
VampirTrace 5.14.3

User Manual

TU Dresden
Center for Information Services and
High Performance Computing (ZIH)
01062 Dresden
Germany

http://www.tu-dresden.de/zih
http://www.tu-dresden.de/zih/vampirtrace

Contact: vampirsupport@zih.tu-dresden.de

ii

http://www.tu-dresden.de/zih
http://www.tu-dresden.de/zih/vampirtrace
mailto:vampirsupport@zih.tu-dresden.de

Contents

Contents

1. Introduction 1

2. Instrumentation 5
2.1. Compiler Wrappers . 5
2.2. Instrumentation Types . 7
2.3. Automatic Instrumentation . 7

2.3.1. Supported Compilers . 8
2.3.2. Notes for Using the GNU, Intel, PathScale, or Open64 Com-

piler . 8
2.3.3. Notes on Instrumentation of Inline Functions 9
2.3.4. Instrumentation of Loops with OpenUH Compiler 9

2.4. Manual Instrumentation . 9
2.4.1. Using the VampirTrace API 9
2.4.2. Measurement Controls . 10

2.5. Source Instrumentation Using PDT/TAU 12
2.6. Binary Instrumentation Using Dyninst 13

2.6.1. Static Binary Instrumentation 13
2.7. Runtime Instrumentation Using VTRun 14
2.8. Tracing Java Applications Using JVMTI 14
2.9. Tracing Calls to 3rd-Party Libraries 15

3. Runtime Measurement 17
3.1. Trace File Name and Location . 17
3.2. Environment Variables . 17
3.3. Influencing Trace Buffer Size . 21
3.4. Profiling an Application . 22
3.5. Unification of Local Traces . 22
3.6. Synchronized Buffer Flush . 23
3.7. Enhanced Timer Synchronization 23
3.8. Environment Configuration Using VTSetup 24

4. Recording Additional Events and Counters 25
4.1. Hardware Performance Counters 25
4.2. Resource Usage Counters . 26
4.3. Memory Allocation Counter . 26
4.4. CPU ID Counter . 27

iii

Contents

4.5. NVIDIA CUDA . 27
4.6. Pthread API Calls . 33
4.7. Plugin Counter Metrics . 33
4.8. I/O Calls . 34
4.9. Child Process Execution Calls . 35
4.10.MPI Correctness Checking Using UniMCI 35
4.11.User-defined Counters . 36
4.12.User-defined Markers . 38
4.13.User-defined Communcation . 38

5. Filtering & Grouping 41
5.1. Function Filtering . 41
5.2. Java Specific Filtering . 43
5.3. Function Grouping . 44

A. VampirTrace Installation 45
A.1. Basics . 45
A.2. Configure Options . 45
A.3. Cross Compilation . 53
A.4. Environment Set-Up . 54
A.5. Notes for Developers . 54

B. Command Reference 55
B.1. Compiler Wrappers (vtcc,vtcxx,vtfort) 55
B.2. Local Trace Unifier (vtunify) . 58
B.3. Binary Instrumentor (vtdyn) . 60
B.4. Trace Filter Tool (vtfilter) . 61
B.5. Library Wrapper Generator (vtlibwrapgen) 63
B.6. Application Execution Wrapper (vtrun) 65
B.7. IOFSL server startup script (vtiofsl-start) 66
B.8. IOFSL server shutdown script (vtiofsl-stop) 67

C. Counter Specifications 69
C.1. PAPI . 69
C.2. CPC . 71
C.3. NEC SX Hardware Performance Counter 72
C.4. Resource Usage . 73

D. Using VampirTrace with IOFSL 75
D.1. Introduction . 75
D.2. Overview . 75

D.2.1. File handling in OTF . 75
D.2.2. I/O Forwarding Scalability Layer 76
D.2.3. Architecture . 76

iv

Contents

D.3. Installation . 77
D.3.1. Support Libraries . 77
D.3.2. Building IOFSL . 78
D.3.3. Building VampirTrace & OTF 79

D.4. Usage Examples . 79
D.4.1. Using VampirTrace with IOFSL on Cray XK6 / with PBS . . 79
D.4.2. Manual Usage . 81

E. Enhanced filtering capability of VampirTrace 85
E.1. Introduction . 85
E.2. Automatically Create Filter Files Using otfprofile 85
E.3. Example - Reducing the Level of Detail of SPEC MPI benchmark

pop2 . 87

F. FAQ 91
F.1. Can I use different compilers for VampirTrace and my application? 91
F.2. Why does my application need such a long time for starting? . . . 91
F.3. How can I limit compiler instrumentation? 91
F.4. Fortran file I/O is not accounted properly? 92
F.5. There is no *.otf file. What can I do? 93
F.6. What limitations are associated with "on/off" and buffer rewind? . . 94
F.7. VampirTrace warns that it “cannot lock file a.lock”, what’s wrong? . 94
F.8. Can I relocate my VampirTrace installation? 95
F.9. What are the byte counts in collective communication records? . . 95
F.10. I get “error: unknown asm constraint letter” 95
F.11. I have a question that is not answered in this document! 96
F.12. I need support for additional features so I can trace application xyz. 96

This documentation describes how to apply VampirTrace to an application in
order to generate trace files at execution time. This step is called instrumentation.
It furthermore explains how to control the runtime measurement system during
execution (tracing). This also includes performance counter sampling as well as
selective filtering and grouping of functions.

v

1 Introduction

1. Introduction

VampirTrace consists of a tool set and a runtime library for instrumentation and
tracing of software applications. It is particularly tailored to parallel and dis-
tributed High Performance Computing (HPC) applications.

The instrumentation part modifies a given application in order to inject addi-
tional measurement calls during runtime. The tracing part provides the actual
measurement functionality used by the instrumentation calls. By this means, a
variety of detailed performance properties can be collected and recorded dur-
ing runtime. This includes function enter and leave events, MPI communication,
OpenMP events, and performance counters.

After a successful tracing run, VampirTrace writes all collected data to a trace
file in the Open Trace Format (OTF)1. As a result, the information is available for
post-mortem analysis and visualization by various tools. Most notably, Vampir-
Trace provides the input data for the Vampir analysis and visualization tool 2.

VampirTrace is included in Open MPI 1.3 and later versions. If not disabled
explicitly, VampirTrace is built automatically when installing Open MPI 3.

Trace files can quickly become very large, especially with automatic instru-
mentation. Tracing applications for only a few seconds can result in trace files
of several hundred megabytes. To protect users from creating trace files of sev-
eral gigabytes, the default behavior of VampirTrace limits the internal buffer to 32
MB per process. Thus, even for larger scale runs the total trace file size will be
moderate. Please read Section 3.3 on how to remove or change this limit.

VampirTrace supports various Unix and Linux platforms that are common in
HPC nowadays. It is available as open source software under a BSD License.

The following list shows a summary of all instrumentation and tracing features
that VampirTrace offers. Note that not all features are supported on all platforms.

