
The ABCs of Open MPI
Decoding the Alphabet Soup of the Modern HPC Ecosystem

(Part 2)

Ralph H. Castain, Jeffrey M. Squyres

Presented in conjunction
with the EasyBuild community

Webex Logistics
● This session is being recorded
● Ask questions in the Q&A panel

Overview
● Background
● PMIx: What is it?
● Building Open MPI
● A breakdown of Open MPI:

○ The run-time stuff
○ The MPI stuff

● Configuration / debugging tips
● The upcoming Open MPI v4.1.x series
● The upcoming Open MPI v5.0.x series

Covered in part 1

Recap of Part 1: Projects, Frameworks, Components

Open MPI

PML

OPAL
(open portable access layer)SHMEMMPI

BTL MTL atomic scoll sshmem threads shmem timer

ob
1

cm v tc
p

sm us
ni

c

of
i

ps
m

2

po
rta

ls
4

ba
si

c

uc
x

...

ba
si

c

m
pi ...

m
m

ap

sy
sv

uc
x

pt
hr

ea
ds

qt
hr

ea
ds

ar
go

bo
ts

po
si

x

m
m

ap

sy
sv

lin
ux

da
rw

in

so
la

ris

Pr
oj

ec
t

Fr
am

ew
or

k
Co

m
po

ne
nt

(“p
lu

gi
n”

)

(NOTE: not a comprehensive
list of all projects, frameworks,

and components)

Recap of Part 1: What is PMIx?

What Is Its Role?

Recap of Part 1: Building Open MPI
wget \

 https://download.open-mpi.org/release/open-mpi/vx.y/openmpi-x.y.z.tar.bz2

tar xf openmpi-x.y.z.tar.bz2

cd openmpi-x.y.z

./configure --prefix=$HOME/my-ompi <options> |& tee config.out

Most <options> typically deal with network communications

libraries (e.g., libfabric, UCX)

make -j 8 |& tee make.out

make install |& tee install.out

Open MPI: The Run-Time Stuff

PMIx/PRRTE & OMPI…Oh My!

Ralph H. Castain

Where Is It Used?

Build Upon It!

Sprinkle Some Magic Dust!

PMIx Integration Architecture

PMIx Integration Architecture
Standardize

Interface

Cross-Version Compatibility

EPYX: Filling the Gaps

Enhance Portability

PMIx Launch Orchestration

*RM daemon, mpirun-daemon, etc.

Tool Support File Layout

Current Support (I)

● Typical startup operations
○ Put, get, commit, barrier, spawn,

[dis]connect, publish/lookup

● Tool connections
○ Debugger, job submission,

query, forward stdio

● Generalized query support
○ Job status, layout, system data,

resource availability

● Event notification
○ App, system generated
○ Subscribe, chained
○ Preemption, failures, timeout

warning, …

● Logging
○ Status reports, error output

● Flexible allocations
○ Release resources, request

resources

Current Support (II)

● Network support
○ Security keys, pre-spawn

local driver setup

● Obsolescence
protection
○ Automatic cross-version

compatibility
○ Container support

● Job control
○ Pause, kill, signal,

heartbeat, resilience
support (C/R coordination)

● Async definition of
process groups
○ Rolling startup/teardown

Programming Model Support
● Open MPI

○ Harvest/forward “OMPI_*” (customize with MCA param)
○ Read/forward default MCA params from system, user files
○ Setup OMPI-specific envars (MPI-3), OMPI-required job-level params

● OpenSHMEM
○ Harvest/forward “SHMEM_*”, “SMA_*” (customize with MCA param)

● Hybrid
○ Intra-process, async event notification between programming models
○ Autodetect hybrid model operation
○ Negotiate resource contention using intra-process events

● MCA Component Architecture
○ “Borrowed” from Open MPI
○ Same build system

● Dependencies
○ Required: libevent or libev, HWLOC
○ Optional: curl, libjansson (2.11 or higher), Cython (Python bindings), lustre
○ Autodetect: zlib

● Key frameworks
○ Ptl: client/server communication

■ TCP, usock (deprecated) components
■ Rendezvous files written in system tmpdir, session tmpdir

○ Gds: key-value data store
■ Hash (always on), ds12/ds21 shared memory

OpenPMIx Architecture

https://openpmix.github.io/code/getting-the-reference-implementation

No Embedded
Libraries!

https://openpmix.github.io/code/getting-the-reference-implementation

Build Tips
● External PMIx for Open MPI

○ Must also use external libevent, HWLOC
○ Must use the same libraries for PMIx as for Open MPI

● Direct link for applications
○ PMIx can be called directly from application
○ PMIx_Init is reference counted
○ If also using Open MPI…

■ Embedded PMIx - symbols are exposed, no further linkage required
■ External PMIx - must link to PMIx and external libevent/HWLOC
■ Open MPI wrapper compiler will do the right thing!

