
Edgar Gabriel

Scalable and Modular Parallel I/
O for Open MPI

Edgar Gabriel

Parallel Software Technologies Laboratory

Department of Computer Science,
University of Houston

gabriel@cs.uh.edu

Edgar Gabriel

Outline

•  Motivation

•  MPI I/O: basic concepts

•  OMPIO module and parallel I/O frameworks in Open MPI

•  Parallel I/O research

•  Conclusions and future work

Edgar Gabriel

Motivation
•  Study by LLNL (2005):

–  1 GB/s I/O bandwidth required per Teraflop compute
capability

–  Write to the filesystem dominates reading from it by a
factor of 5

•  Current High-End Systems:
–  K Computer: ~11 PFLOPS, ~96 GB/s I/O bandwidth using

864 OSTs
–  Jaguar (2010): ~1 PFLOPS, ~90 GB/s I/O bandwidth using

672 OSTs

 Gap between available I/O performance and required I/O
performance.

Edgar Gabriel

Application Perspective
•  Sequential I/O

–  A single process
executes file operations

–  Leads to load imbalance

•  Individual I/O
–  Each process has its own

files
–  Pre/Post-processing

required
•  Parallel I/O

–  Multiple processes access (different parts of) the same
file (efficiently)

Edgar Gabriel

Part I: MPI I/O

Edgar Gabriel

MPI I/O
•  MPI (Message Passing Interface) version 2 introduced the

notion of parallel I/O
–  Collective I/O : group I/O operations
–  File view: registering an access plan to the file in

advance
–  Hints: application hints on the lanned usage of the
–  Relaxed consistency semantics: updates to a file might

initially only be visible to the process performing the
action

–  Non-blocking I/O: asynchronous I/O operations

Edgar Gabriel

MPI_File_open (MPI_Comm comm, char *filename,
 int amode, MPI_Info info,
 MPI_File *fh);

General file manipulation functions

•  Collective operation
–  All processes have to provide the same amode
–  comm must be an intra-communicator

•  Values for amode
–  MPI_MODE_RDONLY, MPI_MODE_WRONLY, MPI_MODE_RDWR,
–  MPI_MODE_CREATE, MPI_MODE_APPEND, …

•  Combination of several amodes possible, e.g
–  C: (MPI_MODE_CREATE | MPI_MODE_WRONLY)
–  Fortran: MPI_MODE_CREATE + MPI_MODE_WRONLY

Edgar Gabriel

File View
•  File view: portion of a file visible to a process

–  Processes can share a common view
–  Views can overlap or be disjoint
–  Views can be changed during runtime
–  A process can have multiple instances of a file open

using different file views

Process 0
Process 1
Process 2
Process 3

File

Edgar Gabriel

File View
•  Elementary type (etype) : basic unit of the data accessed

by the program
•  File type: datatype used to construct the file view

–  consists logically of a series of etypes
–  must not have overlapping regions if used in write

operations
–  displacements must increase monotonically

•  Default file view:
–  displacement = 0
–  etype = file type = MPI_Byte

…
etype etype etype

File type

Edgar Gabriel

Setting a file view

•  The argument list
–  disp: start of the file view
–  etype and filetype: as discussed previously
–  datarep: data representation used
–  info: hints to the MPI library (discussed later)

•  Collective operation
–  datarep and extent of etype have to be identical on all

processes
–  filetype, disp and info might vary

•  Resets file pointers to zero

MPI_File_set_view (MPI_File fh, MPI_Offset disp,
 MPI_Datatype etype, MPI_Datatype filetype,
 char *datarep, MPI_Info info);

Edgar Gabriel

File Interoperability

•  Fifth parameter of MPI_File_set_view sets the data
representation used:
–  native: data is stored in a file exactly as it is in

 memory
–  internal: data representation for heterogeneous

 environments using the same MPI I/O
 implementation

–  external32: portable data representation across
 multiple platforms and MPI I/O libraries.