1http://www.tu-dresden.de/zih/otf
2http://www.vampir.eu
3http://www.open-mpi.org/faq/?category=vampirtrace

1

http://www.tu-dresden.de/zih/otf
http://www.vampir.eu
http://www.open-mpi.org/faq/?category=vampirtrace

Tracing of user functions⇒ Chapter 2

• Record function enter and leave events
• Record name and source code location (file name, line)
• Various kinds of instrumentation⇒ Section 2.2

– Automatic with many compilers⇒ Section 2.3
– Manual using VampirTrace API⇒ Section 2.4
– Automatic with tau_instrumentor⇒ Section 2.5
– Automatic with Dyninst⇒ Section 2.6

MPI Tracing⇒ Chapter 2

• Record MPI functions
• Record MPI communication: participating processes, transferred bytes,

tag, communicator

OpenMP Tracing⇒ Chapter 2

• OpenMP directives, synchronization, thread idle time
• Also hybrid (MPI and OpenMP) applications are supported

Pthread Tracing

• Trace POSIX thread API calls⇒ Section 4.6
• Also hybrid (MPI and POSIX threads) applications are supported

Java Tracing⇒ Section 2.8

• Record method calls
• Using JVMTI as interface between VampirTrace and Java Applications

3rd-Party Library tracing⇒ Section 2.9

• Trace calls to arbitrary third party libraries
• Generate wrapper for library functions based on library’s header file(s)
• No recompilation of application or library is required

MPI Correctness Checking⇒ Section 4.10

• Record MPI usage errors
• Using UniMCI as interface between VampirTrace and a MPI correctness

checking tool (e.g. Marmot)

2

1 Introduction

User API

• Manual instrumentation of source code regions⇒ Section 2.4
• Measurement controls⇒ Section 2.4.2
• User-defined counters⇒ Section 4.11
• User-defined marker⇒ Section 4.12
• User-defined communication⇒ Section 4.13

Performance Counters⇒ Sections 4.1 and 4.2

• Hardware performance counters using PAPI, CPC, or NEC SX performance
counter
• Resource usage counters using getrusage

CPU ID Tracing⇒ Section 4.4

• Trace core ID of a CPU on which the calling thread is running
• Record core ID as counter

Child Process Execution Tracing⇒ Section 4.9

• Trace LIBC function calls for creating and controling child processes
• Add forked processes to the trace

I/O Tracing⇒ Section 4.8

• Trace LIBC I/O calls
• Record I/O events: file name, transferred bytes

Memory Allocation Tracing⇒ Section 4.3

• Trace LIBC memory allocation and free functions
• Record size of currently allocated memory as counter

Filtering & Grouping⇒ Chapter 5

• Runtime and post-mortem filter (i.e. exclude functions from being recorded
in the trace)
• Runtime grouping (i.e. assign functions to groups for improved analysis)

OTF Output⇒ Chapter 3

• Writes compressed OTF files
• Output as trace file, statistical summary (profile), or both

3

2 Instrumentation

2. Instrumentation
To perform measurements with VampirTrace, the user’s application program
needs to be instrumented, i.e., at specific points of interest (called “events”)
VampirTrace measurement calls have to be activated. As an example, common
events are, amongst others, entering and leaving of functions as well as sending
and receiving of MPI messages.

VampirTrace handles this automatically by default. In order to enable the in-
strumentation of function calls, the user only needs to replace the compiler and
linker commands with VampirTrace’s wrappers, see Section 2.1 below. Vampir-
Trace supports different ways of instrumentation as described in Section 2.2.

2.1. Compiler Wrappers

All the necessary instrumentation of user functions, MPI, and
OpenMP events is handled by VampirTrace’s compiler wrappers (vtcc, vtcxx, and
vtfort). In the script used to build the application (e.g. a makefile), all compile
and link commands should be replaced by the VampirTrace compiler wrapper.
The wrappers perform the necessary instrumentation of the program and link
the suitable VampirTrace library. Note that the VampirTrace version included
in Open MPI 1.3 has additional wrappers (mpicc-vt, mpicxx-vt, mpif77-vt, and
mpif90-vt) which are like the ordinary MPI compiler wrappers (mpicc, mpicxx,
mpif77, and mpif90) with the extension of automatic instrumentation.

The following list shows some examples specific to the parallelization type of
the program:

• Serial programs: Compiling serial codes is the default behavior of the
wrappers. Simply replace the compiler by VampirTrace’s wrapper:

original: gfortran hello.f90 -o hello
with instrumentation: vtfort hello.f90 -o hello

This will instrument user functions (if supported by the compiler) and link
the VampirTrace library.

• MPI parallel programs: MPI instrumentation is always handled by means
of the PMPI interface, which is part of the MPI standard. This requires
the compiler wrapper to link with an MPI-aware version of the VampirTrace
library. If your MPI implementation uses special MPI compilers (e.g. mpicc,

5

2.1 Compiler Wrappers

mpxlf90), you will need to tell VampirTrace’s wrapper to use this compiler
instead of the serial one:

original: mpicc hello.c -o hello
with instrumentation: vtcc -vt:cc mpicc hello.c -o hello

MPI implementations without own compilers require the user to link the MPI
library manually. In this case, simply replace the compiler by VampirTrace’s
compiler wrapper:

original: icc hello.c -o hello -lmpi
with instrumentation: vtcc hello.c -o hello -lmpi

If you want to instrument MPI events only (this creates smaller trace files
and less overhead) use the option -vt:inst manual to disable auto-
matic instrumentation of user functions (see also Section 2.4).

• Threaded parallel programs: When VampirTrace detects OpenMP or
Pthread flags on the command line, special instrumentation calls are in-
voked. For OpenMP events OPARI is invoked for automatic source code
instrumentation.

original: ifort <-openmp|-pthread> hello.f90
-o hello

with instrumentation: vtfort <-openmp|-pthread> hello.f90
-o hello

For more information about OPARI read the documentation available in
VampirTrace’s installation directory at: share/vampirtrace/doc/
opari/Readme.html

• Hybrid MPI/Threaded parallel programs: With a combination of the
above mentioned approaches, hybrid applications can be instrumented:

original: mpif90 <-openmp|-pthread> hello.F90
-o hello

with instrumentation: vtfort -vt:fc mpif90
<-openmp|-pthread> hello.F90
-o hello

The VampirTrace compiler wrappers automatically try to detect which paral-
lelization method is used by means of the compiler flags (e.g. -lmpi, -openmp
or -pthread) and the compiler command (e.g. mpif90). If the compiler wrap-
per failed to detect this correctly, the instrumentation could be incomplete and
an unsuitable VampirTrace library would be linked to the binary. In this case, you
should tell the compiler wrapper which parallelization method your program uses

6

2 Instrumentation

by using the switches -vt:mpi, -vt:mt, and -vt:hyb for MPI, multithreaded,
and hybrid programs, respectively. Note that these switches do not change the
underlying compiler or compiler flags. Use the option -vt:verbose to see the
command line that the compiler wrapper executes. See Section B.1 for a list of
all compiler wrapper options.

The default settings of the compiler wrappers can be modified in the files
share/vampirtrace/vtcc-wrapper-data.txt (and similar for the other
languages) in the installation directory of VampirTrace. The settings include
compilers, compiler flags, libraries, and instrumentation types. You could for
instance modify the default C compiler from gcc to mpicc by changing the line
compiler=gcc to compiler=mpicc. This may be convenient if you instrument
MPI parallel programs only.

2.2. Instrumentation Types

The wrapper option -vt:inst <insttype> specifies the instrumentation
type to be used. The following values for <insttype> are possible:

• compinst
Fully-automatic instrumentation by the compiler (⇒ Section 2.3)

• manual
Manual instrumentation by using VampirTrace’s API (⇒ Section 2.4)
(needs source-code modifications)

• tauinst
Fully-automatic instrumentation by the tau_instrumentator (⇒ Section 2.5)

• dyninst
Binary-instrumentation with Dyninst (⇒ Section 2.6)

To determine which instrumentation type will be used by default and which
instrumentation types are available on your system have a look at the entry
inst_avail in the wrapper’s configuration file (e.g. share/vampirtrace/
vtcc-wrapper-data.txt in the installation directory of VampirTrace for the
C compiler wrapper).

See Section B.1 or type vtcc -vt:help for other options that can be passed
to VampirTrace’s compiler wrapper.