● PMIx wrapper compiler (pmixcc)
○ For non-Open MPI apps using PMIx

PMIx Tools
● pattrs : reports the supported attributes

○ Client, server, and host levels
○ Attribute and description provided

● pevent : inject a PMIx event into the system
○ Specify targets and event

● plookup : perform PMIx_Lookup for specified key
○ Accesses system server

● pmix_info : reports build information (ala mpi_info)
● pps : generates report on what jobs are running in system
● pquery : queries system for specified info

○ Request report on storage system capabilities, network condition, etc.

● pmixcc : wrapper compiler for PMIx-based apps

Slurm/Cray Conflicts
● PMI-1, PMI-2

○ Both environments have their own libraries

● PMIx
○ Provides backward compatibility libraries for PMI-1, PMI-2
○ Allows apps/libs that use PMI-1, PMI-2 to run against PMIx without changes
○ Translates PMI-1, PMI-2 calls to their PMIx equivalent

● Installing to default location can overwrite native libraries!
○ Native PMI libraries and PMIx are not cross-compatible
○ Recommendation - disable build of backward compatibility libraries

■ --disable-pmi-backward-compatibility
■ This will probably become the default as usage has greatly declined

Open MPI: The MPI Stuff

MPI Frameworks (v4.x)
● bml: BTL multipliexing layer
● btl**: Byte transport layer
● coll: MPI collectives
● fbtl: MPI file byte transfer layer
● fcoll: MPI file collectives
● fs: MPI file management
● hook: Generic hooks
● io: MPI IO
● mtl: Matching transport layer
● op: MPI reduction operations
● osc: MPI one sided communications
● pml: MPI point-to-point communications
● sharedfp: MPI shared file pointer operations
● topo: MPI topologies
● vprotocol: Virtual protocol API interposition

MPI Frameworks (v4.x)
● bml: BTL multipliexing layer
● btl**: Byte transport layer
● coll: MPI collectives
● fbtl: MPI file byte transfer layer
● fcoll: MPI file collectives
● fs: MPI file management
● hook: Generic hooks
● io: MPI IO
● mtl: Matching transport layer
● op: MPI reduction operations
● osc: MPI one sided communications
● pml: MPI point-to-point communications
● sharedfp: MPI shared file pointer operations
● topo: MPI topologies
● vprotocol: Virtual protocol API interposition

These are generally
the frameworks that
end users care about

io: Top-Level MPI File Operations
● MPI APIs such as MPI_FILE_OPEN, MPI_FILE_READ, MPI_FILE_WRITE, … etc.

● Two choices:
○ ompio: Open MPI I/O (the default for most cases)
○ romio: ROMIO, from Argonne National Labs / MPICH

coll: MPI Collective Operations
● MPI APIs such as MPI_BCAST, MPI_BARRIER, MPI_REDUCE, … etc.

● Which collective algorithm to use is a complex, multi-variate decision
○ Not generally tuned or selected by end users

● Performance improvements coming in v4.1.0
○ Tuning of default algorithm selection
○ New (optional) collective components coming in v4.1.0
○ Represents years of research from the University of Tennessee, Knoxville, USA

pml: Point-to-Point Messaging Layer
● MPI APIs such as MPI_SEND, MPI_RECV, … etc.

● There are several PMLs to choose from:
○ ob1: Multi-device, multi-rail engine

■ Uses BTL components (byte transfer layer)
○ cm: Engine for matching network layers

■ Uses MTL components (matching transport layer)
○ ucx: Uses the UCX communication library (Unified Communications X)

ob1: Multi-Device,
Multi-Rail Engine
ob1 will:

1. Pick BTL instance(s) that can reach a given peer
2. Split large messages across relevant BTL instances
3. Re-assemble messages at the receiver

ob1 was Open MPI’s original point-to-point transport
engine and still works well in many environments.

(yes, “ob1” is a Star Wars reference 😊)

MPI_Send(...)

ob1 PML

BTL BTL BTL

BTL BTL BTL

ob1 PML

MPI_Recv(...)

Sender

Receiver

Available BTLs (v4.0.x / v4.1.x)
● ofi: Libfabric (OpenFabrics Interfaces)**

● portals4: Portals-based networks (uncommon)
● self: Process-loopback communications
● sm: Shared memory
● smcuda: CUDA-aware shared memory
● tcp: TCP
● uct: UCX**

● ugni: Cray uGNI (userspace Generic Network Interface)**

● usnic: Cisco usNIC (userspace NIC)
** Denotes a BTL that is not

commonly used for MPI
point-to-point operations

cm: Thin Interface for
“Matching” Networks
cm is a thin interface for networks that have
“matching” interfaces -- i.e., networks that can
natively do MPI-style message matching.

cm uses MTL components (not BTL).

