
December 2012 1

Open MPI: Overview / Architecture

Jeff Squyres

December 2012 2

Thank you, Greenplum!

December 2012 3

Purpose

•  An overview of Open MPI development
§  There’s too much detail for 2 hours

•  This is not a comprehensive guide!
§  You still need to go explore
§  You still need to go read code
§  You still need to go try things

December 2012 4

Overview

•  Overview of MPI
•  Version Numbers
•  Building / Installing Open MPI
•  Open MPI Code Architecture
•  Run-Time Parameters
•  Common Code Highlights
•  Hardware Locality (“hwloc”)

December 2012 5

MPI Goals

December 2012 6

MPI goals

•  High-level network API
§  Abstracts away the underlying transport
§  Simple things are simple

•  API designed to be “friendly” to high
performance networks
§ Ultra low latency (nanoseconds matter)
§ Rapid ascent to wire-rate bandwidth

December 2012 7

MPI goals

•  Typically used in High Performance
Computing (HPC) environments
§ Has a bias for large compute jobs

•  But:
§  “HPC” definition is evolving
§ MPI starting to be used outside of HPC
§ …because MPI is a good network IPC API

December 2012 8

Open MPI Version Numbers

December 2012 9

Versioning scheme

•  Scheme: <major>.<minor>.<release>
•  Open MPI has 2 concurrent release series

§  <minor> = odd: “Feature series”
§  <minor> = even: “Super stable series”

•  Both are tested and QA’ed
§ Main difference between the two is time
§  “Stable” series are mature, time-tested

December 2012 10

Branch goals

•  Trunk: active development
§  “Mostly stable”

•  <minor> = odd: feature series (branches)
§ New features added / removed
§ Controlled commits

•  <minor> = even: stable series (branches)
§  Bug fixes only – no new features
§ Controlled commits

December 2012 11

Development
trunk

Transition to super stable

Feature / stable series

v1.5
v1.5.1
v1.5.2

New features,
enhancements

v1.6
v1.6.1 Bug fixes only

v1.7 / v1.8
branch

Branch to create
Feature series

Ti
m

e

v1.9

Entire branch will be ABI stable
ABI

stable

v1.7

December 2012 12

Version control

•  Main Open MPI repository is Subversion
§ Hosted by Indiana University (thank you IU!)
§  https://svn.open-mpi.org/svn/ompi

December 2012 13

…but you can use others

•  Many Open MPI devs use Mercurial or Git
§ …and still stay in sync with SVN

•  Excellent for internal development

OMPI
SVN

repository

Combo OMPI
SVN checkout +
Mercurial (or Git)

repo

Mercurial
(or Git)
clone

December 2012 14

Using Mercurial (or Git)

$ svn co https://svn.open-mpi.org/svn/ompi/trunk!
 ompi-svn-combo!
$ cd ompi-svn-combo!
$ hg init!
$ cp contrib/hg/.hgignore .!
$ hg add!
$./contrib/hg/build-hgignore.pl!
$ hg commit –m “Initial SVN rXXXX version”!
$ cd ..!
$ hg clone ompi-svn-combo my-work-clone!

December 2012 15

Pull down new SVN commits

$ cd ompi-svn-combo!
$ hg up!
$ svn up!
à Merge and resolve any conflicts
$./contrib/hg/build-hgignore.pl!
$ hg addremove!
$ hg commit -m “Up to SVN rXXXX”!
$ cd ../my-work-clone!
$ hg pull!
!

SVN repo

SVN +
Mercurial

Clone

svn up

hg pull

December 2012 16

Push up Mercurial commits

$ cd my-work-clone!
…do work…!
$ hg commit!
$ hg push!
$ cd ../ompi-svn-combo!
$ hg up!
à Merge and resolve any conflicts
$ svn commit!

SVN repo

SVN +
Mercurial

Clone

svn commit

hg push

December 2012 17

Using Mercurial (or Git)

•  Only use the combo for pushing / pulling!
§ Do development work in clones

•  See more details on the Open MPI wiki:
https://svn.open-mpi.org/trac/ompi/wiki

December 2012 18

Building / Installing Open MPI

December 2012 19

Distribution tarballs

•  Built / installed very much like many other
open source packages

 $./configure –prefix=$HOME/ompi …!
 $ make –j 8 install!

December 2012 20

Filesystem time

•  Build machine must be time-synchronized
with the file server
§  If building on a local filesystem, non-issue
§  If building on a network filesystem, check this

• WARNING:
§  If not synced, strange build errors will occur

December 2012 21

Suggestions where to install

•  Install somewhere under $HOME
§ No root permissions necessary

•  Install on a networked filesystem
§  Available on all servers

•  Install to a directory by itself
§  Easy to get a clean, fresh installation
$ rm –rf $HOME/ompi; make install!

