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Motivation 
•  Study by LLNL (2005): 

–  1 GB/s I/O bandwidth required per Teraflop compute 
capability 

–  Write to the filesystem dominates reading from it by a 
factor of 5 

•  Current High-End Systems: 
–  K Computer: ~11 PFLOPS, ~96 GB/s I/O bandwidth using 

864 OSTs 
–  Jaguar (2010):  ~1 PFLOPS, ~90 GB/s I/O bandwidth using 

672 OSTs  
     
      Gap between available I/O performance and required I/O 
performance. 
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Application Perspective 
•  Sequential I/O 

–  A single process 
executes file operations 

–  Leads to load imbalance 

•  Individual I/O 
–  Each process has its own 

files 
–  Pre/Post-processing 

required 
•  Parallel I/O 

–  Multiple processes access (different parts of) the same 
file (efficiently) 
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Part I: MPI I/O 
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MPI I/O 
•  MPI (Message Passing Interface) version 2  introduced the 

notion of parallel I/O  
–  Collective I/O : group I/O operations 
–  File view: registering an access plan to the file in 

advance 
–  Hints: application hints on the lanned usage of the 
–  Relaxed consistency semantics: updates to a file might 

initially only be visible to the process performing the 
action 

–  Non-blocking I/O: asynchronous I/O operations 
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MPI_File_open ( MPI_Comm comm, char *filename, 
     int amode, MPI_Info info,  
     MPI_File *fh ); 

General file manipulation functions 

•  Collective operation 
–  All processes have to provide the same amode 
–  comm must be an intra-communicator 

•  Values for amode 
–  MPI_MODE_RDONLY, MPI_MODE_WRONLY, MPI_MODE_RDWR, 
–  MPI_MODE_CREATE, MPI_MODE_APPEND, … 

•  Combination of several amodes possible, e.g 
–  C:  (MPI_MODE_CREATE | MPI_MODE_WRONLY) 
–  Fortran:  MPI_MODE_CREATE + MPI_MODE_WRONLY 
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File View 
•  File view: portion of a file visible to a process 

–  Processes can share a common view 
–  Views can overlap or be disjoint 
–  Views can be changed during runtime 
–  A process can have multiple instances of a file open 

using different file views 

Process 0 
Process 1 
Process 2 
Process 3 

File 
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File View 
•  Elementary type (etype) : basic unit of the data accessed 

by the program 
•  File type: datatype used to construct the file view 

–  consists logically of a series of etypes 
–  must not have overlapping regions if used in write 

operations 
–  displacements must increase monotonically 

•  Default file view:  
–  displacement = 0 
–  etype = file type = MPI_Byte 

… 
etype etype etype 

File type 
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Setting a file view 

•  The argument list 
–  disp: start of the file view 
–  etype and filetype: as discussed previously 
–  datarep: data representation used  
–  info: hints to the MPI library (discussed later) 

•  Collective operation 
–  datarep and extent of etype have to be identical on all 

processes 
–  filetype, disp and info might vary 

•  Resets file pointers to zero 

MPI_File_set_view ( MPI_File fh, MPI_Offset disp, 
 MPI_Datatype etype, MPI_Datatype filetype, 
 char *datarep, MPI_Info info ); 
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File Interoperability 

•  Fifth parameter of MPI_File_set_view sets the data 
representation used: 
–  native:  data is stored in a file exactly as it is in 

   memory 
–  internal:  data representation for heterogeneous  

   environments using the same MPI I/O  
   implementation  

–  external32:   portable data representation across  
   multiple platforms and MPI I/O libraries. 

 
•  User can register its own data representation, providing the 

according conversion functions (MPI_Register_datarep) 
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MPI_File_read ( MPI_File fh, void *buf, int cnt, 
   MPI_Datatype dat, MPI_Status *stat); 

MPI_File_write ( MPI_File fh, void *buf, int cnt, 
   MPI_Datatype dat, MPI_Status *stat); 

General file manipulation functions 

•  Buffers described by the tuple of  
–  Buffer pointer 
–  Number of elements 
–  Datatype 

•  Interfaces support data conversion if necessary 
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MPI I/O non-collective functions 
Positioning Synchronism Function 
Individual file pointers Blocking MPI_File_read 