•  User can register its own data representation, providing the

according conversion functions (MPI_Register_datarep)

Edgar Gabriel

MPI_File_read (MPI_File fh, void *buf, int cnt,
 MPI_Datatype dat, MPI_Status *stat);

MPI_File_write (MPI_File fh, void *buf, int cnt,
 MPI_Datatype dat, MPI_Status *stat);

General file manipulation functions

•  Buffers described by the tuple of
–  Buffer pointer
–  Number of elements
–  Datatype

•  Interfaces support data conversion if necessary

Edgar Gabriel

MPI I/O non-collective functions
Positioning Synchronism Function
Individual file pointers Blocking MPI_File_read

MPI_File_write

Non-blocking MPI_File_iread

MPI_File_iwrite

Explicit offset Blocking MPI_File_read_at

MPI_File_write_at

Non-blocking MPI_File_iread_at

MPI_File_iwrite_at

Shared file pointers Blocking MPI_File_read_shared

MPI_File_write_shared

Non-blocking MPI_File_iread_shared

MPI_File_iwrite_shared

Edgar Gabriel

Individual I/O in parallel applications

•  Individual Read/Write operations on a joint file often

lead to many, small I/O requests from each process
•  Arbitrary order of I/O requests from the file system

perspective
–  Will lead to suboptimal performance

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

8

16

24

32

Process 2:

read(…, offset=4, length=2)
read(…, offset=12, length=2)
read(…, offset=20, length=2)
read(…, offset=28, length=2)

Process 0:

read(…, offset=0, length=2)
read(…, offset=8, length=2)
read(…, offset=16, length=2)
read(…, offset=24, length=2)

Process 1:

read(…, offset=2, length=2)
read(…, offset=10, length=2)
read(…, offset=18, length=2)
read(…, offset=26, length=2)

Process 3:

read(…, offset=6, length=2)
read(…, offset=14, length=2)
read(…, offset=22, length=2)
read(…, offset=30, length=2)

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

8

16

24

32

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

8

16

24

32

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

8

16

24

32

Edgar Gabriel

Collective I/O in parallel applications

•  Collective I/O:
–  Offers the potential to rearrange I/O requests across processes,

e.g. minimize file pointer movements, minimize locking
occurring on the file system level

–  Offers performance benefits if costs of additional data
movements < benefit of fewer repositioning of file pointers

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

8

16

24

32

Process 2:

read(…, offset=4, length=4)
MPI_Send (…,length=2,dest=3,…)
read(…, offset=12, length=4)
MPI_Send (…,length=2,dest=3,…)
read(…, offset=20, length=4)
MPI_Send (…,length=2,dest=3,…)
read(…, offset=28, length=4)
MPI_Send (…,length=2,dest=3,…)

Process 0:

read(…, offset=0, length=4)
MPI_Send (…,length=2,dest=1,…)
read(…, offset=8, length=4)
MPI_Send (…,length=2,dest=1,…)
read(…, offset=16, length=4)
MPI_Send (…,length=2,dest=1,…)
read(…, offset=24, length=4)
MPI_Send (…,length=2,dest=1,…)

1

9

17

25

2

10

18

26

3

11

19

27

4

12

20

28

5

13

21

29

6

14

22

30

7

15

23

31

8

16

24

32

Edgar Gabriel

Collective I/O: Two-phase I/O
algorithm

•  Re-organize data across processes to match data layout
in file

•  Combination of I/O and (MPI level) communication used
to read/write data from/to file

•  Only a subset of processes actually touch the file
(aggregators)

•  Large read/write operations split into multiple cycles
internally
–  Limits the size of temporary buffers
–  Overlaps communication and I/O operations

Edgar Gabriel

Shared File Pointer Operations

•  Shared file pointers: a file pointer shared by a the
group of processes that has been used to open the file
–  All processes must have identical file view
–  Might lead to non-deterministic behavior

•  Shared file pointer must not interfere with the
individual file pointer of each process

•  Typical usage scenarios

–  Writing a parallel log-file
–  Work distribution across processes by reading data from a

joint file

Edgar Gabriel

Time
step

Process 0 Process 1

T1 MPI_File_read_shared (…, 4,
MPI_INT,…)

-

T2 - MPI_File_read_shared (…, 1, MPI_INT,…)

T3 MPI_File_read_sharedl(…,
1,MPI_INT,…)

MPI_File_read_sharedl(…,2,MPI_INT,)

? ?