December 2012 22

Build features

•  Parallel builds fully supported
$ make –j 8 all!

•  VPATH builds fully supported
$ mkdir build!
$ cd build!
$../configure … && make –j 8 …!

•  Common make targets supported
§  all, install, uninstall, clean, distclean, dist,

check, …etc.

December 2012 23

Building

•  Generally only need compilers and “make”
•  Defaults to gcc, but can use others

./configure CC=icc CXX=icpc FC=ifort …
•  Many different configure options available

./configure --help!

•  Recommend building on a fast (local) disk

December 2012 24

Sidenote: save your output!

•  Highly recommend saving all output
§  You never know if you’ll need to examine

something later

 $./configure … 2>&1 | tee config.out!
 $ make –j 8 2>&1 | tee make.out!
 $ make install 2>&1 | tee install.out!
!

December 2012 25

Common configure options

•  --disable-dlopen
§  Slurp plugins into main libs

•  --enable-mpirun-prefix-by-default!
§ Helps when using ssh

•  Disable building optional parts of OMPI
§  --disable-mpi-cxx!
§  --disable-mpi-fortran!
§  --disable-vt!

•  --enable-mpi-java: Java MPI bindings

December 2012 26

Common configure options

•  Tell configure non-default locations:
§  --with-<PACKAGE>=DIR (general form)
§  --with-jdk-dir=DIR!
§  --with-verbs=DIR!
§  --with-valgrind=DIR!

•  General philosophy:
§  If configure finds X, build OMPI support for it
§  If configure does not find X, skip it
§  If you ask for X and OMPI does not find it, error

December 2012 27

Platform files

•  Roll up lots of configure options in a file
§  Simple text file with one option per line:

 enable_mpi_java=yes!
 enable_vt=no!
 with_verbs=/usr/local/ofed
•  Specify via --with-platform:
 $./configure –with-platform=\!
 greenplum/mrplus/linux

December 2012 28

Developer builds

•  Require more tools / setup
•  SVN trunk currently requires (Dec. 2012):

§  Autoconf 2.69
§  Automake 1.12.2
§  Libtool 2.4.2
§  Flex 2.5.35 (2.5.35 strongly recommended)

• Why?
§ Old Autotools versions have bugs
§ OMPI uses new Autotools features

December 2012 29

Don’t have recent enough
Autotools?

•  Easy to obtain and install
§ Download from ftp.gnu.org
$./configure --prefix=$HOME/gnu!
$ make install!

• WARNINGS:
§  You may need to install recent GNU m4, too

•  Recent Autoconf versions require recent GNU m4
§  Install all the tools into a single prefix
§ Do not overwrite system-installed Autotools!

December 2012 30

Developer builds

•  Make sure Autotools are in your $PATH
•  Run ./autogen.pl in OMPI top directory

§ More on this script later

•  Now ./configure and make just like
distribution tarballs

December 2012 31

Developer builds

•  Much debugging is enabled by default
§  Auto-activated if ./configure

sees .svn, .hg, or .git directory
§ Results in lower performance
§ …but (much) easier to debug

•  To create an optimized build, either:
§  Build from a distribution tarball, or
§ Do a VPATH build, or
§ Configure --with-platform=optimized!

December 2012 32

The role of autogen.pl!

•  Prepares the tree and runs the Autotools
§  Takes a minute or three to run
§  You do not need to run it every build

•  Generally only need to run autogen.pl:
§  If you change VERSION
§  If you change configure.ac!
§  If you change any *.m4 file
§  If svn up changes any of these files

December 2012 33

The role of configure!

•  Tests system and prepares to build
§ Configures all plugins and subsystems
§ May take multiple minutes to run
§  You do not need to run it every build

•  Generally only need to run configure:
§  If you re-run autogen.pl!
§  If you add / remove a framework or plugin

December 2012 34

The role of make!

•  Generates a small number of source files
§  Flex parsers
§  Fortran modules

•  Auto-generate C header dependencies
§  If you edit a C .h file, a top-level make will

rebuild everything that includes that .h file
•  Build and install Open MPI

December 2012 35

Where to run make!

•  Top-level directory
•  Top-level project directories

§ Only sometimes – more on this later
•  Individual plugin directories

§  This saves a lot of time
•  Popular targets:

§  all, install

December 2012 36

What gets installed

• What users need to compile/run MPI apps
•  Libraries, plugins, MPI header files

§  E.g., mpi.h, mpif.h, mpi.mod, mpi_f08.mod
•  Text config and help files
•  Man pages
•  Open MPI utility executables

§  E.g., mpicc, mpirun, etc.

