The ABCs of Open MPI

Decoding the Alphabet Soup of the Modern HPC Ecosystem

(Part 2)
I /‘\‘l I
54

Ralph H. Castain, Jeffrey M. Squyres

Presented in conjunction
with the EasyBuild community

Webex Logistics

e This session is being recorded
e Ask questions in the Q&A panel

Overview

Background

PMIx: What is it? Covered in part 1
Building Open MPI

A breakdown of Open MPI:

o The run-time stuff
o The MPI stuff

Configuration / debugging tips
The upcoming Open MPI v4.1.x series
The upcoming Open MPI v5.0.x series

nt

Compone

oject

Pr

Framework

(“plugin”)

Recap of Part 1: Projects, Frameworks, Components

(NOTE: not a comprehensive

Open MPI list of all projects, frameworks,
and components)

Recap of Part 1: What is PMIx?

2015 2016 2020
7 RM
RM N
SLURM early all
ALPS SLURM commercial
\JS_M/ vendors*
= wHl|
PMl 1 —>PM|-2 18 pmms)PMIx v1.2
years go by... JPS,‘?/YM Ix10 XV)| PMIXx v4
MPICH
wireup support
dynan?ic S?,gwn Exascale systems OMPI OMPI
keyval publish/lookup on horizon o i MPICH
Launch times long P Spectrum
\ New paradigms OSHMEM

OSHMEM

PGAS Exascale launch Exascale launch SOS

others in < 30s in < 10s PGAS
Workflow TV/DDT
orchestration

*UGE status unknown

What Is Its Role?

Orchestration
Requests

D) | |
CE—

Responses

-

System
Management Stack

~

Recap of Part 1: Building Open MPI

wget \
https://download.open-mpi.org/release/open-mpi/vx.y/openmpi-x.y.z.tar.bz2

tar xf openmpi-x.y.z.tar.bz2

cd openmpi-x.y.z

./configure --prefix=$HOME/my-ompi <options> |& tee config.out
Most <options> typically deal with network communications
libraries (e.g., libfabric, UCX)

make -j 8 |& tee make.out
make install |& tee install.out

Open MPI: The Run-Time Stuff

PMIxX/PRRTE & OMPI...Oh My!

— Ralph H. Castain —

=11
[PMIx10¢
pés8 s

Where Is It Used?

Libraries

= OMPI, MPICH, Intel MPI, HPE-MPI,

Spectrum MPI, Fujitsu MPI

= OSHMEM, SOS, OpenSHMEM, ...

= PGAS
RMs

= Slurm, Fujitsu,
IBM's JSM, PALS (2020),
PBSPro (2019), LLNL Flux,
Kubernetes (2020)

%o Slurm enhancement (LANL/ECP)

T

New use-cases
Spark, TensorFlow

Debuggers (TotalView, DDT)
MPI

Re-ordering for load balance
(UTK/ECP)

Fault management (UTK)

On-the-fly session
formation/teardown (MPIF)

Logging information

Containers
Singularity, Docker, Amazon

Build Upon It!

Async event notification

Cross-model notification Y
= Announce model type, characteristics ~ OpenMP

= Coordinate resource utilization,
programming blocks

Generalized tool support
= Co-launch daemons with job

= Forward stdio channels

= Query job, system info, network traffic,
process counters, etc.

= Standardized attachment, launch methods

Sprinkle Some Magic Dust!

Allocation support
= Dynamically add/remove/loan nodes

= Register pre-emption acceptance,
handshake

Dynamic process groups

= Async group construct/destruct
= Notification of process departure/failure

Storage integration
= Pre-cache files, specify storage strategies

Power management (strategy)

PMIx Integration Architecture

System
Management Stack

Orchestration
Requests

Responses

.............................