6 1 2 0 3 4 5 7 8 9 10 11

6 1 2 0 3 4 5 7 8 9 10 11

6 1 2 0 3 4 5 7 8 9 10 11

Shared file pointer example

Edgar Gabriel

Time
step

Action by process 0 Action by process 1

Access to shared file pointer is serialized and execute either as…

6 1 2 0 3 4 5 7 8 9 10 11

6 1 2 0 3 4 5 7 8 9 10 11

…or the other way around. Which ever process gets hold of the shared file
pointer first is allowed to execute first the read operation

6 1 2 0 3 4 5 7 8 9 10 11

6 1 2 0 3 4 5 7 8 9 10 11

MPI_File_read_shared (…, 2, MPI_INT,…)

MPI_File_read_shared (…, 1, MPI_INT,…)

MPI_File_read_shared (…, 1, MPI_INT,…)

MPI_File_read_shared (…, 2, MPI_INT,…)

T3a

T3b

T3a

T3b

Edgar Gabriel

Consistency of file operation
•  MPI does not provide sequential consistency across all

processes per default
–  Write on one process is initially just visible on the same

process
•  Two possibilities to change this behavior

–  If flag = true, all write operations are atomic
–  Collective operation

–  Flushes all write operations on the calling process’ file
instance

MPI_File_set_atomicity (MPI_File fh, int flag);

MPI_File_sync (MPI_File fh);

Edgar Gabriel

Hints supported by MPI I/O (I)
Hint Explanation Possible values

access_style Specifies manner in
which the file is
accessed

read_once, write_once,
read_mostly, write_mostly,
sequential,
reverse_sequential, random

collective_buffering Use collective
buffering ?

true, false

cb_block_size Block size used for
collective buffering

Integer

cb_buffer_size Total buffer space that
can be used for
collective buffering

Integer, multiple of cb_block_size

cb_nodes Number of target
nodes used for
collective buffering

Integer

Edgar Gabriel

Hints supported by MPI I/O (II)

Hint Explanation Possible values

io_node_list List of I/O nodes that
should be used

Comma separated list of strings

nb_proc Specifies the number
of processes typically
accessing the file

Integer

num_io_nodes Number of I/O nodes
available in the
system

Integer

striping_factor Number of I/O nodes
that should be used
for file striping

Integer

striping_unit Stripe depth integer

Edgar Gabriel

 Part II: OMPIO

Edgar Gabriel

OMPIO Design Goals (I)

•  Highly modular architecture for parallel I/O
–  Maximize code reuse, minimize code replication

•  Generalize the selection of modules
–  Collective I/O algorithms
–  Shared file pointer operations

•  Tighter Integration with Open MPI library
–  Derived data type optimizations
–  Progress engine for non-blocking I/O operations
–  External data representations etc.

Edgar Gabriel

OMPIO Design Goals (II)

•  Adaptability
–  Enormous diversity of I/O hardware and software

solutions
• Number of storage server, bandwidth of each

storage server
• Network connectivity in-between I/O nodes,

between compute and I/O nodes, and message
passing network between compute nodes

–  Ease the modification of module parameters
–  Ease the development and dropping in of new

modules

Edgar Gabriel

Open MPI Architecture

Application
MPI layer

Modular Component Architecture
BTL COLL I/O Other

framework …

tc
p

sm

ib

ba
si

c
tu

ne
d

sm

RO
M

IO

O
M

PI
O

m
od

ul
e

m
od

ul
e

m
od

ul
e

Edgar Gabriel

I/O

RO
M

IO

OMPIO

fbtl

po
si

x
pv

fs
2

fcoll
dy

na
m

ic
-s

eg
m

en
t

fs

po
si

x
pv

fs
2

st
at

ic
-s

eg
m

en
t

in
di

vi
du

al

sharedfp

…

fl
oc

k

sm

ad
dp

ro
c

…

framework component

Tw
o-

ph
as

e

lu
st

re

… …

OMPIO frameworks overview

Edgar Gabriel

OMPIO

•  Main I/O component
•  ‘Understands’ MPI semantics
•  Translates MPI write/read operations into lower layer

operations
•  Provides the implementation and the operation of the

–  MPI_File handle
–  File view operations
–  (MPI_Request structures)