2.3. Automatic Instrumentation

Automatic instrumentation is the most convenient method to instrument your pro-
gram. If available, simply use the compiler wrappers without any parameters,
e.g.:

7

2.3 Automatic Instrumentation

% vtfort hello.f90 -o hello

2.3.1. Supported Compilers

VampirTrace supports following compilers for automatic instrumentation:

• GNU (i.e. gcc, g++, gfortran, g95)

• Intel version ≥10.0 (i.e. icc, icpc, ifort)

• PathScale version ≥3.1 (i.e. pathcc, pathCC, pathf90)

• Portland Group (PGI) (i.e. pgcc, pgCC, pgf90, pgf77)

• Cray CCE (i.e. craycc, crayCC, crayftn)

• SUN Fortran 90 (i.e. cc, CC, f90)

• IBM (i.e. xlcc, xlCC, xlf90)

• NEC SX (i.e. sxcc, sxc++, sxf90)

• Open64 version ≥4.2 (i.e. opencc, openCC, openf90)

• OpenUH version ≥4.0 (i.e. uhcc, uhCC, uhf90)

2.3.2. Notes for Using the GNU, Intel, PathScale, or Open64
Compiler

For these compilers the command nm is required to get symbol information of
the running application executable. For example on Linux systems, this program
is a part of the GNU Binutils, which is downloadable from http://www.gnu.
org/software/binutils. To get the application executable for nm during
runtime, VampirTrace uses the /proc file system. As /proc is not present on
all operating systems, automatic symbol information might not be available. In
this case, it is necessary to set the environment variable VT_APPPATH to the
pathname of the application executable to get symbols resolved via nm.

Should any problems emerge to get symbol information automatically, then the
environment variable VT_GNU_NMFILE can be set to a symbol list file, which is
created with the command nm, like:

% nm hello > hello.nm

To get the source code line for the application functions use nm -l on Linux
systems. VampirTrace will include this information into the trace. Note that the
output format of nm must be written in BSD-style. See the manual page of nm to
obtain help for dealing with the output format setting.

8

http://www.gnu.org/software/binutils
http://www.gnu.org/software/binutils

2 Instrumentation

2.3.3. Notes on Instrumentation of Inline Functions

Compilers behave differently when they automatically instrument inlined func-
tions. The GNU and Intel ≥10.0 compilers instrument all functions by default
when they are used with VampirTrace. They therefore switch off inlining com-
pletely, disregarding the optimization level chosen. One can prevent these par-
ticular functions from being instrumented by appending the following attribute to
function declarations, hence making them able to be inlined (this works only for
C/C++):

__attribute__ ((__no_instrument_function__))

The PGI and IBM compilers prefer inlining over instrumentation when com-
piling with enabled inlining. Thus, one needs to disable inlining to enable the
instrumentation of inline functions and vice versa.

The bottom line is that a function cannot be inlined and instrumented at the
same time. For more information on how to inline functions read your compiler’s
manual.

2.3.4. Instrumentation of Loops with OpenUH Compiler

The OpenUH compiler provides the possibility of instrumenting loops in addition
to functions. To use this functionality add the compiler flag -OPT:instr_loop.
In this case loops induce additional events including the type of loop (e.g. for,
while, or do) and the source code location.

2.4. Manual Instrumentation

2.4.1. Using the VampirTrace API

The VT_USER_START, VT_USER_END calls can be used to instrument any user-
defined sequence of statements.

Fortran:
#include "vt_user.inc"
VT_USER_START(’name’)
...
VT_USER_END(’name’)

C:
#include "vt_user.h"
VT_USER_START("name");
...
VT_USER_END("name");

9

2.4 Manual Instrumentation

If a block has several exit points (as it is often the case for functions), all exit
points have to be instrumented with VT_USER_END, too.

For C++ it is simpler as is demonstrated in the following example. Only entry
points into a scope need to be marked. The exit points are detected automatically
when C++ deletes scope-local variables.

C++:
#include "vt_user.h"
{

VT_TRACER("name");
...

}

The instrumented sources have to be compiled with -DVTRACE for all three
languages, otherwise the VT_* calls are ignored. Note that Fortran source files
instrumented this way have to be preprocessed, too.

In addition, you can combine this particular instrumentation type with all other
types. In such a way, all user functions can be instrumented by a compiler while
special source code regions (e.g. loops) can be instrumented by VT’s API.

Use VT’s compiler wrapper (described above) for compiling and linking the
instrumented source code, such as:

• combined with automatic compiler instrumentation:

% vtcc -DVTRACE hello.c -o hello

• without compiler instrumentation:

% vtcc -vt:inst manual -DVTRACE hello.c -o hello

Note that you can also use the option -vt:inst manual with non-instru-
mented sources. Binaries created in this manner only contain MPI and OpenMP
instrumentation, which might be desirable in some cases.

2.4.2. Measurement Controls

Switching tracing on/off: In addition to instrumenting arbitrary blocks of code,
one can use the VT_ON/ VT_OFF instrumentation calls to start and stop the
recording of events. These constructs can be used to stop recording of events
for a part of the application and later resume recording. For example, as is
demonstrated in the following C/C++ code snippet, one could not collect trace
events during the initialization phase of an application and turn on tracing for the
computation part.

10

2 Instrumentation

int main() {
...
VT_OFF();
initialize();
VT_ON();
compute();
...

}

Furthermore the "on/off" functionality can be used to control the tracing behavior
of VampirTrace and allows to trace only parts of interests. Therefore the amount
of trace data can be reduced essentially. To check whether if tracing is enabled
or not use the call VT_IS_ON.

For further information about limitations have a look at the FAQ F.6.

Trace buffer rewind: An alternative to the "on/off" functionality is the buffer
rewind approach. It is useful when the program should decide dynamically after
a specific code section (i.e. a time step or iteration) if this section has been
interesting (i.e. anomalous/slow behavior) and should be recorded to the trace
file. The key difference to "on/off" is that you do not need to know a priori if a
section should be recorded.

Use the instrumentation call VT_SET_REWIND_MARK at the beginning of a
(possibly not interesting) code section. Later, you can decide to rewind the trace
buffer to the mark with the call VT_REWIND. All recorded trace data between
the mark and the rewind call will be dropped. Note, that only one mark can be
set at a time. The last call to VT_SET_REWIND_MARK will be considered when
rewinding the trace buffer. This simplified Fortran code example sketches how
the rewind approach can be used:

do step=1,number_of_time_steps
VT_SET_REWIND_MARK()
call compute_time_step(step)
if(finished_as_expected) VT_REWIND()

end do

Refer to FAQ F.6 for limitations associated with this method.

Intermediate buffer flush: In addition to an automated buffer flush when the
buffer is filled, it is possible to flush the buffer at any point of the application. This
way you can guarantee that after a manual buffer flush there will be a sequence
of the program with no automatic buffer flush interrupting. To flush the buffer you
can use the call VT_BUFFER_FLUSH.

11

2.5 Source Instrumentation Using PDT/TAU

Intermediate time synchronisation: VampirTrace provides several mecha-
nisms for timer synchronization (⇒ Section 3.7). In addition it is also possi-
ble to initiate a timer synchronization at any point of the application by calling
VT_TIMESYNC. Please note that the user has to ensure that all processes are
actual at a synchronized point in the program (e.g. at a barrier). To use this call
make sure that the enhanced timer synchronization is activated (set the environ-
ment variable VT_ETIMESYNC⇒ Section 3.2).

Intermediate counter update: VampirTrace provides the functionality to col-
lect the values of arbitrary hardware counters. Chosen counter values are au-
tomatically recorded whenever an event occurs. Sometimes (e.g. within a long-
lasting function) it is desirable to get the counter values at an arbitrary point
within the program. To record the counter values at any given point you can call
VT_UPDATE_COUNTER.