Tool Support

PMIx Integration Architecture
Sﬁ?wrt]gﬁcgcii(eze/ Managseyrtltgrr:t1 Stack \

l

Orchestration
Requests

PMIx
Client

Responses

Container’ " Tool Support

Cross-Version Compatibility

Auto-negotiate messaging protocol

Client starts

= Envar indicates server capabilities
= Select highest support in common
= Convey selection in connection
handshake
Server follows client’s lead

= Per-client messaging protocol
= Support mix of client versions

EPYX: Filling the Gaps

@

PMiIx relay daemon/server
Integrated into container

* Sense what SMS supports

e N Fabric
. ' o | ! From nothing to everything
Client NIC

: * Supported requests
_ 4 = Relay requests/responses
* Unsupported requests
= Execute internally
= Return “not supported”

o)

System \
Management Stack

Enhance Portability

Slurm
PBS
Shasta

Interchangeable Flux

PMIx Launch Orchestration

Create shared
memory storage
for job info &
topology

Files &
retrieval
times

(N y
\ Files served

Request “ from cache

file
caching Notify caching
complete

nfo as™

requeste

Job script

~
d

SM location
Job

1
1
1
1
1
1
1
—
_ Script Obtain fabric Spawn
—— : 7 1 tup MPI
configuration Etaiticas
: Cmd FM-provided :
SPN"X Fabric] Configure local onvers: 4
Rrver Mgr : fabric interfaces =P8 :
1 1
1 1
1 1
1 1
- [nic| -
| |
1 1
Stage 1 Stage 2 | Stage 3 | Stage 4

*RM daemon, mpirun-daemon, etc.

Tool Support File Layout

System TMPDIR

!

pmix.sys.host

o
.
o
o
s

Mﬂy

o
.

Server TMPDIR (per nspace)

I

pmix.host.tool.nspace

I
pmix.host.tool.pid

pmix.host.tool

Y
e
..............
",
.

o
.............
st
o

Current Support (l)

® Typical startup operations

o Put, get, commit, barrier, spawn,
[dis]connect, publish/lookup

® Tool connections

o Debugger, job submission,
query, forward stdio

® Generalized query support

o Job status, layout, system data,
resource availability

® Event notification

o App, system generated
o Subscribe, chained

o Preemption, failures, timeout
warning, ...

® |Logging
o Status reports, error output

® Flexible allocations

o Release resources, request
resources

Current Support (ll)

® Network support ® Job control
o Security keys, pre-spawn o Pause, kill, signal,
local driver setup heartbeat, resilience

® Obsolescence support (C/R coordination)

protection ® Async definition of
o Automatic cross-version pProcess groups
compatibility o Rolling startup/teardown

o Container support

Programming Model Support

e Open MPI
o Harvest/forward “OMPI_*" (customize with MCA param)
o Read/forward default MCA params from system, user files
o Setup OMPI-specific envars (MPI-3), OMPI-required job-level params

e OpenSHMEM
o Harvest/forward “SHMEM_*”, “SMA_*" (customize with MCA param)
e Hybrid
o Intra-process, async event notification between programming models

o Autodetect hybrid model operation
o Negotiate resource contention using intra-process events

OpenPMiIx Architecture

e MCA Component Architecture

o “Borrowed” from Open MPI NO Embedded

o Same build system

e Dependencies Libraries!

o Required: libevent or libev, HWLOC
o Optional: curl, libjansson (2.11 or higher), Cython (Python bindings), lustre
o Autodetect: zlib

e Keyframeworks
o Ptl: client/server communication
m TCP, usock (deprecated) components
m Rendezvous files written in system tmpdir, session tmpdir
o @Gds: key-value data store
m Hash (always on), ds12/ds21 shared memory

https://openpmix.github.io/code/getting-the-reference-implementation

https://openpmix.github.io/code/getting-the-reference-implementation

Build Tips

e External PMIx for Open MPI
o Must also use external libevent, HWLOC
o Must use the same libraries for PMIx as for Open MPI
e Direct link for applications
o PMiIx can be called directly from application
o PMIx_Initis reference counted
o Ifalso using Open MPI...
m Embedded PMIx - symbols are exposed, no further linkage required
m External PMIx - must link to PMIx and external libevent/HWLOC
m Open MPI wrapper compiler will do the right thing!
e PMIx wrapper compiler (pmixcc)
o For non-Open MPI apps using PMIx