•  Triggers upon selection the fcoll, fs, fbtl and
sharedfp selection logic

Edgar Gabriel

fbtl: file byte transfer layer

•  Abstraction for individual read and write operations
•  A process will have per MPI file one or more fbtl

modules loaded
•  Main interfaces work with the tuple of

<buffer pointer, length, position in file>

•  Interface:
–  pwritev() - ipwritev()

–  preadv() - ipreadv()

 - progress()

Edgar Gabriel

fcoll: collective I/O framework

•  Provides implementations of the collective I/O
operations of the MPI specification

–  read_all() - read_all_begin()/end()
–  write_all() - write_all_begin()/end()
–  read_at_all() - read_at_all_begin()/end()
–  write_at_all() - write_at_all_begin()/end()

•  Selection logic triggered upon setting the file view

Edgar Gabriel

fcoll: selection logic
•  Decision between different collective modules based

on:
–  ss: stripe size of the file system
–  c: average contiguous chunk size in file view
–  k: minimum data size to saturate write/read bandwidth

from one process
–  size of gap in the file view between processes.

Characteristic Gap Size Algorithm

c>k and c>ss any individual

c<= k and c>ss 0 dynamic segmentation

c<k and c<ss 0 two-phase

c<k > 0 static segmentation

Edgar Gabriel

fs: file system framework

•  Handles all file-system related operation
–  Interfaces have mostly collective notion

•  Interface:
–  open()
–  close()
–  delete()
–  sync()

•  Current Lustre and PVFS2 fs components allow to
modify stripe size, stripe depth and I/O servers used

Edgar Gabriel

I/O
OMPIO

fbtl

po
si

x

pv
fs

2

fcoll
dy

na
m

ic
-s

eg
m

en
t

fs

uf
s

pv
fs

2

st
at

ic
-s

eg
m

en
t

in
di

vi
du

al

sharedfp

fl
oc

k
Se

pa
ra

te
 f

ile
s

ad
dp

ro
c

framework

 available component

Tw
o-

ph
as

e

lu
st

re

Y-
lib

Ke
rn

el
 I/

O

sm

Experimental component

Current status

Edgar Gabriel

Performance results: Tile I/O

No. of
procs.

Tile Size fcoll module OMPIO
bandwidth

ROMIO
bandwidth

81 64 Bytes Two-phase 591 MB/s 303 MB/s

81 1 MB Dynamic Segm. 625 MB/s 290 MB/s

Shark cluster at University of Houston (PVFS2):

Deimos cluster at TU Dresden (Lustre):

No. of
procs.

Tile Size fcoll module OMPIO
bandwidth

ROMIO
bandwidth

256 64 Bytes Two-phase 2167 MB/s 411 MB/s

256 1 MB Dynamic Segm. 2491 MB/s 517 MB/s

Edgar Gabriel

Tuning parallel I/O performance

•  OTPO (Open Tool for Parameter Optimization): optimize the
Open MPI parameter space for a particular benchmark and/
or application

•  Tuning for Latency I/O benchmark on shark/PVFS2
–  Parameters tuned: collective module used, number of

aggregators used, cycle buffer size

•  64 different parameter combinations evaluated
•  2 parameter combinations were determined to lead to best

performance:
–  dynamic segm., 20 aggregators, 32 MB cycle buffer size
–  static segm. 20 aggregators, 32 MB cycle buffer size

Edgar Gabriel

sharedfp framework
•  Focuses around the management of a shared file

pointer
–  Using a separate file and locking
–  Additional process (e.g. mpirun?)
–  Separate files per processes + metadata
–  Shared memory segment