MPI_File_write 

Non-blocking MPI_File_iread 

MPI_File_iwrite 

Explicit offset Blocking MPI_File_read_at 

MPI_File_write_at 

Non-blocking MPI_File_iread_at 

MPI_File_iwrite_at 

Shared file pointers Blocking MPI_File_read_shared 

MPI_File_write_shared 

Non-blocking MPI_File_iread_shared 

MPI_File_iwrite_shared 
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Individual I/O in parallel applications 

 
 
 
 
 
•  Individual Read/Write operations on a joint file often 

lead to many, small I/O requests from each process 
•  Arbitrary order of I/O requests from the file system 

perspective 
–  Will lead to suboptimal performance 
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Process 2: 
 
read(…, offset=4,  length=2) 
read(…, offset=12, length=2) 
read(…, offset=20, length=2) 
read(…, offset=28, length=2) 

Process 0: 
 
read(…, offset=0,  length=2) 
read(…, offset=8,  length=2) 
read(…, offset=16, length=2) 
read(…, offset=24, length=2) 

Process 1: 
 
read(…, offset=2,  length=2) 
read(…, offset=10, length=2) 
read(…, offset=18, length=2) 
read(…, offset=26, length=2) 

Process 3: 
 
read(…, offset=6,  length=2) 
read(…, offset=14, length=2) 
read(…, offset=22, length=2) 
read(…, offset=30, length=2) 
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Collective I/O in parallel applications 

•  Collective I/O:  
–  Offers the potential to rearrange I/O requests across processes, 

e.g. minimize file pointer movements, minimize locking 
occurring on the file system level 

–  Offers performance benefits if costs of additional data 
movements < benefit of fewer repositioning of file pointers 
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Process 2: 
 
read(…, offset=4,  length=4) 
MPI_Send (…,length=2,dest=3,…) 
read(…, offset=12, length=4) 
MPI_Send (…,length=2,dest=3,…) 
read(…, offset=20, length=4) 
MPI_Send (…,length=2,dest=3,…) 
read(…, offset=28, length=4) 
MPI_Send (…,length=2,dest=3,…) 

Process 0: 
 
read(…, offset=0,  length=4) 
MPI_Send (…,length=2,dest=1,…) 
read(…, offset=8,  length=4) 
MPI_Send (…,length=2,dest=1,…) 
read(…, offset=16, length=4) 
MPI_Send (…,length=2,dest=1,…) 
read(…, offset=24, length=4) 
MPI_Send (…,length=2,dest=1,…) 
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Collective I/O: Two-phase I/O 
algorithm 

•  Re-organize data across processes to match data layout 
in file 

•  Combination of I/O and (MPI level) communication used 
to read/write data from/to file 

•  Only a subset of processes actually touch the file 
(aggregators) 

•  Large read/write operations split into multiple cycles 
internally 
–  Limits the size of temporary buffers 
–  Overlaps communication and I/O operations 
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Shared File Pointer Operations 

•  Shared file pointers: a file pointer shared by a the 
group of processes that has been used to open the file 
–  All processes must have identical file view 
–  Might lead to non-deterministic behavior 

•  Shared file pointer must not interfere with the 
individual file pointer of each process 

 
•  Typical usage scenarios 

–  Writing a parallel log-file 
–  Work distribution across processes by reading data from a 

joint file 
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Time 
step 

Process 0 Process 1 

T1 MPI_File_read_shared (…, 4, 
MPI_INT,…) 

- 

T2 - MPI_File_read_shared (…, 1, MPI_INT,…) 
 

T3 MPI_File_read_sharedl( …,
1,MPI_INT,…)  

MPI_File_read_sharedl( …,2,MPI_INT,)  

 
? ? 

6 1 2 0 3 4 5 7 8 9 10 11 

6 1 2 0 3 4 5 7 8 9 10 11 

6 1 2 0 3 4 5 7 8 9 10 11 

Shared file pointer example 
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Time 
step 

Action by process 0 Action by process 1 

Access to shared file pointer is serialized and execute either as…   

6 1 2 0 3 4 5 7 8 9 10 11 

6 1 2 0 3 4 5 7 8 9 10 11 

…or the other way around. Which ever process gets hold of the shared file 
pointer first is allowed to execute first the read operation  

6 1 2 0 3 4 5 7 8 9 10 11 

6 1 2 0 3 4 5 7 8 9 10 11 

MPI_File_read_shared (…, 2, MPI_INT,…) 