December 2012 37

What does not get installed

•  NO: Autoconf-generated config.h files
•  NO: component header files
•  NO: project core header files
•  NO: libtool convenience libraries

à If it isn’t needed to compile / run MPI
apps, it does not get installed

December 2012 38

Open MPI Code Architecture

December 2012 39

Included 3rd party packages

•  Hardware Locality (hwloc)
§  Server topology / locality information

•  libevent
§  File descriptor, timer, signal event engine

•  libltdl (part of GNU Libtool)
§  Portable “dlopen”, “dlsym”, etc.

•  VampirTrace
§ Optional MPI trace library

à All are configured / built as part of OMPI

December 2012 40

Code breakdown

•  Vast majority of code base is C
§  A few Flex (.l) files that generate C

•  Lots of m4 / sh / Autoconf / Automake
§ Configure / build system only

•  A few others
§ MPI Fortran, C++, Java bindings

•  Top-level APIs only; mostly call C underneath

§  Soon: Perl/Python to generate Fortran code

December 2012 41

Code breakdown from ohloh.net

 Language LOC Percent
•  C: 572,312 74.0%
•  C++: 58,566 7.6%
•  Autoconf: 48,923 6.3%
•  Shell script: 30,520 3.9%
•  Fortran: 23,121 3.0%
•  Automake: 12,829 1.7%

December 2012 42

Code style guidelines

•  4 space tabs
§  Spaces, not tabs

•  Curly braces on first line of the block
§  if (a < b) { …

•  Preprocessor macros in all upper case
•  Not many other style rules enforced

§  Too much religious debate; not worth it

December 2012 43

Defensive programming

•  All blocks use curly braces
§  Even one-line blocks

•  Constants on the left side of ==
§  if (NULL == foo) { …

•  Functions with no arguments are (void)
•  No C++-style comments in C code

§ No GCC extensions except in GCC-only code
•  No C++ code in libraries

§ Discouraged in components

December 2012 44

Defensive programming

•  Always define preprocessor macros
§ Define logicals to 0 or 1 (vs. define or not

define)
§ Use “#if FOO”, not “#ifdef FOO”
§ Gives compiler assistance for mistakes

•  Not possible for some generated macros
§  Autoconf and friends

December 2012 45

Name conventions

•  No CamelCase
•  Use multi-word names

§  (Usually) Use full words, not abbreviations
§  Separated by underscores
 orte_plm_base_receive_process_msg()!
 opal_hwloc_base_get_local_cpuset()!

•  Yes, they’re long
§  But you know exactly what and where they are

December 2012 46

Name conventions

•  Type names follow the prefix rule
(described later)

•  Most structs are typedef’ed
typedef struct ompi_foo_t { …} ompi_foo_t!

•  Typically use the typedef name
§  Type names generally end in _t!
§  Function pointer typedefs end in _fn_t!

December 2012 47

#include statements

•  System files are in <>
§ Most should be protected with macros
 #if HAVE_UNISTD_H!
!#include <unistd.h>!
!#endif!

•  OMPI files in “”
§  Always use full pathname
 #include “opal/mca/base.h”!
!#include “ompi/group/group.h”!

December 2012 48

Header files

•  Always protect with preprocessor macros
#ifndef _THIS_HEADER_FILE_NAME_H!
#define _THIS_HEADER_FILE_NAME_H!
/* …contents of header file… */!
#endif!

•  Only access external symbols through their
header files
§ Do not “extern” external variables in .c files
§ Do not prototype external functions in .c files

December 2012 49

Compiler warnings

•  Fix warnings on all platforms, compilers
•  Default GCC developer build

§ Maximum pickyness
•  Exceptions granted where warnings cannot

be avoided, such as:
§ OpenFabrics header files
§  Flex-generated code

December 2012 50

Project architecture view

MPI application

Open Portability Access Layer (OPAL) project layer

Operating system

Hardware

Open MPI (OMPI) project layer

Open MPI Run-Time Environment (ORTE) project layer

MPI API is the
only publicly-
exported API

Each project touches
lower layers for

optimization purposes

December 2012 51

Projects (layers)

•  OMPI (pronounced: oom-pee)
§  Public MPI API
§  Back-end MPI semantics and supporting logic

•  ORTE (pronounced: or-tay)
§ No knowledge of MPI
§  Parallel run-time system

•  Launch, monitor individual processes
•  Group individual processes into “jobs”

§  Forward stdin / stdout / stderr

December 2012 52

Projects

•  OPAL (pronounced: o-pull)
§  Single-process semantics only
§  Portable OS-level functionality
§  Basic utilities (linked lists, etc.)