Since network-layer matching is inherently
stateful, CM will only use a single MTL in an
MPI job (vs. OB1, which can use mutiple BTLs).

cm = a Highlander reference to Connor
MacLeod: “there can only be one”

MPI_Send(...)

cm PML

MTL

MTL

MPI_Recv(...)

Sender

Receiver

cm PML

Available MTLs (v4.0.x / v4.1.x)
● ofi: Libfabric (OpenFabrics Interfaces)
● portals4: Portals-based networks (uncommon)
● psm2: Single-threaded OmniPath (Performance Scaled Messaging)

ucx: Thin Interface
to the UCX Library
UCX is, itself, a multi-device, multi-rail
transport library. It has its own engine, and
therefore did not need another engine in
Open MPI.

Hence, the UCX community decided to write
their own (very thin) PML and not use an
existing Open MPI engine.

NOTE: The diagram only shows the MPI code
blocks (not the UCX library itself).

MPI_Send(...)

MPI_Recv(...)

Sender

Receiver

UCX PML

UCX PML

By default, which network gets used at run time?
1. If you have InfiniBand or RoCE, use the UCX PML

2. If you have a matching network or iWARP, use the
CM PML + relevant MTL

3. Otherwise, use the OB1 PML + appropriate BTLs
a. Including TCP for “plain” Ethernet environments
b. Including shared memory (even for single-node runs, such as on laptops)

UCX PML
For IB or RoCE

CM PML + OFI MTL
For EFA, uGNI, iWARP

CM PML + PSM MTL
For InfiniPath

CM PML + PSM2 MTL
For OmniPath

CM PML + Portals4 MTL
For Portals networks

By default, which network gets used at run time?

OB1 PML + BTLs
For all others

self

sm

tcp

usnic

...other, less common BTLs...

UCX

AWS EFA
Cisco usNIC
Cray uGNI

iWARP
IBM Blue Gene Q
Intel PSM, PSM2

NetDirect
UDP sockets

Shared memory
TCP sockets

IB and RoCE
Cray uGNI

Libfabric

Black transports are used by
Open MPI from this library

Grey transports are NOT used by
Open MPI from this library

What if I want to use a different network stack?
● Force the use of OB1 and BTLs:

○ mpirun --mca pml ob1 --mca btl [comma-delimited list] …

● Force the use of CM and MTLs:
○ mpirun --mca pml cm --mca mtl [MTL] …

● Force the use of the UCX PML:
○ mpirun --mca pml ucx …

 It is harmless (but useless) to specify BTLs with cm or MTLs with ob1

CUDA
● UCX and PSM2 support GPUDirect RDMA

○ There are many options and tunable knobs

● Common question: can I directly write CUDA code in my MPI application?
○ Yes, but it is not for the meek

(i.e., it is complicated to do -- only advised for experts)

● See the Open MPI FAQ “Running CUDA-aware” section for details

CUDA
● Can I run a CUDA-built Open MPI on a node with no GPUs?

○ More specifically: on a node with no CUDA libraries?

● In general: it is easiest if you have the CUDA libraries installed

● Specifically: with UCX: no
○ You must have the CUDA libraries installed
○ But UCX should gracefully handle not having any GPUs present

Interfacing External Libraries
● Open MPI has a standardized parameter system (“MCA”)

● But many of Open MPI’s components are simply “glue” to external
libraries (e.g., Libfabric and UCX)

○ Some of these components utilize Open MPI MCA parameters
○ Others do not
○ Example: the UCX PML is controlled via UCX-specific environment variables

Interfacing External Libraries
● Can set MCA parameters via:

○ Command line
■ mpirun --mca foo bar --mca baz yow …

○ Environment variables
■ export OMPI_MCA_foo=bar

○ Text config files
■ INI-style key=value text file
■ $PREFIX/etc/openmpi-mca-params.conf

● ...more on this file in part 3

Interfacing External Libraries
● The ompi_info command can show you all available MCA params

○ ompi_info --all [--parsable]

○ These are exactly Open MPI’s MPI_T control variables

● “Level” of MCA param:
○ Level 1: End user / basic
○ Level 2: End user / detailed
○ Level 3: End user / all
○ Level 4: Application tuner / basic
○ Level 5: Application tuner / details
○ Level 6: Application tuner / all
○ Level 7: MPI developer / basic
○ Level 8: MPI developer / details
○ Level 9: MPI developer / all

Questions?
That’s it for part 2!

Join us for part 3 in four weeks:
August 5, 2020

8am US Pacific / 11am US Eastern / 3pm UTC / 5pm CEST

Thank you!

Join us for part 3 in four weeks:
August 5, 2020

8am US Pacific / 11am US Eastern / 3pm UTC / 5pm CEST