Note: For all three languages the instrumented sources have to be compiled
with -DVTRACE. Otherwise the VT_* calls are ignored.
In addition, if the sources contains further VampirTrace API calls and only the
calls for measurement controls shall be disabled, then the sources have to be
compiled with -DVTRACE_NO_CONTROL, too.

2.5. Source Instrumentation Using PDT/TAU

TAU instrumentation combines the advantages of compiler and manual instru-
mentation and has further advantages. Like compiler instrumentation it works
automatically, like on manual instrumentation you have a filtered set of events,
this is especially recommended for C++, because STL-constructor calls are sup-
pressed. Unlike with compiler instrumentation you get an optimized binary – this
solves the issue described in Section 2.3.3. In the simpliest case you just run
the compiler wrappers with -vt:inst tauinst option:

% vtcc -vt:inst tauinst hello.c -o hello

There is a known issue with the TAU instrumentation in the⇒ FAQ F.10

Requirements for TAU instrumentation: To work with TAU instrumenation
you need the Program Database Toolkit. You have to make sure, to have cparse
and tau_instrumentor in your $PATH. The PDToolkit can be downloaded
from http://www.cs.uoregon.edu/research/pdt/home.php.

Include/Exclude Lists: tau_instrumentor provides a mechanism to include
and exclude files or functions from instrumenation. The lists are deposed

12

http://www.cs.uoregon.edu/research/pdt/home.php

2 Instrumentation

in a single file, that is announced to tau_instrumentor via the option
-f <filename>. This file contains up to four lists which begin with
BEGIN[_FILE]_<INCLUDE|EXCLUDE>_LIST. The names in between may con-
tain wildcards as “?”, “*’, and “#”, each entry gets a new line. The lists end
with END[_FILE]_<INCLUDE|EXCLUDE>_LIST. For further information on se-
lective profiling have a look at the TAU documentation 1. To announce the file
through the compiler wrapper use the option -vt:tau:

% vtcc -vt:inst tauinst hello.c -o hello \
-vt:tau ’-f <filename>’

2.6. Binary Instrumentation Using Dyninst

The option -vt:inst dyninst is used with the compiler wrapper to instru-
ment the application during runtime (binary instrumentation), by using Dyninst 2.
Recompiling is not necessary for this kind of instrumentation, but relinking:

% vtfort -vt:inst dyninst hello.o -o hello

The compiler wrapper dynamically links the library libvt-dynatt.so to the
application. This library attaches the mutator -program vtdyn during runtime
which invokes the instrumentation by using Dyninst.

To prevent certain functions from being instrumented you can use the runtime
function filtering as explained in Section 5.1. All additional overhead, due to
instrumentation of these functions, will be removed.

VampirTrace also allows binary instrumentation of functions located in shared
libraries. For this to work a colon-separated list of shared library names has to
be given in the environment variable VT_DYN_SHLIBS:

VT_DYN_SHLIBS=libsupport.so:libmath.so

2.6.1. Static Binary Instrumentation

In order to avoid the overhead introduced by Dyninst during runtime, the tool
vtdyn can be used for binary instrumentation before application launch. To
accomplish this, the -o or -output switch can be used to specify the output bi-
nary. Note that the application must be linked to the corresponding VampirTrace
library.

1http://www.cs.uoregon.edu/Research/tau/docs/newguide/bk05ch02.html#
d0e3770

2http://www.dyninst.org

13

http://www.cs.uoregon.edu/Research/tau/docs/newguide/bk05ch02.html#d0e3770
http://www.cs.uoregon.edu/Research/tau/docs/newguide/bk05ch02.html#d0e3770
http://www.dyninst.org

2.7 Runtime Instrumentation Using VTRun

Example To apply binary instrumentation to the executable a.out the follow-
ing command is nescessary:

% vtdyn -o dyninst_a.out ./a.out

2.7. Runtime Instrumentation Using VTRun

Besides the already described instrumentation at compile-time, VampirTrace also
supports runtime instrumention using the vtrun command. Prepending the ac-
tual call to the application will transparently add instrumentation support and
launch the application. This includes support function instrumentation by Dyninst
(Section 2.6) as well as MPI communication tracing. In order to enable instru-
mentation for user functions the user has to specify the -dyninst command
line switch.

Example In order to add tracing support to an already existing executable, only
a small change to the startup command has to be made. Assuming the usual
way of calling the application looks like:

% mpirun -np 4 ./a.out

By putting the call to vtrun directly before the actual application call, instru-
mention support will be enabled at runtime:

% mpirun -np 4 vtrun ./a.out

For more information about the tool vtrun see Section B.6.

2.8. Tracing Java Applications Using JVMTI

In addition to C, C++, and Fortran, VampirTrace is capable of tracing Java appli-
cations. This is accomplished by means of the Java Virtual Machine Tool Inter-
face (JVMTI) which is part of JDK versions 5 and later. If VampirTrace was built
with Java tracing support, the library libvt-java.so can be used as follows to
trace any Java program:

% java -agentlib:vt-java ...

Or more easier, by replacing the usal Java application launcher java by the
command vtjava:

% vtjava ...

When tracing Java applications, you probably want to filter out dispensable
function calls. Please have a look at Sections 5.1 and 5.2 to learn about different
ways for excluding parts of the application from tracing.

14

2 Instrumentation

2.9. Tracing Calls to 3rd-Party Libraries

VampirTrace is also capable to trace calls to third party libraries, which come with
at least one C header file even without the library’s source code. If VampirTrace
was built with support for library tracing (the CTool library 3 is required), the tool
vtlibwrapgen can be used to generate a wrapper library to intercept each
call to the actual library functions. This wrapper library can be linked to the
application or used in combination with the LD_PRELOAD mechanism provided
by Linux. The generation of a wrapper library is done using the vtlibwrapgen
command and consists of two steps. The first step generates a C source file,
providing the wrapped functions of the library header file:

% vtlibwrapgen -g SDL -o SDLwrap.c /usr/include/SDL/*.h

This generates the source file SDLwrap.c that contains wrapper-functions for
all library functions found in the header-files located in /usr/include/SDL/ and
instructs VampirTrace to assign these functions to the new group SDL.

The generated wrapper source file can be edited in order to add manual in-
strumentation or alter attributes of the library wrapper. A detailed description can
be found in the generated source file or in the header file vt_libwrap.h which
can be found in the include directory of VampirTrace.

To adapt the library instrumentation it is possible to pass a filter file to the gen-
eration process. The rules are like these for normal VampirTrace instrumenta-
tion (see Section 5.1), where only 0 (exclude functions) and -1 (generally include
functions) are allowed.

The second step is to compile the generated source file:

% vtlibwrapgen --build --shared -o libSDLwrap SDLwrap.c

This builds the shared library libSDLwrap.so which can be linked to the
application or preloaded by using the environment variable LD_PRELOAD:

% LD_PRELOAD=$PWD/libSDLwrap.so <executable>

For more information about the tool vtlibwrapgen see Section B.5.

3http://sourceforge.net/projects/ctool

15

http://sourceforge.net/projects/ctool

3 Runtime Measurement

3. Runtime Measurement
Running a VampirTrace instrumented application should normally result in an
OTF trace file in the current working directory where the application was ex-
ecuted. If a problem occurs, set the environment variable VT_VERBOSE to 2
before executing the instrumented application in order to see control messages
of the VampirTrace runtime system which might help tracking down the problem.

The internal buffer of VampirTrace is limited to 32 MB per process. Use the en-
vironment variables VT_BUFFER_SIZE and VT_MAX_FLUSHES to increase this
limit. Section 3.3 contains further information on how to influence trace file size.