December 2012 53

Project separation

•  Each project is a separate library

libopen-pal

libompi

libopen-rte

December 2012 54

Dependencies

•  Downward only!
§  Violations punished by the linker

libopen-pal

libompi

libopen-rte

December 2012 55

Plugin architecture

•  Each project is structured similarly:
§ Main / core code
§ Components (a.k.a. “plugins”)
§  Frameworks

•  Plugins are a fundamental design decision
§ Governed by the Modular Component

Architecture (MCA)

December 2012 56

MPI application

MPI API

Modular Component Architecture (MCA)

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

…

MCA architecture view

December 2012 57

Project architectural view
(for comparison)

MPI application

Open Portability Access Layer (OPAL) project layer

Open MPI (OMPI) project layer

Open MPI Run-Time Environment (ORTE) project layer

December 2012 58

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework
C

om
p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

…

Merged architecture views

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

December 2012 59

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

MPI byte
transfer layer

(btl)

B
as

e

tc
p

sh
m

em

…

MPI collctve.
operations

(coll)

B
as

e

tu
ne

d

m
l …

Process
launch&mon.

(plm)

B
as

e

rs
h

sl
ur

m

…

IP
interfaces

(if)

B
as

e

po
si

x_
ip

v4

w
in

do
w

s

…

High resltn.
timers
(timer)

B
as

e

lin
ux

da
rw

in

…

Distributed
filesystem

(dfs)

B
as

e

ap
p

or
te

d

…

MPI one
sided opns.

(osc)

B
as

e

pt
2p

t

rd
m

a

…

…

Merged architecture views, showing
some actual frameworks and components

December 2012 60

Why components (plugins)?

•  Better software engineering
§  Enforce strict abstraction barriers

•  Small, discrete chunks of code
§ Good for learning / new developers
§  Easier to maintain and extend

•  Separate user apps from back-end libraries
§  E.g., MPI apps not compiled against

libibverbs.so / libportals.so / libpbs.a

December 2012 61

MCA layout

•  MCA
§  Top-level architecture for component services
§  Find, load, unload components

•  Frameworks
§  Targeted set of functionality
§ Defined interfaces
§  Essentially: a grouping of one type of plugins
§  E.g., MPI point-to-point, high-resolution timers

December 2012 62

MCA layout

•  Components
§ Code that exports a specific interface
§  Loaded / unloaded at run-time (usually)
§  Think “plugins”

•  Modules
§  A component paired with resources
§  E.g., “TCP” component loaded, finds 2 IP

interfaces (eth0, eth1), makes 2 TCP modules

December 2012 63

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework
C

om
p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

…

Merged architecture views (review)

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

December 2012 64

MCA code organization

•  Frameworks
§ Have unique string names

•  Components
§  Belong to exactly one framework
§ Have unique string names
§ Namespace is per framework

•  All names must be valid C variable names

December 2012 65

Organized by directory

•  <project>/mca/<framework>/<component>
§  Project = opal, orte, ompi
§  Framework = framework name, or “base”
§ Component = component name, or “base”

•  Directory names must match
§  Framework name
§ Component name

•  Examples
§  ompi/mca/btl/tcp, ompi/mca/btl/sm

December 2012 66

“Base”

•  Reserved name: “base”
§  opal/mca/base: the MCA itself
§  orte/mca/plm/base: the PLM framework
§  ompi/mca/btl/base: the BTL framework

•  Helper functions / header files
§ Common to all components in that framework
§  Public data / methods to be invoked from