•  Collective shared filepointer operations mapped to
regular collective I/O operations

•  Decision logic based on
–  Location of processes
–  Availability of features (e.g. locking)
–  Hints by the user

Edgar Gabriel

Current status (II)

•  Code committed to Open MPI repository in August 2011
•  Will be part of the 1.7 release series

•  Missing MPI level functionality:
–  Split collective operations (*)
–  Shared file pointer operations: developed in a separate

library, currently being integrated with OMPIO (*)
–  Non-blocking individual I/O
–  Atomic access mode

Edgar Gabriel

Part III: Research topics

Edgar Gabriel

OMPIO Optimizations

•  Automated selection logic for collective I/O modules
•  Optimization of collective I/O operations

–  Development of new communication-optimized collective
I/O algorithms (dynamic segmentation, static
segmentation)

–  Automated setting of number of aggregators for
collective I/O operations

–  Optimizing process placement based on I/O access
pattern

•  Non-blocking collective I/O operations
•  Multi-thread I/O operations

Edgar Gabriel

Optimizing communication in
collective I/O operations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

File layout

Process 0 Process 1 Process 2 Process 3

Two-phase I/O with 2 aggregators
Process 0 Process 2

Dynamic segmentation algorithm with 2 aggregators
Process 0 Process 2
1 2 3 4

9 10 11 12

5 6 7 8

13 14 15 16

Edgar Gabriel

Automated setting no. of aggregators

•  No. of aggregators has enormous influence on
performance, e.g.
–  Tile I/O benchmark using two-phase I/O, 144 processes,

Lustre file system

Edgar Gabriel

Performance considerations
•  Contradicting goals:

–  Generate large consecutive chunks
-> fewer aggregators

–  Increase throughput
-> more aggregators

•  Setting number of aggregators

–  Fixed number: 1, number of processes, number of
nodes, number of I/O servers

–  Tune for a particular platform and application

Edgar Gabriel

Determining the number of
aggregators

1)  Determine the minimum data size k for an individual
process which leads to maximum write bandwidth

2)  Determine initial number of aggregators taking file
view and/or process topology into account.

3)  Refine the number of aggregators based on the overall
amount of data written in the collective call

Edgar Gabriel

1. Determining the saturation point

•  Loop of individual write operations with increasing data
size
–  Avoid caching effects
–  MPI_File_write() vs. POSIX write()
–  Performed once, e.g. by system administrator

•  Saturation point: first element which achieves (close
to) maximum bandwidth

Edgar Gabriel

2. Initial assignment of aggregators

•  Based on fileview
–  Based on 2-D access pattern
–  1 aggregator per row of

processes

0
 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Group 1

Group 2

Group 3

Group 4

•  Based on Cartesian process topology
–  Assumption: process topology related to file access

•  Based on hints
–  Not implemented at this time

•  Without fileview or Cartesian topology:
–  Every process is an aggregator

Edgar Gabriel

3. Refinement step
•  Based on actual amount of

data written across all
processes in one collective
call

•  k < no. of bytes written in
group
-> split group

•  k > no. of bytes written in
group
-> merge groups

0
 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Group 1

Group 3

Group 5

Group 7

Group 2

Group 4

Group 6

Group 8

0
 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Group 1

Group 2

Edgar Gabriel

Discussion of algorithm

•  Number of aggregators depends on overall data volume
being written
–  Different calls to MPI_File_write_all with different

data volumes will result in different number of
aggregators used

•  For fixed problem size, number of aggregators is
independent of the number of processes used

•  Approach usable for two-phase I/O and some of its
variants (e.g. dynamic segmentation)

Edgar Gabriel

Results

•  134 tests executed in total with 4 different benchmarks
–  88 tests lead to best or within 10% of optimal

performance, 110 within 25% of best performance
•  Focusing on two-phase I/O algorithm only:

–  29 out of 45 test cases outperformed one aggregator per
node strategy on average by 41% (default setting by
ROMIO)