3.1. Trace File Name and Location

The default name of the trace file depends on the operating system where the
application is run. On Linux, MacOS and Sun Solaris the trace file will be named
like the application, e.g. hello.otf for the executable hello. For other sys-
tems, the default name is a.otf. Optionally, the trace file name can be defined
manually by setting the environment variable VT_FILE_PREFIX to the desired
name. The suffix .otf will be added automatically.

To prevent overwriting of trace files by repetitive program runs, one can enable
unique trace file naming by setting VT_FILE_UNIQUE to yes. In this case, Vam-
pirTrace adds a unique number to the file names as soon as a second trace file
with the same name is created. A *.lock file is used to count up the number of
trace files in a directory. Be aware that VampirTrace potentially overwrites an ex-
isting trace file if you delete this lock file. The default value of VT_FILE_UNIQUE
is no. You can also set this variable to a number greater than zero, which will be
added to the trace file name. This way you can manually control the unique file
naming.

The default location of the final trace file is the working directory at application
start time. If the trace file shall be stored in another place, use VT_PFORM_GDIR
as described in Section 3.2 to change the location of the trace file.

3.2. Environment Variables

The following environment variables can be used to control the measurement of
a VampirTrace instrumented executable:

17

3.2 Environment Variables

Variable Purpose Default

Global Settings

VT_APPPATH Path to the application executable.
⇒ Section 2.3.2

–

VT_BUFFER_SIZE Size of internal event trace buffer per process. This
is the place where event records are stored, before
being written to OTF.
⇒ Section 3.3

32M

VT_CLEAN Remove temporary trace files? yes
VT_COMPRESSION Write compressed trace files? yes
VT_COMPRESSION_BSIZE Size of the compression buffer in OTF. OTF default
VT_FILE_PREFIX Prefix used for trace filenames. ⇒Sect. 3.1
VT_FILE_UNIQUE Enable unique trace file naming? Set to yes, no, or a

numerical ID.
⇒ Section 3.1

no

VT_MAX_FLUSHES Maximum number of buffer flushes.
⇒ Section 3.3

1

VT_MAX_SNAPSHOTS Maximum number of snapshots to generate. 1024
VT_MAX_THREADS Maximum number of threads per process that Vam-

pirTrace reserves resources for.
65536

VT_OTF_BUFFER_SIZE Size of internal OTF buffer. This buffer contains OTF-
encoded trace data that is written to file at once.

OTF default

VT_PFORM_GDIR Name of global directory to store final trace file in. ./

VT_PFORM_LDIR Name of node-local directory which can be used to
store temporary trace files.

/tmp/

VT_SNAPSHOTS Enable snapshot generation? Allows Vampir to load
subsets of the resulting trace.

yes

VT_THREAD_BUFFER_SIZE Size of internal event trace buffer per thread. If not
defined, the size is set to 10% of VT_BUFFER_SIZE.
⇒ Section 3.3

0

VT_UNIFY Unify local trace files afterwards? yes
VT_VERBOSE Level of VampirTrace related information messages:

Quiet (0), Critical (1), Information (2)
1

I/O Forwarding (IOFSL)

VT_IOFSL_ASYNC_IO Enable buffered IOFSL writes?
⇒ Section D.4.2

no

VT_IOFSL_SERVERS Comma-separated list of IOFSL server addresses.
⇒ Section D.4.2

–

VT_IOFSL_MODE Mode of the IOFSL communication:
(MULTIFILE_SPLIT or MULTIFILE)
⇒ Section D.4.2

MULTIFILE_SPLIT

Optional Features

18

3 Runtime Measurement

Variable Purpose Default
VT_CPUIDTRACE Enable tracing of core ID of a CPU?

⇒ Section 4.4
no

VT_ETIMESYNC Enable enhanced timer synchronization?
⇒ Section 3.7

no

VT_ETIMESYNC_INTV Interval between two successive synchronization
phases in s.

120

VT_IOLIB_PATHNAME Provides an alternative library to use for LIBC I/O
calls. ⇒ Section 4.8

–

VT_IOTRACE Enable tracing of application I/O calls?
⇒ Section 4.8

no

VT_IOTRACE_EXTENDED Enable tracing of additional function argument for ap-
plication I/O calls?
⇒ Section 4.8

no

VT_EXECTRACE Enable tracing of function calls for creating and con-
troling child processes?
⇒ Section 4.9

yes

VT_MEMTRACE Enable memory allocation counter?
⇒ Section 4.3

no

VT_MODE Colon-separated list of VampirTrace modes: Tracing
(TRACE), Profiling (STAT).
⇒ Section 3.4

TRACE

VT_MPICHECK Enable MPI correctness checking via UniMCI? no
VT_MPICHECK_ERREXIT Force trace write and application exit if an MPI usage

error is detected?
no

VT_MPITRACE Enable tracing of MPI events? yes
VT_MPI_IGNORE_FILTER Enable tracing of MPI communication events al-

though its corresponding functions are filtered?
no

VT_OMPTRACE Enable tracing of OpenMP events instrumented by
OPARI?

yes

VT_PTHREAD_REUSE Reuse IDs of terminated Pthreads? yes
VT_STAT_INTV Length of interval in ms for writing the next profiling

record
0

VT_STAT_PROPS Colon-separated list of event types that shall be
recorded in profiling mode: Functions (FUNC), Mes-
sages (MSG), Collective Ops. (COLLOP) or all of
them (ALL)
⇒ Section 3.4

ALL

VT_SYNC_FLUSH Enable synchronized buffer flush?
⇒ Section 3.6

no

VT_SYNC_FLUSH_LEVEL Minimum buffer fill level for synchronized buffer flush
in percent.

80

Counters

19

3.2 Environment Variables

Variable Purpose Default
VT_METRICS Specify counter metrics to be recorded with trace

events as a colon/VT_METRICS_SEP-separated list
of names.
⇒ Section 4.1

–

VT_METRICS_SEP Separator string between counter specifications in
VT_METRICS.

:

VT_PLUGIN_CNTR_METRICS Colon-separated list of plugin counter metrics which
shall be recorded.
⇒ Section 4.7

–

VT_RUSAGE Colon-separated list of resource usage counters
which shall be recorded.
⇒ Section 4.2

–

VT_RUSAGE_INTV Sample interval for recording resource usage coun-
ters in ms.

100

Binary Instrumentation (Dyninst)

VT_DYN_DETACH Detach Dyninst mutator-program vtdyn from appli-
cation process?

yes

VT_DYN_IGNORE_NODBG Disable instrumentation of functions which have no
debug information?

no

VT_DYN_INNER_LOOPS Instrument inner loops within outer loops?
(implies VT_DYN_OUTER_LOOPS=yes)

no

VT_DYN_LOOP_ITERS Instrument loop iterations?
(implies VT_DYN_OUTER_LOOPS=yes)

no

VT_DYN_OUTER_LOOPS Instrument outer loops within functions? no
VT_DYN_SHLIBS Colon-separated list of shared libraries for Dyninst in-

strumentation.
⇒ Section 2.6

–

Filtering, Grouping

VT_FILTER_SPEC Name of function/region filter file.
⇒ Section 5.1

–

VT_GROUPS_SPEC Name of function grouping file.
⇒ Section 5.3

–

VT_JAVA_FILTER_SPEC Name of Java specific filter file.
⇒ Section 5.2

–

VT_JAVA_GROUP_CLASSES Create a group for each Java class automatically? yes
VT_MAX_STACK_DEPTH Maximum number of stack level to be traced.

(0 = unlimited)
0

VT_ONOFF_CHECK_STACK_BALANCE Check stack level balance when switching tracing
on/off.
⇒ Section 2.4.2

yes

Symbol List

20

3 Runtime Measurement

Variable Purpose Default
VT_GNU_NM Command to list symbols from object files.