outside the framework

December 2012 67

Directory layout

top

December 2012 68

Directory layout

top configure
README
NEWS
VERSION
…others…
ompi
orte

OPAL
project tree

December 2012 69

Directory layout

top configure
README
NEWS
VERSION
…others…
ompi
orte

asm
class
config
datatype
…others…

OPAL
project tree

OPAL
frameworks

December 2012 70

Directory layout

top configure
README
NEWS
VERSION
…others…
ompi
orte

asm
class
config
datatype
…others…

backtrace
base
compress
crs
event
hwloc
…others…

OPAL
project tree

OPAL
frameworks

OPAL timer
components

December 2012 71

OPAL Linux timer compoment

top configure
README
NEWS
VERSION
…others…
ompi
orte

asm
class
config
datatype
…others…

backtrace
base
compress
crs
event
hwloc
…others…

OPAL
project tree

OPAL
frameworks

aix
altix
base
catamount
darwin

solaris
windows

OPAL timer
components

OPAL linux
timer component

opal / mca / timer / linux
project / mca / framework / component

December 2012 72

OMPI TCP BTL component

top

December 2012 73

OMPI TCP BTL component

top configure
README
NEWS
VERSION
…others…

orte
opal

OMPI
project tree

December 2012 74

OMPI TCP BTL component

top configure
README
NEWS
VERSION
…others…

orte
opal

attribute
class
communicator
config
…others…

OMPI
project tree

OMPI
frameworks

December 2012 75

OMPI TCP BTL component

top configure
README
NEWS
VERSION
…others…

orte
opal

attribute
class
communicator
config
…others…

allocator
bcol
bml

coll
common
crcp
…others…

OMPI
project tree

OMPI
frameworks

OMPI BTL
components

December 2012 76

OMPI TCP BTL component

top configure
README
NEWS
VERSION
…others…

orte
opal

attribute
class
communicator
config
…others…

allocator
bcol
bml

coll
common
crcp
…others…

OMPI
project tree

OMPI
frameworks

base
mx
ofud
openib
portals
sctp
…others…

OMPI BTL
components

OMPI TCP BTL
component

ompi / mca / btl / tcp
project / mca / framework / component

December 2012 77

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework
C

om
p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

Framework

C
om

p.

C
om

p.

C
om

p.

…

…

Merged architecture views (review)

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

December 2012 78

MPI application

Open MPI core (OPAL, ORTE, and OMPI layers)

MPI byte
transfer layer

(btl)

B
as

e

TC
P

S
hm

em

…

MPI collctve.
operations

(coll)

B
as

e

Tu
ne

d

m
l …

Process
launch&mon.

(plm)

B
as

e

rs
h

sl
ur

m

…

IP
interfaces

(if)

B
as

e

po
si

x_
ip

v4

w
in

do
w

s

…

High resltn.
timers
(timer)

B
as

e

lin
ux

da
rw

in

…

Distributed
filesystem

(dfs)

B
as

e

ap
p

or
te

d

…

MPI one
sided opns.

(osc)

B
as

e

pt
2p

t

rd
m

a

…

…

Merged architecture views

December 2012 79

Header File Conventions

•  Framework interface defined in
§  <project>/mca/<framework>/<framework>.h
§  This is mandatory

•  Public base functions declared in
§  <project>/mca/<framework>/base/base.h
§  This is common, but not mandatory

December 2012 80

BTL framework header

top configure
README
NEWS
VERSION
…others…

orte
opal

attribute
class
communicator
config
…others…

allocator
bcol
bml

coll
common
crcp
…others…

OMPI
project tree

OMPI
frameworks

btl.h

OMPI BTL
components

ompi / mca / btl / btl.h

December 2012 81

BTL base public header

top configure
README
NEWS
VERSION
…others…

orte
opal

attribute
class
communicator
config
…others…

allocator
bcol
bml

coll
common
crcp
…others…

OMPI
project tree

OMPI
frameworks

mx
ofud
openib
portals
sctp
…others…
tcp

OMPI BTL
components

base.h

OMPI BTL
base

ompi / mca / btl / base / base.h

December 2012 82

Components

•  Back-end component magic
§  Function pointers
§ Usually compiled as dynamic shared objects

(DSO’s) in .so files (“plugins”)
§  But can be included in libmpi (etc.)

•  Use GNU Libtool “ltdl” library
§  Portable dlopen(), dlsym()
§  Even works on Windows
§ Not GPL (!)

December 2012 83

Component implementations

•  Build system requirements:
§  configure.m4!
§  Makefile.am!
§ Will not discuss these in detail today

•  Details of component build requirements:
https://svn.open-mpi.org/trac/ompi/wiki/

devel/CreateComponent

December 2012 84

Component implementations

•  Freedom of implementation
§  As many .c and .h files as you want
§ Can even have subdirectories

•  End result, needs to produce
mca_<framework>_<component>.so!
§  Examples
 mca_btl_tcp.so!
 mca_plm_rsh.so!

December 2012 85

Each framework is unique

•  The MCA base is strictly defined
•  Each framework builds upon the base

§  But definitions are framework-specific
§  Every framework is different
§ Depends on what the framework is for

•  Therefore somewhat difficult to describe
•  But most follow common conventions

December 2012 86

Component Interface

•  Defined by the framework
•  Typically has some kind of selection function
•  Framework asks each component:

§  “Do you want to be used with X?”
§ Where “X” is relevant to the framework

•  Examples
§  BTL: “Do you want to be used with this process?”
§ Coll: “Do you want to be used with MPI

communicator X?”

December 2012 87

Component / Module Lifecycle
•  Component

§  Open DSO (if necessary)
§  Open: per-process initialization
§  Selection: per-scope

determination if want to use
§  Close: per-process finalization
§  Close DSO (if necessary)

•  Module
§  Initialization: per-scope, if

component is selected
§  Normal usage
§  Finalization: per-scope cleanup

Selection

Initialization

Finalization

Open

Close

M
od

ul
e

C
om

po
ne

nt

C
om

p.