PMIx Tools

e pattrs: reports the supported attributes
o Client, server, and host levels
o Attribute and description provided

e pevent:inject a PMIx event into the system
o Specify targets and event

e plookup : perform PMIx_Lookup for specified key

o Accesses system server
e pmix_info : reports build information (ala mpi_info)
e pps: generates report on what jobs are running in system

e pquery: queries system for specified info
o Request report on storage system capabilities, network condition, etc.

e pmixcc: wrapper compiler for PMIx-based apps

Slurm/Cray Conflicts

e PMI-1, PMI-2
o Both environments have their own libraries
e PMilx

o Provides backward compatibility libraries for PMI-1, PMI-2
o Allows apps/libs that use PMI-1, PMI-2 to run against PMIx without changes
o Translates PMI-1, PMI-2 calls to their PMIx equivalent

e Installing to default location can overwrite native libraries!
o Native PMI libraries and PMIx are not cross-compatible
o Recommendation - disable build of backward compatibility libraries
m --disable-pmi-backward-compatibility
m This will probably become the default as usage has greatly declined

Open MPI: The MPI Stuff

MPI Frameworks (v4.x)

e bml: BTL multipliexing layer

e btl™: Byte transport layer

e coll: MPI collectives

o fbtl: MPI file byte transfer layer

e fcoll: MPI file collectives

o fs: MPI file management

e hook: Generic hooks

e o MPI 10

e mtl: Matching transport layer

e oOp: MPI reduction operations

e osc: MPI one sided communications

e pml: MPI point-to-point communications
e sharedfp: MPIshared file pointer operations
e topo: MPI topologies

e vprotocol: Virtual protocol APl interposition

MPI Frameworks (v4.x)

e bml: BTL multipliexing layer

e btl™: Byte transport layer

e coll: MPI collectives

o fbtl: MPI file byte transfer layer

e fcoll: MPI file collectives

o fs: MPI file management These are I

e hook: Generic hooks generally
e io MPI 10 the frameworks that
e mtl: Matching transport layer end users care about
e oOp: MPI reduction operations

® osc: MPI one sided communications

e pml: MPI point-to-point communications

e sharedfp: MPIshared file pointer operations

e topo: MPI topologies

e vprotocol: Virtual protocol APl interposition

io: Top-Level MPI File Operations

e MPI APIs such as MPI_FILE_OPEN, MPI_FILE_READ, MPI_FILE_WRITE, ... etc.

e Two choices:

o ompio: Open MPI I/0O (the default for most cases)
o romio: ROMIO, from Argonne National Labs / MPICH

coll: MPI Collective Operations

e MPI APIs such as MPI_BCAST, MPI_BARRIER, MPI_REDUCE, ... etc.

e Which collective algorithm to use is a complex, multi-variate decision
o Not generally tuned or selected by end users

e Performance improvements coming in v4.1.0
o Tuning of default algorithm selection
o New (optional) collective components coming in v4.1.0
o Represents years of research from the University of Tennessee, Knoxville, USA

pml: Point-to-Point Messaging Layer
e MPI APIs such as MPI_SEND, MPI_RECYV, ... etc.

e There are several PMLs to choose from:
o obl: Multi-device, multi-rail engine
m Uses BTL components (byte transfer layer)
o cm: Engine for matching network layers
m Uses MTL components (matching transport layer)
o ucx: Usesthe UCX communication library (Unified Communications X)

ob1: Multi-Device,
Multi-Rail Engine

ob1 will;

1. Pick BTL instance(s) that can reach a given peer
2. Splitlarge messages across relevant BTL instances
3. Re-assemble messages at the receiver

ob1 was Open MPI's original point-to-point transport
engine and still works well in many environments.

(yes, “ob1” is a Star Wars reference @)

Sender

Receiver

Available BTLs (v4.0.x / v4.1.x)

e ofi: Libfabric (OpenFabrics Interfaces)™

e portals4: Portals-based networks (uncommon)

e self: Process-loopback communications

® sm: Shared memory

e smcuda: CUDA-aware shared memory

e tcp: TCP

e uct: ucx™

e ugni: Cray uGNI (userspace Generic Network Interface)™
e usnic: Cisco usNIC (userspace NIC)

** Denotes a BTL that is not
commonly used for MPI

point-to-point operations
e

cm: Thin Interface for
“Matching” Networks

cm is a thin interface for networks that have
“matching” interfaces -- i.e., networks that can
natively do MPI-style message matching.

cm uses MTL components (not BTL).