⇒ Section 2.3
nm

VT_GNU_NMFILE Name of file with symbol list information.
⇒ Section 2.3

–

The variables VT_PFORM_GDIR, VT_PFORM_LDIR, VT_FILE_PREFIX may
contain (sub)strings of the form $XYZ or ${XYZ} where XYZ is the name of
another environment variable. Evaluation of the environment variable is done at
measurement runtime.

When you use these environment variables, make sure that they have the
same value for all processes of your application on all nodes of your cluster.
Some cluster environments do not automatically transfer your environment when
executing parts of your job on remote nodes of the cluster, and you may need to
explicitly set and export them in batch job submission scripts.

3.3. Influencing Trace Buffer Size

The default values of the environment variables VT_BUFFER_SIZE and
VT_MAX_FLUSHES limit the internal buffer of VampirTrace to 32 MB per process
and the number of times that the buffer is flushed to 1, respectively. Events that
are to be recorded after the limit has been reached are no longer written into the
trace file. The environment variables apply to every process of a parallel appli-
cation, meaning that applications with n processes will typically create trace files
n times the size of a serial application.

To remove the limit and get a complete trace of an application, set
VT_MAX_FLUSHES to 0. This causes VampirTrace to always write the buffer
to disk when it is full. To change the size of the buffer, use the environment
variable VT_BUFFER_SIZE. The optimal value for this variable depends on the
application which is to be traced. Setting a small value will increase the memory
available to the application, but will trigger frequent buffer flushes by Vampir-
Trace. These buffer flushes can significantly change the behavior of the appli-
cation. On the other hand, setting a large value, like 2G, will minimize buffer
flushes by VampirTrace, but decrease the memory available to the application. If
not enough memory is available to hold the VampirTrace buffer and the applica-
tion data, parts of the application may be swapped to disk, leading to a significant
change in the behavior of the application.

In multi-threaded applications a single buffer cannot be shared across a
process and the associated threads for performance reasons. Thus independent
buffers are created for every process and thread, at which the process buffer size
is 70% and the thread buffer size is 10% of the value set in VT_BUFFER_SIZE.
The buffer size of processes and threads can be explicitly specified setting the

21

3.4 Profiling an Application

environment variable VT_THREAD_BUFFER_SIZE, which defines the buffer size
of a thread, whereas the buffer size of a process is then defined by the value of
VT_BUFFER_SIZE. The total memory consumption of the application is calcu-
lated as follows (assuming that every process has the same number of threads):

a) M = N ∗ V T_BUFFER_SIZE ∗ 0.7 +N ∗ T ∗ V T_BUFFER_SIZE ∗ 0.1
(V T_THREAD_BUFFER_SIZE is not specified)

b) M = N ∗ V T_BUFFER_SIZE +N ∗ T ∗ V T_THREAD_BUFFER_SIZE

(V T_THREAD_BUFFER_SIZE is specified)

M ... total allocated memory N ... number of processes T ... number of threads per process

Note that you can decrease the size of trace files significantly by using the run-
time function filtering as explained in Section 5.1.

3.4. Profiling an Application

Profiling an application collects aggregated information about certain events dur-
ing a program run, whereas tracing records information about individual events.
Profiling can therefore be used to get a summary of the program activity and to
detect events that are called very often. The profiling information can also be
used to generate filter rules to reduce the trace file size (⇒ Section 5.1).

To profile an application set the variable VT_MODE to STAT. Setting VT_MODE
to STAT:TRACE tells VampirTrace to perform tracing and profiling at the same
time. By setting the variable VT_STAT_PROPS the user can influence whether
functions, messages, and/or collective operations shall be profiled. See Sec-
tion 3.2 for information about these environment variables.

3.5. Unification of Local Traces

After a run of an instrumented application the traces of the single processes need
to be unified in terms of timestamps and event IDs. In most cases, this happens
automatically. If the environment variable VT_UNIFY is set to no or under certain
circumstances it is necessary to perform unification of local traces manually. To
do this, use the following command:

% vtunify <prefix>

If VampirTrace was built with support for OpenMP and/or MPI, it is possible to
speedup the unification of local traces significantly. To distribute the unification
on multible processes the MPI parallel version vtunify-mpi can be used as
follow:

22

3 Runtime Measurement

% mpirun -np <nranks> vtunify-mpi <prefix>

Furthermore, both tools vtunify and vtunify-mpi are capable to open ad-
ditional OpenMP threads for unification. The number of threads can be specified
by the OMP_NUM_THREADS environment variable.

3.6. Synchronized Buffer Flush

When tracing an application, VampirTrace temporarily stores the recorded events
in a trace buffer. Typically, if a buffer of a process or thread has reached its maxi-
mum fill level, the buffer has to be flushed and other processes or threads maybe
have to wait for this process or thread. This will result in an asynchronous run-
time behavior.
To avoid this problem, VampirTrace provides a buffer flush in a synchronized
manner. That means, if one buffer has reached its minimum buffer fill level
VT_SYNC_FLUSH_LEVEL (⇒ Section 3.2), all buffers will be flushed. This buffer
flush is only available at appropriate points in the program flow. Currently, Vam-
pirTrace makes use of all MPI collective functions associated with
MPI_COMM_WORLD. Use the environment variable VT_SYNC_FLUSH to enable
synchronized buffer flush.

3.7. Enhanced Timer Synchronization

Especially on cluster environments, where each process has its own local timer,
tracing relies on precisely synchronized timers. Therefore, VampirTrace pro-
vides several mechanisms for timer synchronization. The default synchroniza-
tion scheme is a linear synchronization at the very begin and the very end of a
trace run with a master-slave communication pattern.
However, this way of synchronization can become to imprecise for long trace
runs. Therefore, we recommend the usage of the enhanced timer synchroniza-
tion scheme of VampirTrace. This scheme inserts additional synchronization
phases at appropriate points in the program flow. Currently, VampirTrace makes
use of all MPI collective functions associated with MPI_COMM_WORLD.
To enable this synchronization scheme, a LAPACK library with C wrapper sup-
port has to be provided for VampirTrace and the environment variable
VT_ETIMESYNC (⇒ Section 3.2) has to be set before the tracing.
The length of the interval between two successive synchronization phases can
be adjusted with VT_ETIMESYNC_INTV.
The following LAPACK libraries provide a C-LAPACK API that can be used by
VampirTrace for the enhanced timer synchronization:

23

3.8 Environment Configuration Using VTSetup

• CLAPACK 1

• AMD ACML

• IBM ESSL

• Intel MKL

• SUN Performance Library

Note: Systems equipped with a global timer do not need timer synchronization.

Note: It is recommended to combine enhanced timer synchronization and syn-
chronized buffer flush.

Note: Be aware that the asynchronous behavior of the application will be dis-
turbed since VampirTrace makes use of asynchronous MPI collective functions
for timer synchronization and synchronized buffer flush.
Only make use of these approaches, if your application does not rely on an
asynchronous behavior! Otherwise, keep this fact in mind during the process of
performance analysis.

3.8. Environment Configuration Using VTSetup

In order to ease the process of configuring the runtime environment, the graphi-
cal tool vtsetup has been added to the VampirTrace toolset. With the help of a
graphical user interface, required environment variables can be configured. The
following option categories can be managed:

• General Trace Settings: Configre the name of the executable as well as
the trace filename and set the trace buffer size.

• Optional Trace Features: Activate optional trace features, e.g. I/O tracing
and tracing of memory usage.

• Counters: Activate PAPI counter and resource usage counter.