Tile I/O, PVFS2@shark,
81 processes, two-phase I/O

BT I/O, Lustre@deimos,
36 processes, dynamic segmentation

Edgar Gabriel

I/O Access based Process Placement

•  Goal: optimized placement of processes to minimize I/

O time
•  Three required components

–  Application Matrix: contains communication volumes
between each pair of processes based on the I/O access
pattern

–  Architecture Matrix: contains communication costs
(bandwidth, latency) between each pair of nodes/cores

–  Mapping Algorithm: how to map application processes to
underlying node architecture such that communication
cost are minimized

Edgar Gabriel

Application Matrix

•  Goal: predict communication occurring in collective I/O algorithm
based on the access pattern of the application

•  General case:
–  OMPIO extended to dump the order on how processes access

the file
–  Assumption: processes which access neighboring parts of the

file will have to communicate with the same aggregators
•  Special case:

–  Regular access pattern (e.g. 2D data distribution and process
topology)

–  Dynamic segmentation algorithm used for collective I/O
–  Communication occurs only within the outer dimension of the

process topology

Edgar Gabriel

Application Matrix
•  Simple Example : 4 processes with 2x2 tiles, each 4

bytes
•  Generic Case: The file layout

•  Translates to :

•  Special Case : Can be represented by topology 2x2 in
this case

•  Which translates to :

1 2 1 2 1 2 2 1 3 4 3 4 3 4 4 3

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

0 7 0 0

7 0 1 0

0 1 0 7

0 0 7 0

100 100 0 0

100 100 0 0

0 0 100 100

0 0 100 100

Edgar Gabriel

Mapping Algorithms
•  Any algorithm from literature could be used
•  MPIPP Process Placement Algorithm [1]

–  Randomized algorithm based on Heuristic to exchange
processes and calculate gain

–  Generic can support any kind of application and topology
matrix

–  Expensive for larger number of processes

•  New SetMatch Algorithm for the special case:
–  Create independent sets and matches the sets
–  Very quick even for larger number of processes
–  Greedy approach, and works for specific scenarios
–  Can be generalized by having a clustering algorithm to split

sets [1] Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and H. Kuhn. 2006. MPIPP: an automatic profile-guided
parallel process placement toolset for SMP clusters and multiclusters. InProceedings of the 20th annual international
conference on Supercomputing (ICS '06).	

Edgar Gabriel

Preliminary Results

•  Crill cluster at the University of Houston
–  Distributed PVFS2 file system using with 16 I/O servers
–  4x SDR InfiniBand message passing network (2 ports per

node)
–  4x SDR Infiniband (1 port) I/O network
–  18 nodes, 864 compute cores

•  Focusing on collective write operations
•  Modified OpenMPI trunk rev. 26077

–  Added a new rmaps component
–  Extensions to OMPIO component to extract fileview

information

Edgar Gabriel

Tile I/O Results

•  Benchmark : Tile I/O
•  Tile Size – 1KB
•  File size - 128 processes – 75G, 256 processes - 150G

0

100

200

300

400

500

600

700

800

900

Bynode MPIPP MPIPP(General) SetMatch Byslot

Ba
nd

w
id

th
 (

M
B/

s)

Mapping Method

256 (8x32) 128 (4x32)

Edgar Gabriel

Tile I/O Results - II

•  Benchmark : Tile I/O
•  Tile Size – 1MB
•  File size - 128 processes – 75G, 256 processes - 150G

0

100

200

300

400

500

600

700

800

900

Bynode MPIPP MPIPP(General) SetMatch Byslot

Ba
nd

w
id

th
 (

M
B/

s)

Mapping Method

256 (8x32) 128 (4x32)

Edgar Gabriel

Non-blocking collective operations

•  Non-blocking collective Operations
–  Hide communication latency by overlapping
–  Better usage of available bandwidth
–  Avoid detrimental effects of pseudo-synchronization
–  Demonstrated benefits for a number of applications

•  Was supposed to be part of the MPI-3 specification
–  Passed 1st vote, failed in 2nd vote

Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and Performance Analysis
of Non-Blocking Collective Operations for MPI, Supercomputing 2007.