MPI_File_read_shared (…, 1, MPI_INT,…) 

MPI_File_read_shared (…, 1, MPI_INT,…) 

MPI_File_read_shared (…, 2, MPI_INT,…) 

T3a 

T3b 

T3a 

T3b 



Edgar Gabriel 

Consistency of file operation 
•  MPI does not provide sequential consistency across all 

processes per default 
–  Write on one process is initially just visible on the same 

process 
•  Two possibilities to change this behavior 

–  If flag = true, all write operations are atomic 
–  Collective operation 

–  Flushes all write operations on the calling process’ file 
instance 

MPI_File_set_atomicity ( MPI_File fh, int flag ); 

MPI_File_sync ( MPI_File fh ); 
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Hints supported by MPI I/O (I) 
Hint Explanation Possible values 

access_style Specifies manner in 
which the file is 
accessed 

read_once, write_once, 
read_mostly, write_mostly, 
sequential, 
reverse_sequential, random 

collective_buffering Use collective 
buffering ? 

true, false 

cb_block_size Block size used for 
collective buffering 

Integer 

cb_buffer_size Total buffer space that 
can be used for 
collective buffering 

Integer, multiple of cb_block_size 

cb_nodes Number of target 
nodes used for 
collective buffering 

Integer 
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Hints supported by MPI I/O (II) 

Hint Explanation Possible values 

io_node_list List of I/O nodes that 
should be used 

Comma separated list of strings 

nb_proc Specifies the number 
of processes typically 
accessing the file 

Integer 

num_io_nodes Number of I/O nodes 
available in the 
system 

Integer 

striping_factor Number of I/O nodes 
that should be used 
for file striping 

Integer 

striping_unit Stripe depth integer 
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 Part II: OMPIO  
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OMPIO Design Goals (I) 

•  Highly modular architecture for parallel I/O 
–  Maximize code reuse, minimize code replication 

•  Generalize the selection of modules 
–  Collective I/O algorithms 
–  Shared file pointer operations 

•  Tighter Integration with Open MPI library 
–  Derived data type optimizations  
–  Progress engine for non-blocking I/O operations 
–  External data representations etc. 
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OMPIO Design Goals (II) 

•  Adaptability 
–  Enormous diversity of I/O hardware and software 

solutions 
• Number of storage server, bandwidth of each 

storage server 
• Network connectivity in-between I/O nodes, 

between compute and I/O nodes, and message 
passing network between compute nodes 

–  Ease the modification of module parameters 
–  Ease the development and dropping in of new 

modules 
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Open MPI Architecture 

Application 
MPI layer 

Modular Component Architecture 
BTL COLL I/O Other 

framework … 
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OMPIO frameworks overview 
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OMPIO 

•  Main I/O component 
•  ‘Understands’ MPI semantics 
•  Translates MPI write/read operations into lower layer 

operations 
•  Provides the implementation and  the operation of the 

–  MPI_File handle 
–  File view operations 
–  (MPI_Request structures) 

•  Triggers upon selection the fcoll, fs, fbtl and 
sharedfp selection logic 
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fbtl: file byte transfer layer 

•  Abstraction for individual read and write operations 
•  A process will have per MPI file one or more fbtl 

modules loaded 
•  Main interfaces work with the tuple of         

<buffer pointer, length, position in file> 

 

•  Interface: 
–  pwritev()   - ipwritev() 

–  preadv()   - ipreadv() 

    - progress() 
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fcoll: collective I/O framework  

•  Provides implementations of the collective I/O 
operations of the MPI specification 

 
–  read_all()     - read_all_begin()/end() 
–  write_all()    - write_all_begin()/end() 
–  read_at_all()  - read_at_all_begin()/end() 
–  write_at_all() - write_at_all_begin()/end() 

•  Selection logic triggered upon setting the file view 
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fcoll: selection logic 
•  Decision between different collective modules based 

on: 
–  ss: stripe size of the file system 
–  c: average contiguous chunk size in file view 
–  k: minimum data size to saturate write/read bandwidth 

from one process 
–  size of gap in the file view between processes. 