Normal usage

December 2012 88

Where to run make (redux)

•  Top-level directory
§  Makes everything

$ make all!

libmpi

libopen-rte

libopen-pal

December 2012 89

Where to run make (redux)

•  Top-level directory
§  Makes everything

•  Top-level project
directories
§  Builds entire project

library

$ cd opal!
$ make all!

libopen-pal

December 2012 90

Where to run make (redux)

•  Top-level directory
§  Makes everything

•  Top-level project
directories
§  Builds entire project

library

$ cd orte!
$ make all!

libopen-rte

December 2012 91

• WARNING:
§  libopen-rte wholly includes libopen-pal!
§  libmpi wholly includes libopen-rte!
§  If you need to rebuild a project core lib,

be sure to rebuild the projects above it!

libopen-pal

libopen-rte

 libopen-pal

libmpi

libopen-rte

 libopen-pal

Where to run make (redux)
THIS SLIDE IS OBSOLETE!

After we recorded the video, we made changes

to the Open MPI build system that made this slide
be incorrect.

Specifically: libopen-rte does *not* include libopen-pal,

and libmpi does not include libopen-rte.

So you can “make” in in project directory, and
even “make install”.

December 2012 92

Where to run make (redux)

•  In individual component directories
§  E.g., make all or make install!
§  Saves a lot of time

•  Example
$ cd ompi/mca/btl/tcp!
…modify the TCP BTL…!
$ make install!

December 2012 93

More related wiki pages

•  The role of autogen.pl
https://svn.open-mpi.org/trac/ompi/wiki/

devel/Autogen
•  How to add a component

https://svn.open-mpi.org/trac/ompi/wiki/
devel/CreateComponent

•  How to add a framework
https://svn.open-mpi.org/trac/ompi/wiki/

devel/CreateFramework

December 2012 94

Framework / component
prefix rule

•  Public names / symbols must be prefixed
§  project_framework_component_<name> (usually)
§  framework_component_<name>!
§  mca_framework_component_<name>

•  Component struct only – special case

December 2012 95

Framework / component
prefix rule

• WARNING (historical note):
§  <project> prefix was only added recently
§ Many component files and symbols do not have
<project> prefix

§  All new names should be project-prefixed
§ Will be fixed over time

December 2012 96

Prefix rule examples

•  Public function: opal_timer_linux_init()!
•  Public symbol: orte_plm_rsh_started!
•  Filename: btl_tcp_component.c!

§ Note lack of <project> -- should be updated!

December 2012 97

Prefix rule rationale

•  All the .cà.o files exist in a single process
§ Cannot have filename collisions
§ Cannot have symbol collisions (variables,

functions, or types)
•  Also cannot collide with user app symbols

December 2012 98

Prefix rule in project cores

•  Outside of frameworks / components
§ Use <project> prefix for symbols
§  Subset as appropriate

 Func: ompi_free_list_init()!
 Variable: orte_plm_base!

 Type: opal_list_t!
•  Same rationale applies:

§  Avoid symbol collisions in OMPI
§  Avoid symbol collisions with MPI application

December 2012 99

Public vs. private symbols

•  Remember: this is middleware
§ Only make public what you need to

•  OMPI defaults to private symbols
§ Must declare symbols to be public
§ Use “DECLSPEC” macro (per project)
ORTE_DECLSPEC bool orte_plm_rsh_started;!

•  Components invoked by function pointers
§ Most symbols do not need to be public

December 2012 100

Portability

•  Beware of Linux / GCC-specific-isms
§ Non-portable code goes in components
§ Or surrounded by #if!

•  All .c files must have code that is called
§ Do not have “constants.c” with no functions
§  Some linkers will drop .o’s with no callable

code (e.g., OS X)

December 2012 101

Run-Time Parameters

December 2012 102

Tunable parameters

•  Philosophy: do not use constants
§ Use run-time parameters instead

•  Referred to as “MCA parameters”
§  Somewhat misleading name
§ Means: service provided by the MCA base
§ Does not mean that they are restricted to MCA

components or frameworks
§ OPAL, ORTE, and OMPI projects have “base”

parameters, too

December 2012 103

Rationale

•  Make everything a run-time decision
§ Give every param a “sensible” default
§ …where possible

•  Parameters usually indicate:
§  Values (e.g., short/long message size)
§  Behavior (e.g., selection of algorithm)

•  Much easier than recompiling

December 2012 104

Intrinsic MCA param:
framework name

•  Each framework name is an MCA param
§  Specifies which components to open

•  MCA base automatically registers it
§ Comma-delimited list of component names
§ Default value is empty (meaning “all”)

•  Inclusionary or exclusionary behavior
btl=tcp,self,sm!
btl=^tcp!