Edgar Gabriel

Overview of LibNBC

•  Implements non-blocking versions of all MPI collective
operations

•  Schedule based design: a process-local schedule of p2p
operations is created

0

1 2 4

3 5 6

1

2

2
3

3 3

Pseudocode for schedule at rank 1:

NBC_Sched_recv(buf, cnt, dt, 0, sched);
NBC_Sched_barr(sched);
NBC_Sched_send(buf, cnt, dt, 3, sched);
NBC_Sched_barr(sched);
NBC_Sched_send(buf, cnt, dt, 5, sched);

See http://www.unixer.de/publications/img/hoefler-hlrs-nbc.pdf for more details

Edgar Gabriel

Overview of LibNBC

•  Schedule execution is represented as a state machine
•  State and schedule are attached to every request
•  Schedules might be cached/reused

•  Progress is most important for efficient overlap
–  Progression in NBC_Test/NBC_Wait

Edgar Gabriel

Collective I/O operations

•  Collective operation for reading/writing data allows to
combine data of multiple processes and optimize disk-
access

•  Most popular algorithm: two-phase I/O
•  Algorithm for a collective write operation

•  Step 1:
–  gather data from multiple processes on

aggregators
–  Sort data based on the offset in the file

•  Step 2: aggregators write data

Edgar Gabriel

Nonblocking collective I/O operations

MPI_File_iwrite_all (MPI_File file,
 void *buf, int cnt, MPI_Datatyep dt,
 MPI_Request *request);

•  Difference to nonblocking collective communication
operations:
–  Every process is allowed to provide different

amounts of data per collective read/write operation
–  No process has a ‘global’ view how much data is

read/written

Edgar Gabriel

Nonblocking collective I/O operations

•  Total amount of data necessary to determine
–  How many cycles are required
–  How much data a process has to contribute in each cycle

 schedule for libNBC can not be constructed in
 MPI_File_iwrite_all

•  Further consequence:

–  some temporary buffer required internally by the
algorithm can not be allocated when posting the
operation

Edgar Gabriel

Nonblocking collective I/O operations

•  Create a schedule for a non-blocking Allgather(v)
–  Determine the overall amount of data written across

all processes
–  Determine the offsets for each data item within

each group

•  Upon completion:
–  Create a new schedule for the shuffle and I/O steps
–  Schedule can consist of multiple cycles

Edgar Gabriel

Extensions to libNBC

•  New internal libNBC operations for:
–  Non-blocking read/write operation
–  Compute operations for sorting and merging entries
–  Buffer management (allocating, freeing buffers)
–  New nonblocking send/recv primitives with

additional level of buffer indirections for
dynamically allocated buffers

•  Progressing multiple, different types of requests
simultaneously

Edgar Gabriel

Caching of schedules

•  Very difficult for I/O operations
–  Subsequent calls to MPI_File_iwrite_all will

have different offsets into the file
• Amount of data provided by a process in a cycle

depends on the offset in the file
–  Processes allowed to mix individual and collective I/

O calls

 Not possible to predict offsets of other processes
 and to reuse a schedule

Edgar Gabriel

Caching of schedules (II)

•  When using different files
–  offsets might be the same across multiple function

calls, but different file handles will be used
–  Caching typically done on communicator / file

handle

 Caching across different file handles difficult, but
 no impossible

Edgar Gabriel

Experimental evaluation

•  Crill cluster at the University of Houston
–  Distributed PVFS2 file system using with 16 I/O servers
–  4x SDR InfiniBand message passing network (2 ports per

node)
–  Gigabit Ethernet I/O network
–  18 nodes, 864 compute cores

•  LibNBC integrated with OpenMPI trunk rev. 24640
•  Focusing on collective write operations

Edgar Gabriel

Latency I/O tests

No. of processes Blocking Bandwidth
[MB/s]

Non-blocking bandwidth
[MB/s]

