used

Comma separated list of strings

nb proc

Specifies the number
of processes typically
accessing the file

Integer

num io nodes

Number of I/O nodes
available in the
system

Integer

striping factor

Number of I/O nodes
that should be used
for file striping

Integer

striping unit

Stripe depth

integer

m Edgar Gabriel

- PSTL _

Part |I: OMPIO

Edgar Gabriel
eUH

PSTL
OMPIO Design Goals ()

e Highly modular architecture for parallel 1/0
- Maximize code reuse, minimize code replication
e Generalize the selection of modules
- Collective I/0 algorithms
- Shared file pointer operations
e Tighter Integration with Open MPI library
- Derived data type optimizations
- Progress engine for non-blocking |/O operations
- External data representations etc.

@

PSTL
OMPIO Design Goals (II)

o Adaptability
- Enormous diversity of 1/0 hardware and software
solutions

« Number of storage server, bandwidth of each
storage server

e Network connectivity in-between 1/0 nodes,
between compute and I/0 nodes, and message
passing network between compute nodes

- Ease the modification of module parameters

- Ease the development and dropping in of new
modules

@

e PSTL
) Open MPI Architecture

Application
MPI layer
Modular Component Architecture

BTL | | COLL | 1/0 | e | framoork

w Edgar Gabriel C S @ UH

_tep

| basic |
|tune |
'ROMIO |
'OMPIO |

| module |
| module |
| module |

e POIL L

e
OMPIO frameworks overview
1/0
| OMPIO
| fbtl || fcoll | fs || sharedfp
o Sle
= Ell Q=] @
Ol x|~ ok g,, 5| ® ||| O ~ 3
Gl vl ol|2l§ 7 (N | = Ul el a
ol s ol 21 .21 ; ol >| 4 Ol a|lo
G| =l-=lF
C | =
>\ W
©

|ll‘| | framework | | component CSeUH

PSTL
OMPIO

Main 1/0 component
‘Understands’ MPI semantics

Translates MPI write/read operations into lower layer
operations

Provides the implementation and the operation of the
- MPI File handle

- File view operations

- (MPI Request structures)

Triggers upon selection the fcoll, fs, fbtl and
sharedfp selection logic

@

- PSTL
fbtl: file byte transfer layer

o Abstraction for individual read and write operations

e A process will have per MPI file one or more fbtl
modules loaded

e Main interfaces work with the tuple of
<buffer pointer, length, position 1in file>

e Interface:
— pwritev () - 1lpwritev ()
— preadv () - 1preadv ()

- progress ()

@

PSTL
fcoll: collective I/0 framework

e Provides implementations of the collective 1/0
operations of the MPI specification

— read all () - read all begin () /end()

- write all () - write all begin () /end()

— read at all() - read at all begin()/end()
- write at all() - write at all begin()/end()

e Selection logic triggered upon setting the file view

@

PSTL
fcoll: selection logic

e Decision between different collective modules based
on:

— ss: stripe size of the file system
— c: average contiguous chunk size in file view

— k: minimum data size to saturate write/read bandwidth
from one process

- size of gap in the file view between processes.

Characteristic Gap Size Algorithm

c>k and c>ss any individual

c<= k and c>ss 0 dynamic segmentation
c<k and c<ss 0 two-phase

c<k >0 static segmentation

Edgar Gabriel m
@

PSTL
fs: file system framework

e Handles all file-system related operation

- Interfaces have mostly collective notion
e Interface:

— open ()

— close ()

— delete ()

— sync ()

e Current Lustre and PVFS2 fs components allow to
modify stripe size, stripe depth and 1/0 servers used

@

e sormue DG _
Current status

| 1/0

| OMPIO
| fbtl || fcoll || fs || sharede

c
= %

Ol &l &l =l &) =
XN:G)EJCU_Q NG)Oq_x
ol @lgl 2l el 2| a = |lelels]al=lslE
ollS| el yllwll>l&ITI5lS]a SHE

Ol 511, _ o)

Q Silell 2 S| 8

C | A
)
©

L | framework | | Experimental component
llll\l;l available component CSHUH

PSTL

Performance results: Tile |/0
Shark cluster at University of Houston (PVFS2):

No. of
procs.