Since network-layer matching is inherently
stateful, CM will only use a single MTL in an

MPI job (vs. OB1, which can use mutiple BTLs).

cm = a Highlander reference to Connor
MacLeod: “there can only be one”

Sender

3
ey
{
ey
3

Receiver

Available MTLs (v4.0.x / v4.1.x)

e ofi: Libfabric (OpenFabrics Interfaces)
e portals4: Portals-based networks (uncommon)
® psm2: Single-threaded OmniPath (Performance Scaled Messaging)

ucx: Thin Interface
to the UCX Library

UCXis, itself, a multi-device, multi-rail
transport library. It has its own engine, and
therefore did not need another engine in
Open MPI.

Hence, the UCX community decided to write
their own (very thin) PML and not use an
existing Open MPI| engine.

NOTE: The diagram only shows the MPI code
blocks (not the UCKX library itself).

Sender

Receiver

By default, which network gets used at run time?

1. If you have InfiniBand or RoCE, use the UCX PML

2. If you have a matching network or iWARP, use the
CM PML + relevant MTL

3. Otherwise, use the OB1 PML + appropriate BTLs

a. Including TCP for “plain” Ethernet environments
b. Including shared memory (even for single-node runs, such as on laptops)

By default, which network gets used at run time?

Libfabric

AWS EFA
Cisco usNIC
Cray uGNI
IWARP

Intel PSM2

Black transports are used by
Open MPI from this library

IB and RoCE

UCX

What if | want to use a different network stack?

e Force the use of OB1 and BTLs:

© mpirun --mca pml obl --mca btl [comma-delimited list] ...

e Force the use of CM and MTLs;

© mpirun --mca pml cm --mca mtl [MTL] ...

e Force the use of the UCX PML:

© mpirun --mca pml ucx ...

It is harmless (but useless) to specify BTLs with cm or MTLs with ob1

CUDA

e UCX and PSM2 support GPUDirect RDMA

o There are many options and tunable knobs

e Common question: can | directly write CUDA code in my MPI application?
o Yes, butitis not for the meek
(i.e., it is complicated to do -- only advised for experts)

e See the Open MPI FAQ “Running CUDA-aware” section for details

CUDA

e Canlrun a CUDA-built Open MPI on a node with no GPUs?

o More specifically: on a node with no CUDA libraries?

e Ingeneral:itis easiest if you have the CUDA libraries installed

e Specifically: with UCX: no
o You must have the CUDA libraries installed
o But UCX should gracefully handle not having any GPUs present

Interfacing External Libraries

e Open MPI has a standardized parameter system (“MCA”")

e But many of Open MPI's components are simply “glue” to external
libraries (e.g., Libfabric and UCX)

o Some of these components utilize Open MPI MCA parameters
o Others do not
o Example: the UCX PML is controlled via UCX-specific environment variables

Interfacing External Libraries

e (an set MCA parameters via:
o Command line

m mpirun --mca foo bar --mca baz yow ...

o Environment variables
m export OMPI_MCA foo=bar
o Text config files
m INI-style key=value text file
m $PREFIX/etc/openmpi-mca-params.conf
e ..more on thisfile in part 3

Interfacing External Libraries

e The ompi_info command can show you all available MCA params
o ompi_info --all [--parsable]
o These are exactly Open MPI's MPI_T control variables

e “Level” of MCA param:

o Level 1: End user / basic
Level 2: End user / detailed
Level 3: End user / all
Level 4: Application tuner / basic
Level 5: Application tuner / details
Level 6: Application tuner / all
Level 7: MPI developer / basic
Level 8: MPI developer / details
Level 9: MPI developer / all
S

O O O O O O o O

Questions?

That's it for part 2!

Join us for part 3 in four weeks:
August 5, 2020
8am US Pacific / 11am US Eastern / 3pm UTC/ 5pm CEST

Thank you!

Join us for part 3 in four weeks:
August 5, 2020
8am US Pacific / 11am US Eastern / 3pm UTC / 5pm CEST