64 703 660

128 574 577

•  Comparison of blocking and nonblocking versions
–  No overlap
–  Writing 1000 MB per process
–  32 aggregator processes, 4MB cycle buffer size
–  Average of 3 runs

Edgar Gabriel

Latency I/O overlap tests

No. of processes I/O time Time spent in
computation

Overall time

64 85.69 sec 85.69 sec 85.80 sec

128 205.39 sec 205.39 sec 205.91 sec

•  Overlapping nonblocking coll. I/O operation with equally
expensive compute operation
–  Best case: overall time = max (I/O time, compute

time)

•  Strong dependence on ability to make progress
–  Best case: time between subsequent calls to
NBC_Test = time to execute one cycle of coll. I/O

Edgar Gabriel

Parallel Image Processing Application
•  Used to assist in diagnosing thyroid cancer
•  Based on microscopic images obtained through Fine

Needle Aspiration (FNA)
•  Slides are large

–  typical image: 25K x 70K pixels, 3-6 Gigabytes/slide
–  multispectral imaging to analyze cytological smears

Edgar Gabriel

Parallel Image Processing Application

•  Texture based image segmentation

For each Gabor Filter
–  Forward FFT of Gabor Filter
–  Convolution operation of Filter and Image
–  Backward FFT of the convolution result
–  Optionally: write result of backward FFT to file

•  FFT operations based on FFTW 2.1.5

Edgar Gabriel

Parallel Image Processing Application

•  Code modified to overlap write of iteration i with
computations of iteration i+1

•  Two code versions generated:
–  NBC: Additional calls to progress engine added

between different code blocks
–  NBC w/FFTW: Modified FFTW to insert further calls

to progress engine

Edgar Gabriel

Application Results (I)

•  8192 x 8192 pixels, 21 spectral channels
•  1.3 GB input data, ~3 GB output data
•  32 aggregators with 4 MB cycle buffer size

Edgar Gabriel

Application Results (II)
•  12281 x 12281 pixels, 21 spectral channels
•  2.95 GB input data, ~7 GB output data
•  32 aggregators with 4 MB cycle buffer size

Edgar Gabriel

Multi-threaded I/O optimization
•  Currently no support for parallel I/O in OpenMP
•  Need for threads to be able to read/write to the same

file
–  Without locking file handle
–  Without having to write to separate files to obtain higher

bandwidth
–  Applicable for all languages supported by OpenMP

•  API specification:
–  All routines are library functions (not directives)
–  Routines implemented as collective functions
–  Shared file pointer between threads
–  Support for List I/O Interfaces

Edgar Gabriel

 Overview of Interfaces (write)
File Manipulation omp_file_open_all

omp_file_close_all

Different Arguments Regular I/O omp_file_write_all

omp_file_write_at_all

List I/O omp_file_write_list_all

omp_file_write_list_at_all

Common arguments Regular I/O omp_file_write_com_all

omp_file_write_com_at_all

List I/O omp_file_write_com_list_all

omp_file_write_com_list_at_all

Edgar Gabriel

Results – omp_file_write_all

omp_file_write_all

Edgar Gabriel

Performance Results

No. of Threads PVFS2 [sec] PVFS2-SSD [sec]

1 410 691

2 305 580

4 168 386

8 164 368

16 176 368

32 172 368

48 168 367

•  OpenMP version of the NAS BT Benchmark
•  Extended to include I/O operations

Edgar Gabriel

Summary and Conclusions

•  I/O is one of the major challenges for current and
upcoming high-end systems

•  Huge potential for performance improvements
•  OMPIO provides a highly modular architecture for

parallel I/O

•  To improve out-of-the-box performance of I/O libraries
–  Algorithmic developments necessary
–  Handling fat multi-core nodes still a challenge

Edgar Gabriel

Contributors

•  Vishwanath Venkatesan
•  Kshitij Mehta
•  Carlos Vanegas

•  Mohamad Chaarawi
•  Ketan Kulkarni
•  Suneet Chandok

•  Rainer Keller (University of Applied Sciences Stuttgart)