81
81

Tile Size fcoll module

64 Bytes
1 MB

Two-phase
Dynamic Segm.

OMPIO ROMIO
bandwidth bandwidth
591 MB/s

625 MB/s

Deimos cluster at TU Dresden (Lustre):

No. of
procs.

256
256

w Edgar Gabriel

Tile Size fcoll module

64 Bytes
1 MB

Two-phase
Dynamic Segm.

OMPIO ROMIO
bandwidth bandwidth
2167 MB/s

2491 MB/s

PSTL
Tuning parallel I/0 performance

« OTPO (Open Tool for Parameter Optimization): optimize the
Open MPI parameter space for a particular benchmark and/
or application

e Tuning for Latency I/0 benchmark on shark/PVFS2

- Parameters tuned: collective module used, number of
aggregators used, cycle buffer size

e 64 different parameter combinations evaluated

e 2 parameter combinations were determined to lead to best
performance:

- dynamic segm., 20 aggregators, 32 MB cycle buffer size
- static segm. 20 aggregators, 32 MB cycle buffer size

@

PSTL
sharedfp framework

e Focuses around the management of a shared file
pointer

- Using a separate file and locking

- Additional process (e.g. mpirun?)

- Separate files per processes + metadata
- Shared memory segment

e Collective shared filepointer operations mapped to
regular collective I/0 operations

e Decision logic based on

- Location of processes
- Availability of features (e.g. locking)
- Hints by the user

@

_ PSTL
Current status (Il)

e Code committed to Open MPI repository in August 2011
o Will be part of the 1.7 release series

e Missing MPI level functionality:
- Split collective operations (*)

- Shared file pointer operations: developed in a separate
library, currently being integrated with OMPIO (*)

- Non-blocking individual I/0
- Atomic access mode

@

Part lll: Research topics

PSTL

P Sormune JoD STL —
OMPIO Optimizations .

o Automated selection logic for collective I/0 modules

o Optimization of collective I/O operations

- Development of new communication-optimized collective
|/0 algorithms (dynamic segmentation, static
segmentation)

- Automated setting of humber of aggregators for
collective 1/0 operations

- Optimizing process placement based on 1/0 access
pattern

e« Non-blocking collective I/0 operations

e Multi-thread I/0 operations
Edgar Gabriel

° ° ° ° o ° JJ;TL
Optimizing communication in

collective |/0 operations

Filelayout 1 12 |3 [4 |5 |6 |7 |8 |9 |10|11]12]|13|14|15]| 16

Process 0 Process 1 Process 2 Process 3

Two-phase 1/0 with 2 aggregators

Process 0 Process 2
1 2 |3 |4 |5 |6 |7 |8 9 10| 11 [12 (13| 14| 15| 16

Dynamic segmentation algorithm with 2 aggregators

Process 0 Process 2
1 2 3 4 5 6 7 8
9 10| 11 | 12 13| 14| 15| 16

@

o s DT
— —
Automated setting no. of aggregators

e No. of aggregators has enormous influence on
performance, e.g.

- Tile I/0 benchmark using two-phase 1/0, 144 processes,
Lustre file system

W 64x2048x1600 1Mx20x15
3500

__3000
(7]

< 2500
< 2000
+ 1500
5=

3 1000

1 12 36 72 144

w Edgar Gabriel No. of Aggregators CS @ UH

PSTL
Performance considerations

e Contradicting goals:
- Generate large consecutive chunks
-> fewer aggregators
- Increase throughput
-> more aggregators

e Setting number of aggregators

- Fixed number: 1, number of processes, number of
nodes, number of |/0 servers

- Tune for a particular platform and application

@

o PSTL
Determining the number of

aggregators

1) Determine the minimum data size k for an individual
process which leads to maximum write bandwidth

2) Determine initial number of aggregators taking file
view and/or process topology into account.