• Filtering and Grouping: Guided setup of filters and function group defini-
tions.

Furthermore, the user is granted more fine-grained control by activating the
Advanced View button. The configuration can be saved to an XML file. After
successfull configuration, the application can be launched directly or a script can
be generated for manual execution.

1www.netlib.org/clapack

24

www.netlib.org/clapack

4 Recording Additional Events and Counters

4. Recording Additional Events
and Counters

4.1. Hardware Performance Counters

If VampirTrace has been built with hardware counter support (⇒ Appendix A),
it is capable of recording hardware counter information as part of the event
records. To request the measurement of certain counters, the user is required to
set the environment variable VT_METRICS. The variable should contain a colon-
separated list of counter names or a predefined platform-specific group.

The user can leave the environment variable unset to indicate that no counters
are requested. If any of the requested counters are not recognized or the full
list of counters cannot be recorded due to hardware resource limits, program
execution will be aborted with an error message.

PAPI Hardware Performance Counters

If the PAPI library is used to access hardware performance counters, metric
names can be any PAPI preset names or PAPI native counter names. For exam-
ple, set

VT_METRICS=PAPI_FP_OPS:PAPI_L2_TCM:!CPU_TEMP1

to record the number of floating point instructions and level 2 cache misses (PAPI
preset counters), cpu temperature from the lm_sensors component. The leading
exclamation mark let CPU_TEMP1 be interpreted as absolute value counter.
See Section C.1 for a full list of PAPI preset counters.

CPC Hardware Performance Counters

On Sun Solaris operating systems VampirTrace can make use of the CPC perfor-
mance counter library to query the processor’s hardware performance counters.
The counters which are actually available on your platform can be queried with
the tool vtcpcavail. The listed names can then be used within VT_METRICS
to tell VampirTrace which counters to record.

25

4.2 Resource Usage Counters

NEC SX Hardware Performance Counters

On NEC SX machines VampirTrace uses special register calls to query the pro-
cessor’s hardware counters. Use VT_METRICS to specify the counters that have
to be recorded. See Section C.3 for a full list of NEC SX hardware performance
counters.

4.2. Resource Usage Counters

The Unix system call getrusage provides information about consumed re-
sources and operating system events of processes such as user/system time,
received signals, and context switches.

If VampirTrace has been built with resource usage support, it is able to record
this information as performance counters to the trace. You can enable tracing of
specific resource counters by setting the environment variable VT_RUSAGE to a
colon-separated list of counter names, as specified in Section C.4. For example,
set

VT_RUSAGE=ru_stime:ru_majflt

to record the system time consumed by each process and the number of page
faults. Alternatively, one can set this variable to the value all to enable recording
of all 16 resource usage counters. Note that not all counters are supported by all
Unix operating systems. Linux 2.6 kernels, for example, support only resource
information for six of them. See Section C.4 and the manual page of getrusage
for details.

The resource usage counters are not recorded at every event. They are
only read if 100 ms have passed since the last sampling. The interval can be
changed by setting VT_RUSAGE_INTV to the number of desired milliseconds.
Setting VT_RUSAGE_INTV to zero leads to sampling resource usage counters
at every event, which may introduce a large runtime overhead. Note that in
most cases the operating system does not update the resource usage informa-
tion at the same high frequency as the hardware performance counters. Setting
VT_RUSAGE_INTV to a value less than 10 ms does usually not improve the gran-
ularity.

Be aware that, when using the resource usage counters for multi-threaded
programs, the information displayed is valid for the whole process and not for
each single thread.

4.3. Memory Allocation Counter

Calls to functions which reside in external libraries can be intercepted by imple-
menting identical functions and linking them before the external library. Such

26

4 Recording Additional Events and Counters

“wrapper functions” can record the parameters and return values of the library
functions.

If VampirTrace has been built with memory allocation tracing support (⇒ Ap-
pendix A), it uses this technique for recording calls to memory (de)allocation
functions of the standard C library, which are executed by the application. The
following functions are intercepted by VampirTrace:

malloc memalign
calloc posix_memalign
realloc valloc
free

The gathered information will be saved as counter which indicates the current
memory allocated in bytes. To request the measurement of the application’s
allocated memory, the user must set the environment variable VT_MEMTRACE to
yes.

Note: VampirTrace currently does not support memory allocation tracing for
threaded programs, e.g., programs parallelized with OpenMP or Pthreads!

4.4. CPU ID Counter

The GNU LIBC implementation provides a function to determine the core id of a
CPU on which the calling thread is running. VampirTrace uses this functionality
to record the current core identifier as counter. This feature can be activated by
setting the environment variable VT_CPUIDTRACE to yes.

Note: To use this feature you need the GNU LIBC implementation at least in
version 2.6.

4.5. NVIDIA CUDA

When tracing CUDA applications, only user events and functions are recorded,
which are automatically or manually instrumented. CUDA API functions will not
be traced by default. To enable tracing of CUDA runtime and driver API func-
tions and CUDA device activities (like kernel execution and memory copies) build
VampirTrace with CUDA support and set the following environment variable:

export VT_GPUTRACE=[yes|default|no]

To enable a particular composition of CUDA measurement features the variable
should contain a comma-separated list of available CUDA measurement options.

27

4.5 NVIDIA CUDA

export VT_GPUTRACE=option1,option2,option2,...

cuda enable CUDA (needed to use CUDA runtime API wrapper)
(OpenCL is available in VampirTrace GPU beta releases)

cupti use the CUPTI interface instead of the library wrapper
runtime CUDA runtime API
driver CUDA driver API
kernel CUDA kernels
concurrent force recording of concurrent kernels with CUPTI
idle GPU compute idle time
memcpy CUDA memory copies
stream_reuse force reusing of CUDA streams after cudaStreamDestroy()
memusage CUDA memory allocation
debug CUDA tracing debug mode
error CUDA errors will exit the program
yes|default same as “cuda,runtime,kernel,memcpy”
no disable CUDA measurement

Since CUDA Toolkit 4.1 the CUDA Profiling and Tool Interface (CUPTI) allows
capturing of CUDA device activities. VampirTrace trace has currently two meth-
ods to trace the CUDA runtime API and corresponding GPU activities: traditional
library wrapping with CUDA events for GPU activity measurement and tracing via
the CUPTI interface. Several features are just implemented in the library wrap-
ping approach, whereas the CUPTI measurement brings new possibilities and
occasionally more accuracy.

The new environment variable VT_GPUTRACE replaces several previously avail-
able environment variables. However, there are still additional feature switches
implemented as environment variables to further refine CUDA tracing (the default
is bold):

VT_GPUTRACE_KERNEL=[yes|2]
Tracing of CUDA kernels can be enabled with ’yes’. This is the same
as adding the option kernel to VT_GPUTRACE. With ’2’ additional kernel
counters are captured. (CUPTI tracing only)

VT_CUDATRACE_SYNC=[0|1|2|3] (CUDA runtime API wrapper only)

Controls how VampirTrace handles synchronizing CUDA API calls, espe-
cially cudaMemcpy and cudaThreadSynchronize. At level 0 only the CUDA
calls will be executed, messages will be displayed from the beginning to the
end of the cudaMemcpy, regardless how long the cudaMemcpy call has to
wait for a kernel until the actual data transfer starts. At level 1 the cu-
daMemcpy will be split into an additional synchronization and the actual
data transfer in order to monitor the data transfer correctly. The additional
synchronization does not affect the program execution significantly and will

28

4 Recording Additional Events and Counters

not be shown in the trace. At level 2 the additional synchronization will
be exposed to the user. This allows a better view on the application ex-
ecution, showing how much time is actually spent waiting for the GPU to
complete. Level 3 will further use the synchronization to flush the internal
task buffer and perform a timer synchronization between GPU and host.
This introduces a minimal overhead but increases timer precision and pre-
vents flushes elsewhere in the trace.