Characteristic Gap Size Algorithm 

c>k and c>ss any individual 

c<= k and c>ss 0 dynamic segmentation 

c<k and c<ss 0 two-phase 

c<k > 0 static segmentation 
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fs: file system framework 

•  Handles all file-system related operation 
–  Interfaces have  mostly collective notion 

•  Interface: 
–  open() 
–  close() 
–  delete() 
–  sync() 
 

•  Current Lustre and PVFS2 fs components allow to 
modify stripe size, stripe depth and I/O servers used 
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Performance results: Tile I/O  

No. of 
procs. 

Tile Size fcoll module OMPIO 
bandwidth 

ROMIO 
bandwidth 

81 64 Bytes Two-phase 591 MB/s 303 MB/s 

81 1 MB Dynamic Segm. 625 MB/s 290 MB/s 

Shark cluster at University of Houston (PVFS2): 

Deimos cluster at TU Dresden (Lustre): 

No. of 
procs. 

Tile Size fcoll module OMPIO 
bandwidth 

ROMIO 
bandwidth 

256 64 Bytes Two-phase 2167 MB/s 411 MB/s 

256 1 MB Dynamic Segm. 2491 MB/s 517 MB/s 
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Tuning parallel I/O performance 

•  OTPO (Open Tool for Parameter Optimization): optimize the 
Open MPI parameter space for a particular benchmark and/
or application 

•  Tuning for Latency I/O benchmark on shark/PVFS2 
–  Parameters tuned: collective module used, number of 

aggregators used, cycle buffer size 

•  64 different parameter combinations evaluated 
•  2 parameter combinations were determined to lead to best 

performance: 
–  dynamic segm., 20 aggregators, 32 MB cycle buffer size 
–  static segm. 20 aggregators, 32 MB cycle buffer size 
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sharedfp framework 
•  Focuses around the management of a shared file 

pointer 
–  Using a separate file and locking 
–  Additional process (e.g. mpirun?) 
–  Separate files per processes + metadata 
–  Shared memory segment 

•  Collective shared filepointer operations mapped to 
regular collective I/O operations 

•  Decision logic based on 
–  Location of processes 
–  Availability of features (e.g. locking) 
–  Hints by the user 
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Current status (II) 

•  Code committed to Open MPI repository in August 2011 
•  Will be part of the 1.7 release series 

•  Missing MPI level functionality: 
–  Split collective operations (*) 
–  Shared file pointer operations: developed in a separate 

library, currently being integrated with OMPIO (*) 
–  Non-blocking individual I/O 
–  Atomic access mode 
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Part III: Research topics 
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OMPIO Optimizations 

•  Automated selection logic for collective I/O modules 
•  Optimization of collective I/O operations 

–  Development of new communication-optimized collective 
I/O algorithms (dynamic segmentation, static 
segmentation) 

–  Automated setting of number of aggregators for 
collective I/O operations 

–  Optimizing process placement based on I/O access 
pattern 

•  Non-blocking collective I/O operations 
•  Multi-thread I/O operations 
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Optimizing communication in 
collective I/O operations 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

File layout 

Process 0 Process 1 Process 2 Process 3 

Two-phase I/O with 2 aggregators 
Process 0 Process 2 

Dynamic segmentation algorithm  with 2 aggregators 
Process 0 Process 2 
1 2 3 4 

9 10 11 12 

5 6 7 8 

13 14 15 16 
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Automated setting no. of aggregators 

•  No. of aggregators has enormous influence on 
performance, e.g.  
–  Tile I/O benchmark using two-phase I/O, 144 processes, 

Lustre file system 
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Performance considerations 
•  Contradicting goals: 

–  Generate large consecutive chunks  
-> fewer aggregators 

–  Increase throughput  
-> more aggregators 

 
•  Setting number of aggregators 

–  Fixed number: 1, number of processes, number of 
nodes, number of I/O servers 

–  Tune for a particular platform and application 
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Determining the number of 
aggregators 

1)  Determine the minimum data size k for an individual 
process which leads to maximum write bandwidth 

2)  Determine initial number of aggregators taking file 
view and/or process topology into account. 