December 2012 105

MCA param lookup order

1.  “Override” value (set by API)
2.  mpirun command line

§  mpirun –mca <name> <value>!

3.  Environment variable
§  setenv OMPI_MCA_<name> <value>!

4.  File
§  $HOME/.openmpi/mca-params.conf!
§  $prefix/etc/openmpi-mca-params.conf!

 (these locations are themselves tunable)
5.  Default value

December 2012 106

Using MCA parameters

•  Characteristics
§  Strings and integers
§ Read-only (information) and read-write
§  Private and public

• WARNING: Lookup is slow!
§ Do not put in critical performance path
§ Do lookups at beginning of scope

December 2012 107

MCA param examples

•  btl_udverbs_version
§ Read-only, string version of the Verbs library

that udverbs BTL was compiled against
•  btl_tcp_if_include

§ Read-write, string list of IP interfaces to use
•  btl

§ Read-write, list of BTL components to use
•  orte_base_singleton

§  Private, whether this process is a singleton

December 2012 108

Sidenote: ompi_info command

•  Tells everything about OMPI installation
§  Finds all components and all params
§ Great for debugging

•  Can look up specific component
§  ompi_info --param <framework> <component>!
§  Shows params, current values, where set from
§ Can also use keyword “all”

•  --parsable option

December 2012 109

MCA param API

•  See opal/mca/base/mca_base_param.h!
•  Register and lookup functions

§  Several variations of each
•  Components register params during

component register (or open; deprecated)
§  ompi_info calls register/open/close on every

component that it finds (to discover
parameters)

December 2012 110

Prefix rule and MCA params

•  MCA params must be prefixed
§ Does not include the project name
<framework>_<component>_<param_name>

•  Examples
btl_tcp_mtu!
coll_basic_bcast_crossover!

•  Register API function takes 3 strings
§ When registering in core, use:

•  Framework = project name
•  Component = “base”

December 2012 111

Common Code Highlights

December 2012 112

Init / finalize

•  <foo>_init() to initialize something
•  <foo>_finalize() to finalize something
•  Examples:

§  ompi_mpi_init(): initializes OMPI layer, calls
§  orte_init(): initializes ORTE layer, calls
§  opal_init(): initializes OPAL layer

•  Paired with ompi_mpi_finalize(), etc.
§  Frees resources, etc.

December 2012 113

Init / finalize

•  Not just used for overall projects
•  Also used for individual subsystems

ompi_op_init()
 à ompi_op_finalize()!
opal_datatype_init()
 à opal_datatype_finalize()!

December 2012 114

Utility code

•  <project>/util/*.[h,c]!
•  E.g., OPAL has lots of compatibility code

§  asprintf, qsort, basename, strncpy
•  Useful “add-on” code

§ Manipulate argv arrays (opal/util/argv.h)
§  printf debugging code (opal/util/output.h)
§  Error reporting (opal/util/show_help.h)
§  IP interfaces (opal/util/if.h)

December 2012 115

Arrays of strings

•  See opal/util/arg.h: opal_argv_*()!
•  Simple functions for maintaining argv-style

arrays of strings
§  Prepend / append (resize if necessary)
§  Insert / remove (resize if necessary)
§  Split / join
§ Get length of array
§  Free array (and all strings)

December 2012 116

opal_output() debugging code

•  Function to emit debugging / error
messages to stderr, stdout, file, syslog, …
§  Versions to simplify debugging output
§  Stream 0 prepends host, PID

•  Printf-like arguments
 opal_output(0, “hello, world”);!
 opal_output_verbose(0, 10, “debugging…”);!
 OPAL_OUTPUT(0, “--enable-debug only”);!
 OPAL_OUTPUT_VERBOSE(….);!

December 2012 117

Friendly error messages

•  opal/util/opal_show_help.[h,c]!
•  Print friendly messages for users

§ Message in text file rather than in source code
§ Can use printf substitutions (%s, %d, etc.)
§ De-duplicates messages

•  Example
§  opal_show_help(“help-mpi-btl-tcp.txt”,
“invalid minimum port”, true, “ipv4”,
default_value, hostname, port_num);!

December 2012 118

Friendly error messages

•  Contents of help-mpi-btl-tcp.txt:
[invalid minimum port]!
WARNING: An invalid value was given for the
btl_tcp_port_min_%s. Legal values are in the
range [1 .. 2^16-1]. This value will be
ignored; OMPI will use the default value of
%d.!
!
 Local host: %s!
 Value: %d!