3) Refine the number of aggregators based on the overall
amount of data written in the collective call

@

PSTL
1. Determining the saturation point

e Loop of individual write operations with increasing data
size
- Avoid caching effects
- MPI File write () vs. POSIXwrite ()
- Performed once, e.g. by system administrator

e Saturation point: first element which achieves (close
to) maximum bandwidth

120

100 /_0-4«4

T T T T T T 1
mmmmmmmmmmmmmmmmmmmmmmmmm
< 00 WO N S 0 W o~ Q E Q Q ¥¥¥¥¥¥ S S 35335 35 s 35 350
HHHHHHHH T 00O N S 0V N 5 —
. - ~N n T T E MmO N N H N <t 00 WO NS 00 W o~
Edgar Gabriel =~ 0 = H O N B o

Message Length (

o]
o

(=2
o

N P
o o o

Bandwidth (MB/s)

Based on fileview
- Based on 2-D access pattern

- 1 aggregator per row of
processes

Group 1
Group 2
Group 3

Group 4

e Based on Cartesian process topology

- Assumption: process topology related to file access

Based on hints
- Not implemented at this time

- Every process is an aggregator

w Edgar Gabriel

Without fileview or Cartesian topology:

PSTL
2. Initial assignment of aggregators

0 19 |2 |3

4 |5 |6 |7

8 |9 |10 [11

12 [13 |14 |15
CSeUH

3. Refinement step

e« Based on actual amount of
data written across all

processes in one collective
call

e k < no. of bytes written in

group
-> split group

e k > no. of bytes written in

group
-> merge groups

w Edgar Gabriel

Group 1
Group 3
Group 5
Group 7

Group 1

Group 2

P

1 2 |3
4 |5 | |6 |7
8 |9 10 | 11
12 113 14|15
U 11 |2 |3
4 |5 |6 |7
8 19 |10 |11
12 113 |14 |15

STL

Group 2
Group 4
Group 6
Group 8

PSTL
Discussion of algorithm

« Number of aggregators depends on overall data volume
being written

- Different calls to MPT File write all with different
data volumes will result in different number of
aggregators used

e For fixed problem size, number of aggregators is
independent of the number of processes used

e Approach usable for two-phase |/0O and some of its
variants (e.g. dynamic segmentation)

@

1

Tile 1/0, PVFS2@shark,
81 processes, two-phase |/0

B 64x2048x1600 1024x512x400 IMx20x15

700
» 600 -

o

S 500 -

= 400 -

E 300

3

2 200

@ 100 -
0 \

63 Auto
No of Aggregators

Results

BT 1/0, Lustre@deimos,
36 processes, dynamic segmentation

HClass B Class C
10000

ikl

No. of Aggregators (1,2)

=
o
o
o

Execution Time (s)
=
(@]

=

134 tests executed in total with 4 different benchmarks

- 88 tests lead to best or within 10% of optimal
performance, 110 within 25% of best performance

Focusing on two-phase |/0 algorithm only:

- 29 out of 45 test cases outperformed one aggregator per
node strategy on average by 41% (default setting by

.. _ROMIO)

PSTL

PSTL
|/0O Access based Process Placement

e Goal: optimized placement of processes to minimize |/
O time

e Three required components

- Application Matrix: contains communication volumes
between each pair of processes based on the |/0O access
pattern

- Architecture Matrix: contains communication costs
(bandwidth, latency) between each pair of nodes/cores

- Mapping Algorithm: how to map application processes to
underlying node architecture such that communication
cost are minimized

@

PSTL
Application Matrix

e Goal: predict communication occurring in collective /0 algorithm
based on the access pattern of the application

e General case:

- OMPIO extended to dump the order on how processes access
the file

- Assumption: processes which access neighboring parts of the
file will have to communicate with the same aggregators

e Special case:
- Regular access pattern (e.g. 2D data distribution and process

topology)
- Dynamic segmentation algorithm used for collective 1/0

- Communication occurs only within the outer dimension of the
process topology

@

Application Matrix

Simple Example : 4 processes with 2x2 tiles, each 4

bytes

Generic Case: The file layout

B I I E

4

3

4

3

4

3

4

0 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Translates to :

O |0 |V |O

this case

O|—=10 |

« Which translates to :

w Edgar Gabriel

N|OoO|—~|O

O|IN|[O|O

100

100

0

0

100

100

0

0

0

0

100

100

0

0

100

100

PSTL

Special Case : Can be represented by topology 2x2 in

PSTL
Mapping Algorithms

e Any algorithm from literature could be used

e MPIPP Process Placement Algorithm [1]

- Randomized algorithm based on Heuristic to exchange
processes and calculate gain

- Generic can support any kind of application and topology
matrix

- Expensive for larger number of processes
« New SetMatch Algorithm for the special case:
- Create independent sets and matches the sets
- Very quick even for larger number of processes
- Greedy approach, and works for specific scenarios
- Can be generalized by having a clustering algorithm to split

[1] Hu Cheﬁ,e&énguang Chen, Jian Huang, Bob Robert, and H. Kuhn. 2006. MPIPP: an automatic profile-guided
parallel process placement toolset for SMP clusters and multiclusters. InProceedings of the 20th annual international

conference on Supercomputing (ICS '06).

@

PSTL
Preliminary Results

e Crill cluster at the University of Houston
- Distributed PVFS2 file system using with 16 1/0 servers

- 4x SDR InfiniBand message passing network (2 ports per
node)

- 4x SDR Infiniband (1 port) I/0O network
- 18 nodes, 864 compute cores

e Focusing on collective write operations

e Modified OpenMPI trunk rev. 26077

- Added a new rmaps component

- Extensions to OMPIO component to extract fileview
information

@

o soree. DT _
Tile 1/0 Results

e Benchmark : Tile I/0
e Tile Size - 1KB

o File size - 128 processes - 75G, 256 processes - 150G

900
800

~ 700
2
o
g 600
£ 500 -
O
% 400 N
§ 300 -
200 -
100 -
0

Bynode MPIPP MPIPP General SetMatch Byslot
Mapping Method

256 (8x32) ™128 (4x32)

w Edgar Gabriel C S @ UH

o soree. DT _
Tile 1/0 Results - |l

« Benchmark : Tile I/0
e Tile Size - 1MB
o File size - 128 processes - 75G, 256 processes - 150G

900
800
~ 700
L
g 600
< 500 +—
O
g 400
§ 300 —
200 +——
100 ——
0
Bynode MPIPP MPIPP General SetMatch Byslot
Mapping Method

256 (8x32) ™ 128 (4x32)

w Edgar Gabriel C S @ UH

PSTL
Non-blocking collective operations

e Non-blocking collective Operations
- Hide communication latency by overlapping
- Better usage of available bandwidth
- Avoid detrimental effects of pseudo-synchronization
- Demonstrated benefits for a number of applications

e Was supposed to be part of the MPI-3 specification
- Passed 15t vote, failed in 2"d vote

Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and Performance Analysis
of Non-Blocking Collective Operations for MPIl, Supercomputing 2007.

@

PSTL
Overview of LibNBC

e Implements non-blocking versions of all MPI collective
operations

e Schedule based design: a process-local schedule of p2p
operations is created

Pseudocode for schedule at rank 1:

NBC Sched recv(buf, cnt, dt, 0, sched);
NBC Sched barr (sched);
NBC Sched send(buf, cnt, dt, 3, sched);
NBC Sched barr (sched);
NBC Sched send(buf, cnt, dt, 5, sched);

lll] See http://www.unixer.de/publications/img/hoefler-hlrs-nbc.pdf for more details