3)  Refine the number of aggregators based on the overall 
amount of data written in the collective call 
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1. Determining the saturation point 

•  Loop of individual write operations with increasing data 
size 
–  Avoid caching effects 
–  MPI_File_write() vs. POSIX write() 
–  Performed once, e.g. by system administrator 

•  Saturation point: first element which achieves (close 
to) maximum bandwidth 
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2. Initial assignment of aggregators 

•  Based on fileview 
–  Based on 2-D access pattern  
–  1 aggregator per row of 

processes 

0
 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

Group 1 

Group 2 

Group 3 

Group 4 

•  Based on Cartesian process topology 
–  Assumption: process topology related to file access   

•  Based on hints 
–  Not implemented at this time 

•  Without fileview or Cartesian topology: 
–  Every process is an aggregator 
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3. Refinement step 
•  Based on actual amount of 

data written across all 
processes in one collective 
call 

•  k < no. of bytes written in 
group 
-> split group 

•  k > no. of bytes written in 
group 
-> merge groups 

 

0
 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

Group 1 

Group 3 

Group 5 

Group 7 

Group 2 

Group 4 

Group 6 

Group 8 

0
 1 2 3 

4 5 6 7 

8 9 10 11 

12 13 14 15 

Group 1 

Group 2 
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Discussion of algorithm 

•  Number of aggregators depends on overall data volume 
being written 
–  Different calls to MPI_File_write_all with different 

data volumes will result in different number of 
aggregators used 

 

•  For fixed problem size, number of aggregators is 
independent of the number of processes used 

•  Approach usable for two-phase I/O and some of its 
variants (e.g. dynamic segmentation) 
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Results 

•  134 tests executed in total with 4 different benchmarks 
–  88 tests lead to best or within 10% of optimal 

performance, 110 within 25% of best performance 
•  Focusing on two-phase I/O algorithm only: 

–  29 out of 45 test cases outperformed one aggregator per 
node strategy on average by 41% (default setting by 
ROMIO) 

 

Tile I/O, PVFS2@shark,  
81 processes, two-phase I/O 

BT I/O, Lustre@deimos,  
36 processes, dynamic segmentation 
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I/O Access based Process Placement 
 
•  Goal: optimized placement of processes to minimize I/

O time 
•  Three required components 

–  Application Matrix: contains communication volumes 
between each pair of processes based on the I/O access 
pattern  

–  Architecture Matrix: contains communication costs 
(bandwidth, latency) between each pair of nodes/cores 

–  Mapping Algorithm: how to map application processes to 
underlying node architecture such that communication 
cost are minimized 
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Application Matrix 

•  Goal: predict communication occurring in collective I/O algorithm 
based on the access pattern of the application 

•  General case:  
–  OMPIO extended to dump the order on how processes access 

the file 
–  Assumption: processes which access neighboring parts of the 

file will have to communicate with the same aggregators 
•  Special case: 

–  Regular access pattern (e.g. 2D data distribution and process 
topology) 

–  Dynamic segmentation algorithm used for collective I/O 
–  Communication occurs only within the outer dimension of the 

process topology 
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Application Matrix 
•  Simple Example : 4 processes with 2x2 tiles, each 4 

bytes 
•  Generic Case: The file layout 

•  Translates to :   

•  Special Case : Can be represented by topology 2x2 in 
this case 

•  Which translates to : 

1 2 1 2 1 2 2 1 3 4 3 4 3 4 4 3 

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 

0 7 0 0 

7 0  1  0 

0 1 0 7 

0 0 7 0 

100 100 0 0 

100 100 0 0 

0 0 100 100 

0 0 100 100 
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Mapping Algorithms 
•  Any algorithm from literature could be used 
•  MPIPP Process Placement Algorithm [1] 

–  Randomized algorithm based on Heuristic to exchange 
processes and calculate gain 

–  Generic can support any kind of application and topology 
matrix 

–  Expensive for larger number of processes 

•  New SetMatch Algorithm for the special case: 
–  Create independent sets and matches the sets 
–  Very quick even for larger number of processes 
–  Greedy approach, and works for specific scenarios 
–  Can be generalized by having a clustering algorithm to split 

sets [1] Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and H. Kuhn. 2006. MPIPP: an automatic profile-guided 
parallel process placement toolset for SMP clusters and multiclusters. InProceedings of the 20th annual international 
conference on Supercomputing (ICS '06).	
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Preliminary Results 

•  Crill cluster at the University of Houston 
–  Distributed PVFS2 file system using with 16 I/O servers 
–  4x SDR InfiniBand message passing network (2 ports per 

node) 
–  4x SDR Infiniband ( 1 port ) I/O network 
–  18 nodes, 864 compute cores 