December 2012 119

Discover IP interfaces

•  See opal/util/if.h: opal_if_*()!
•  STL-like iteration over OS IP interfaces

§ Get info about each interface
§ Name, flags, netmask, loopback, etc.

December 2012 120

Object system

•  C-style reference counting object system
•  “Poor man’s C++”

§  Single inheritance
§ Constructors / destructors associated with

each object instance
•  Statically or dynamically allocated objects

December 2012 121

Object system example

•  Define class in header
typedef struct ompi_foo_t {  
ompi_parent_t parent;  
void *first_member;  
...!

} ompi_foo_t;!
OBJ_CLASS_DECLARATION(ompi_foo_t);!

•  ompi_parent_t must be a object
•  Root object is opal_object_t

December 2012 122

Object system example

•  Must instantiate class descriptor in .c file
 OBJ_CLASS_INSTANCE(ompi_foo_t,  
 ompi_parent_t, foo_construct,  
 foo_destruct);!

•  Local constructor / destructor functions
•  Both take one param: pointer to the object

•  Constructors and destructors called
recursively up the object stack

December 2012 123

Dynamic objects

•  Create dynamically allocated object
§  Initial reference count set to 1
ompi_foo_t *foo = OBJ_NEW(ompi_foo_t);!

•  Increase reference count
OBJ_RETAIN(foo);!

•  Decrease reference count!
OBJ_RELEASE(foo);!

•  Object destroyed and freed when reference
count hits 0!

December 2012 124

Static objects

•  Construct object
ompi_foo_t foo;!
OBJ_CONSTRUCT(&foo, ompi_foo_t);!

•  Destruct object:!
OBJ_DESTRUCT(&foo);!

•  Can use OBJ_RETAIN/OBJ_RELEASE, but
§  “Badness” if reference count hits 0
§ No automatic destruction if object goes out of

scope

December 2012 125

Object-based containers

•  Lists, free lists, hash tables, value array,
atomic LIFO list

•  OMPI provide additional functionality
§  Shared memory fifo, red-black tree

•  Such OBJ-based code usually found in
<project>/class!

December 2012 126

Linked List

•  opal_list_t is a doubly-linked list
•  Item ownership transferred

§ No copies like in STL
§  Item only belong to one list

•  Pointers to items never invalidated by
opal_list functions

•  O(1) insert, delete, join, get size
•  Splice and sort routines
•  Large debugging performance impact

December 2012 127

…and others

•  Go explore:
§  <project>/util!
§  <project>/class!

•  If you find yourself writing “glue” code
§  Look first in util directories
§  If not there, consider if you should put it in
util!

December 2012 128

Hardware Locality (“hwloc”)

December 2012 129

Hardware Locality (hwloc)

•  High performance computing is all about
location, Location, LOCATION!
§ NUMA is now common
§ Can consider network as next (several)

level(s) of locality: NUNA
•  Performant code must understand locality

December 2012 130

Hardware Locality (hwloc)

•  Hwloc provides
inside-the-server
topology
§  CLI

•  Prettyprint
•  JPG, PNG, PDF, …

§  XML
§  C API

•  lstopo(1) draws
these pictures

December 2012 131

Hwloc example

December 2012 132

Hwloc example

December 2012 133

Hwloc capabilities

•  Query topology information
§  As shown in previous pictures
§ C API provides tree of all that information

•  Memory and processor affinity
§  hwloc-bind(1) much mo’ betta than numactl(1)
$ hwloc-bind socket:0.core:3 my_program!
hwloc_set_cpubind(…)!

• Works on many different Oss
§  Linux, OS X, Windows, BSDs, …etc.

December 2012 134

Hwloc sub-project

•  An official sub-project of Open MPI
§ Has its own SVN repository
§ Developed mainly by INRIA (France)
§  A full copy of it is maintained on OMPI’s SVN

•  Fully documented
§  Excellent stand-alone tool (unrelated to MPI)
§ Highly encourage you to check it out

December 2012 135

Open MPI’s use of hwloc

• Wholly embeds a copy of hwloc
§ Can be compiled to use external hwloc
§  Embedded hwloc is certified to work properly

•  Used to discover server topology
§  Effect processor and memory affinity
§ Query cache sizes
§ Query process peer locality (same socket,

NUMA node, etc.)
§ Query PCI device locality

December 2012 136

Open MPI’s use of hwloc

• …and we’re just getting started
•  Anticipate much more use of the hwloc API

over time
§ MPI collective algorithms
§ MPI shared memory point-to-point

communications
§ …etc.

December 2012 137

Questions?

December 2012 138

Thank you!