PSTL
Overview of LibNBC

Schedule execution is represented as a state machine
State and schedule are attached to every request
Schedules might be cached/reused

Progress is most important for efficient overlap
- Progression in NBC Test/NBC Wait

@

PSTL
Collective I/0 operations

o Collective operation for reading/writing data allows to
combine data of multiple processes and optimize disk-

access

e Most popular algorithm: two-phase 1/0

o Algorithm for a collective write operation
e Step 1:

- gather data from multiple processes on
aggregators

- Sort data based on the offset in the file
o Step 2: aggregators write data

@

PSTL
Nonblocking collective |/0 operations

MPI File 1iwrite all (MPI File file,
void *buf, 1nt cnt, MPI Datatyep dt,
MPI Request *request);

e Difference to nonblocking collective communication
operations:

- Every process is allowed to provide different
amounts of data per collective read/write operation

- No process has a ‘global’ view how much data is
read/written

@

PSTL
Nonblocking collective |/0 operations

e Total amount of data necessary to determine
- How many cycles are required
- How much data a process has to contribute in each cycle

—> schedule for libNBC can not be constructed in
MPI_File_iwrite_all

« Further consequence:

- some temporary buffer required internally by the
algorithm can not be allocated when posting the
operation

@

PSTL
Nonblocking collective |/0 operations

e Create a schedule for a non-blocking Allgather(v)

- Determine the overall amount of data written across
all processes

- Determine the offsets for each data item within
each group

e Upon completion:

- Create a new schedule for the shuffle and 1/0 steps
- Schedule can consist of multiple cycles

@

PSTL
Extensions to libNBC

 New internal libNBC operations for:
- Non-blocking read/write operation
- Compute operations for sorting and merging entries
- Buffer management (allocating, freeing buffers)

- New nonblocking send/recv primitives with
additional level of buffer indirections for
dynamically allocated buffers

e Progressing multiple, different types of requests
simultaneously

@

PSTL
Caching of schedules

e Very difficult for 1/0 operations

- Subsequent calls to MPI File iwrite all will
have different offsets into the file

« Amount of data provided by a process in a cycle
depends on the offset in the file

- Processes allowed to mix individual and collective |/
O calls

—> Not possible to predict offsets of other processes
and to reuse a schedule

@

PSTL
Caching of schedules (ll)

 When using different files

- offsets might be the same across multiple function
calls, but different file handles will be used

- Caching typically done on communicator / file
handle

—> Caching across different file handles difficult, but
no impossible

@

PSTL
Experimental evaluation

e Crill cluster at the University of Houston
- Distributed PVFS2 file system using with 16 1/0 servers

- 4x SDR InfiniBand message passing network (2 ports per
node)

- Gigabit Ethernet I/0 network
- 18 nodes, 864 compute cores

e LibNBC integrated with OpenMPI trunk rev. 24640
e Focusing on collective write operations

@

PSTL
Latency |/0 tests

« Comparison of blocking and nonblocking versions
- No overlap
- Writing 1000 MB per process
- 32 aggregator processes, 4MB cycle buffer size
- Average of 3 runs

No. of processes Blocking Bandwidth Non-blocking bandwidth
[MB/s] [MB/s]
64 703 660
128 574 577

@

PSTL
Latency I/0 overlap tests

» Overlapping nonblocking coll. 1/0 operation with equally
expensive compute operation

- Best case: overall time = max (1/0 time, compute
time)

e Strong dependence on ability to make progress

- Best case: time between subsequent calls to
NBC Test = time to execute one cycle of coll. 1/0

No. of processes I/0 time Time spent in Overall time
computation
64 85.69 sec 85.69 sec 85.80 sec
128 205.39 sec 205.39 sec 205.91 sec