•  Focusing on collective write operations 
•  Modified OpenMPI trunk rev. 26077 

–  Added a new rmaps component 
–  Extensions to OMPIO component to extract fileview 

information 
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Tile I/O Results 

•  Benchmark : Tile I/O 
•  Tile Size – 1KB  
•  File size  - 128 processes – 75G,  256 processes  - 150G 
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Tile I/O Results - II 

•  Benchmark : Tile I/O 
•  Tile Size – 1MB  
•  File size  - 128 processes – 75G,  256 processes  - 150G 
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Non-blocking collective operations 

•  Non-blocking collective Operations 
–  Hide communication latency by overlapping 
–  Better usage of available bandwidth 
–  Avoid detrimental effects of pseudo-synchronization 
–  Demonstrated benefits for a number of applications 

•  Was supposed to be part of the MPI-3 specification 
–  Passed 1st vote, failed in 2nd vote 

 

Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and Performance Analysis 
of Non-Blocking Collective Operations for MPI, Supercomputing 2007. 
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Overview of LibNBC 

•  Implements non-blocking versions of all MPI collective 
operations 

•  Schedule based design: a process-local schedule of p2p 
operations is created 
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3 3 

Pseudocode for schedule at rank 1: 
 
NBC_Sched_recv(buf, cnt, dt, 0, sched); 
NBC_Sched_barr(sched); 
NBC_Sched_send(buf, cnt, dt, 3, sched); 
NBC_Sched_barr(sched); 
NBC_Sched_send(buf, cnt, dt, 5, sched); 

See http://www.unixer.de/publications/img/hoefler-hlrs-nbc.pdf for more details 
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Overview of LibNBC 

•  Schedule execution is represented as a state machine 
•  State and schedule are attached to every request 
•  Schedules might be cached/reused 

•  Progress is most important for efficient overlap 
–  Progression in NBC_Test/NBC_Wait 
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Collective I/O operations 

•  Collective operation for reading/writing data allows to 
combine data of multiple processes and optimize disk-
access 

•  Most popular algorithm: two-phase I/O 
•  Algorithm for a collective write operation 

•  Step 1:  
–  gather data from multiple processes on 

aggregators 
–  Sort data based on the offset in the file 

•  Step 2: aggregators write data 
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Nonblocking collective I/O operations 

MPI_File_iwrite_all (MPI_File file, 
 void *buf, int cnt, MPI_Datatyep dt,
 MPI_Request *request); 

•  Difference to nonblocking collective communication 
operations: 
–  Every process is allowed to provide different 

amounts of data per collective read/write operation 
–  No process has a ‘global’ view how much data is 

read/written 
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Nonblocking collective I/O operations  

•  Total amount of data necessary to determine 
–  How many cycles are required 
–  How much data a process has to contribute in each cycle 

 schedule for libNBC can not be constructed in 
 MPI_File_iwrite_all 

 
•  Further consequence:  

–  some temporary buffer required internally by the 
algorithm can not be allocated when posting the 
operation 
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Nonblocking collective I/O operations 

•  Create a schedule for a non-blocking Allgather(v)   
–  Determine the overall amount of data written across 

all processes 
–  Determine the offsets for each data item within 

each group 

•  Upon completion:  
–  Create a new schedule for the shuffle and I/O steps 
–  Schedule can consist of multiple cycles 
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Extensions to libNBC 

•  New internal libNBC operations for: 
–  Non-blocking read/write operation  
–  Compute operations for sorting and merging entries 
–  Buffer management (allocating, freeing buffers) 
–  New nonblocking send/recv primitives with 

additional level of buffer indirections for 
dynamically allocated buffers 

•  Progressing multiple, different types of requests 
simultaneously 
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Caching of schedules 

•  Very difficult for I/O operations 
–  Subsequent calls to  MPI_File_iwrite_all will 

have different offsets into the file 
• Amount of data provided by a process in a cycle 

depends on the offset in the file 
–  Processes allowed to mix individual and collective I/

O calls 

    Not possible to predict offsets of other processes 
 and to reuse a schedule 
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Caching of schedules (II) 

•  When using different files 
–  offsets might be the same across multiple function 

calls, but different file handles will be used 
–  Caching typically done on communicator / file 

handle 

 Caching across different file handles difficult, but 
 no impossible 
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Experimental evaluation 

•  Crill cluster at the University of Houston 
–  Distributed PVFS2 file system using with 16 I/O servers 
–  4x SDR InfiniBand message passing network (2 ports per 

node) 
–  Gigabit Ethernet I/O network 
–  18 nodes, 864 compute cores 

•  LibNBC integrated with OpenMPI trunk rev. 24640 
•  Focusing on collective write operations 
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Latency I/O tests 

No. of processes Blocking Bandwidth 
[MB/s] 

Non-blocking bandwidth 
[MB/s] 

64 703  660 

128 574 577 

•  Comparison of blocking and nonblocking versions  
–  No overlap 
–  Writing 1000 MB per process 
–  32 aggregator processes, 4MB cycle buffer size 
–  Average of 3 runs 
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Latency I/O overlap tests 

No. of processes I/O time  Time spent in 
computation 

Overall time 

64 85.69 sec 85.69 sec 85.80 sec 

128 205.39 sec 205.39 sec 205.91 sec 

•  Overlapping nonblocking coll. I/O operation with equally 
expensive compute operation 
–  Best case: overall time = max (I/O time, compute 

time) 

•  Strong dependence on ability to make progress 
–  Best case: time between subsequent calls to 
NBC_Test = time to execute one cycle of coll. I/O 
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Parallel Image Processing Application 
•  Used to assist in diagnosing thyroid cancer 
•  Based on microscopic images obtained through Fine 

Needle Aspiration (FNA) 
•  Slides are large 

–  typical image: 25K x 70K pixels, 3-6 Gigabytes/slide 
–  multispectral imaging to analyze cytological smears  
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Parallel Image Processing Application  

•  Texture based image segmentation 

For each Gabor Filter 
–  Forward FFT of Gabor Filter 
–  Convolution operation of Filter and Image 
–  Backward FFT of the convolution result 
–  Optionally: write result of backward FFT to file 

 
•  FFT operations based on FFTW 2.1.5 
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Parallel Image Processing Application 

•  Code modified to overlap write of iteration i with 
computations of iteration i+1 

•  Two code versions generated: 
–  NBC: Additional calls to progress engine added 

between different code blocks 
–  NBC w/FFTW: Modified FFTW to insert further calls 

to progress engine 
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Application Results (I) 

•  8192 x 8192 pixels, 21 spectral channels 
•  1.3 GB input data, ~3 GB output data 
•  32 aggregators with 4 MB cycle buffer size 
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Application Results (II) 
•  12281 x 12281 pixels, 21 spectral channels 
•  2.95 GB input data, ~7 GB output data 
•  32 aggregators with 4 MB cycle buffer size 
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Multi-threaded I/O optimization 
•  Currently no support for parallel I/O in OpenMP 
•  Need for threads to be able to read/write to the same 

file  
–  Without locking file handle 
–  Without having to write to separate files to obtain higher 

bandwidth 
–  Applicable for all languages supported by OpenMP 

•  API specification: 
–  All routines are library functions (not directives) 
–  Routines implemented as collective functions 
–  Shared file pointer between threads 
–  Support for List I/O Interfaces 
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 Overview of Interfaces (write) 
File Manipulation omp_file_open_all 

omp_file_close_all 

Different Arguments Regular I/O omp_file_write_all 

omp_file_write_at_all 

List I/O omp_file_write_list_all 

omp_file_write_list_at_all 

Common arguments Regular I/O omp_file_write_com_all 

omp_file_write_com_at_all 

List I/O omp_file_write_com_list_all 

omp_file_write_com_list_at_all 
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Results – omp_file_write_all 

omp_file_write_all 
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Performance Results 

No. of Threads PVFS2 [sec] PVFS2-SSD [sec] 

1 410 691 

2 305 580 

4 168 386 

8 164 368 

16 176 368 

32 172 368 

48 168 367 

•  OpenMP version of the NAS BT Benchmark 
•  Extended to include I/O operations 

 



Edgar Gabriel 

Summary and Conclusions 

•  I/O is one of the major challenges for current and 
upcoming high-end systems 

•  Huge potential for performance improvements  
•  OMPIO provides a highly modular architecture for 

parallel I/O 

•  To improve out-of-the-box performance of I/O libraries 
–  Algorithmic developments necessary 
–  Handling fat multi-core nodes still a challenge 
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