@

vz POTR
Parallel Image Processing Application

e Used to assist in diagnosing thyroid cancer

e Based on microscopic images obtained through Fine
Needle Aspiration (FNA)

e Slides are large
- typical image: 25K x 70K pixels, 3-6 Gigabytes/slide
- multispectral imaging to analyze cytological smears

m Edgar Gabriel

PSTL
Parallel Image Processing Application

o Texture based image segmentation

For each Gabor Filter

Forward FFT of Gabor Filter

Convolution operation of Filter and Image
Backward FFT of the convolution result
Optionally: write result of backward FFT to file

e FFT operations based on FFTW 2.1.5

@

PSTL
Parallel Image Processing Application

« Code modified to overlap write of iteration i with
computations of iteration i+1

e Two code versions generated:

- NBC: Additional calls to progress engine added
between different code blocks

- NBC w/FFTW: Modified FFTW to insert further calls
to progress engine

@

?ﬂ:?LEPSTL
-

Application Results ()

« 8192 x 8192 pixels, 21 spectral channels
« 1.3 GB input data, ~3 GB output data
« 32 aggregators with 4 MB cycle buffer size

B MPI ENBC ™M NBC w/FFTW

1/O Time [sec]

w Edgar Gabriel

30
25
20
15
10

64
Number of Processes

96

CSeUH

PARALLEL SOFTWARE PSTL
TECHNOLOGIES LABORATERY

Application Results (Il)

« 12281 x 12281 pixels, 21 spectral channels
« 2.95 GB input data, ~7 GB output data
« 32 aggregators with 4 MB cycle buffer size

/O Time [sec]

w Edgar Gabriel

30
25
20
15
10

B MPI EMNBC ®NBC w/FFTW

64
Number of Processes

96

CSeUH

PSTL
Multi-threaded |/0 optimization

e Currently no support for parallel I/0 in OpenMP
e Need for threads to be able to read/write to the same
file
- Without locking file handle

- Without having to write to separate files to obtain higher
bandwidth

- Applicable for all languages supported by OpenMP
e API specification:

- All routines are library functions (not directives)

- Routines implemented as collective functions

- Shared file pointer between threads

- Support for List I/0 Interfaces

@

PSTL
Overview of Interfaces (write)

File Manipulation omp_file_open_all

omp_file_close_all

Different Arguments Regular |/0 omp_file_write_all

omp_file_write_at_all

List 1/0 omp_file_write_list_all

omp_file_write_list_at_all

Common arguments Regular |/0 omp_file_write_com_all

omp_file_write_com_at_all

List 1/0 omp_file_write_com_Llist_all

omp_file_write_com_Llist_at_all

@

?p;SJ-PSTL
Results - omp_file_write_all

! ! ! ! ! ! ! !
1 thread —+—

2 threads —¥—

4 threads —#¥— . , ‘ ,

508 8 threads —45-'§-~-~-~-€ ----------- ?-~-~-~-é ----------- §-~

16 threads —4l—-§ ' ' ' '

32 threads —%—

400

360

Bandwidth {(Hbytes/sec)

200

1680

Edgar (o ‘ I ‘ I I ' ‘ I
8k 32k 128k 512k 2n 8n 32n 128n 512n :C S @ UH

Segnent size

e OpenMP version of the NAS BT Benchmark
o Extended to include I/0 operations

No. of Threads PVFS2 [sec] PVFS2-SSD [sec]

m Edgar Gabriel

| b

Performance Results

1
2
4
8
16
32
48

410
305
168
164
176
172
168

691
580
386
368
368
368
367

PSTL

CSeUH

PSTL
Summary and Conclusions

e 1/0 is one of the major challenges for current and
upcoming high-end systems
e Huge potential for performance improvements

e OMPIO provides a highly modular architecture for
parallel 1/0

e To improve out-of-the-box performance of 1/0 libraries
- Algorithmic developments necessary
- Handling fat multi-core nodes still a challenge

@

PSTL
Contributors

e Vishwanath Venkatesan
e Kshitij Mehta
e Carlos Vanegas

e Mohamad Chaarawi
e Ketan Kulkarni

e Suneet Chandok

o Rainer Keller (University of Applied Sciences Stuttgart)

@