VT_CUPTI_METRICS (CUDA runtime API wrapper only)

Capture CUDA CUPTI counters. Metrics are separated by default with ”:“
or user specified by VT_METRICS_SEP.
Example: VT_CUPTI_METRICS=local_store:local_load

VT_CUPTI_EVENTS_SAMPLING=[yes|no] (CUDA runtime API wrapper only)

Poll for CUPTI counter values during kernel execution, if set to yes.

VT_GPUTRACE_MEMUSAGE=[yes|2]
Record GPU memory usage as counter “gpu_mem_usage“, if set to yes,
which is the same as adding the option memusage to VT_GPUTRACE. With
’2’ missing cudaFree() calls are printed to stderr.

Every CUDA stream, which is executed on a cuda-capable device and used dur-
ing program execution, creates an own thread. “CUDA-Threads” can contain
CUDA communication, kernel and counter records and have the following nota-
tion:

CUDA[device:stream] process:thread

Due to an issue with CUPTI, the device is not always properly shown (device
is displayed as ?). The CUDA stream number is increasing, beginning with the
default stream 1. The stream number provided by CUPTI might not be evenly
increasing. CUDA streams without records will not be written.
If CUDA libraries are used, which create CUDA streams themselves, many CUDA
threads (CUDA streams per device) can appear in a program trace. In that case,
it may be useful to force reusing of CUDA streams (add option stream_reuse to
VT_GPUTRACE). This enables VampirTrace to reuse an existing thread buffer of
a destroyed CUDA stream and therewith reduces the number of separate CUDA
threads (or streams) in the trace. The CUDA stream number will then be missing
in the CUDA thread notation.
As kernels and asynchronous memory copies are executed asynchronously on
the CUDA device, information about these activities will be buffered until a syn-
chronizing CUDA API function call or the program exits. Every used CUDA de-
vice and its corresponding host thread has an own buffer (8192 bytes by default),
when CUDA tracing is done via the CUDA runtime API wrapper. If the buffer is
full, it will be flushed immediately. When using CUDA tracing via CUPTI every

29

4.5 NVIDIA CUDA

CUDA context creation initiates the allocation of an own buffer (65536 bytes by
default). If the buffer is full, further records will be dropped and a warning will
be shown in stderr output. The buffer size can be specified in bytes with the
environment variable VT_CUDATRACE_BUFFER_SIZE.

Several new region groups have been introduced:

CUDART_API CUDA runtime API calls
CUDRV_API CUDA driver API calls
CUDA_SYNC CUDA synchronization
CUDA_KERNEL CUDA kernels (device functions) can only appear

on “CUDA-Threads”
GPU_IDLE GPU compute idle time – the CUDA device does not

run any kernel currently (shown in first used stream
of the device)

VT_CUDA Measurement overhead (write CUDA events, check
current device, etc.)

Tracing CUDA Runtime API via CUPTI

If the VampirTrace CUDA runtime API wrapper and CUPTI are configured during
the VampirTrace build process, the option cupti has to be added to VT_GPUTRACE
to enable CUDA runtime API tracing via CUPTI. In that case the CUDA run-
time library should be preloaded to reduce tracing overhead (the dynamic linker
can use LD_PRELOAD=libcudart.so). Otherwise the library wrapper inter-
cepts every CUDA runtime API call and makes a short but unnecessary check,
whether it is enabled. The CUPTI tracing method does not support recording of
peer-to-peer memory copies.

CUDA Runtime API Wrapper Particularities

To ensure measurement of correct data rates for synchronous CUDA memory
copies, the VampirTrace CUDA runtime library wrapper inserts a CUDA synchro-
nization before the memory copy call. Otherwise the implicit synchronization of
the CUDA memory copy call could not be exposed and it was not possible to get
correct transfer rates.

Until CUDA Toolkit 4.2 the usage of CUDA events between asynchronous tasks
serializes their on-device execution. As VampirTrace uses CUDA events for time
measurement and asynchronous tasks may overlap (depends on the CUDA de-
vice capability), there might be a sensible impact on the program flow. CUDA 5
removes this restriction.

30

4 Recording Additional Events and Counters

Counter via CUDA API

If VT_GPUTRACE_MEMUSAGE is enabled, cudaMalloc and cudaFree functions
will be tracked to write the GPU memory usage counter gpu_mem_usage. This
counter does not need space in the CUDA buffer. The counter values will be
written directly to the default CUDA stream ’1’. This stream will be created, if it
does not exist and does not have to contain any other CUDA device activities. If
the environment variable is set to 2, missing cudaFree() calls will be printed to
stderr.
With kernel tracing enabled there are three counters, which provide informa-
tion about the kernel’s grid, block and thread composition: blocks_per_grid,
threads_per_block, threads_per_kernel. With CUPTI tracing additional
kernel counters are available: static and dynamic shared memory, total local
memory and registers per thread (VT_GPUTRACE_KERNEL=2).

CUDA Performance Counters via CUPTI Events
(CUDA runtime API wrapper only!)

To capture performance counters in CUDA applications, CUPTI events can be
specified with the environment variable VT_CUPTI_METRICS. Counters are sep-
arated by default with ”:“ or user specified by VT_METRICS_SEP. The CUPTI
User’s Guide – Event Reference provides information about the available coun-
ters. Alternatively set VT_CUPTI_METRICS=help to show a list of available
counters (help_long to print the counter description as well).

Compile and Link CUDA Applications

Use the VampirTrace compiler wrapper vtnvcc instead of nvcc to compile the
CUDA application, which does automatic source code instrumentation.

GCC4.3 and OpenMP:
Use the flags -vt:opari -nodecl -Xcompiler=-fopenmp with vtnvcc to
compile the OpenMP CUDA application.

CUDA 3.1:
The CUDA runtime library 3.1 creates a conflict with zlib. A workaround is to re-
place all gcc/g++ calls with the VampirTrace compiler wrappers (vtcc/vtc++)
and pass the following additional flags to nvcc for compilation of the kernels:

-I$VT_INSTALL_PATH/include/vampirtrace
-L$VT_INSTALL_PATH/lib
-Xcompiler=-g,-finstrument-functions,-pthread
-lvt -lopen-trace-format -lcudart -lz -ldl -lm

31

4.5 NVIDIA CUDA

$VT_INSTALL_PATH is the path to the VampirTrace installation directory. It is not necessary to
specify the VampirTrace include and library path, if it is installed in the default directory.

This uses automatic compiler instrumentation (-finstrument-functions)
and the standard VampirTrace library. Replace the -lvt with -lvt-mt for multi-
threaded, -lvt-mpi for MPI and -lvt-hyb for multithreaded MPI applications.
In this case the CUDA runtime library is linked before the zlib.
If the application is linked with gcc/g++, the linking command has to ensure,
that the respective VampirTrace library is linked before the CUDA runtime library
libcudart.so (check e.g. with “ldd executable”). Using the VampirTrace com-
piler wrappers (vtcc/vtc++) for linking is the easiest way to ensure correct
linking of the VampirTrace library.
With the library tracing mechanism described in section 2.9, it is possible to trace
CUDA applications without recompiling or relinking. There are only events writ-
ten for Runtime API calls, kernels and communication between host and device.

Tracing the NVIDIA CUDA SDK 3.x and 4.x

To get some example traces, replace the compiler commands in the common
Makefile include file (common/common.mk) with the corresponding VampirTrace
compiler wrappers (⇒2.1) for automatic instrumentation:

Compilers
NVCC := vtnvcc
CXX := vtc++
CC := vtcc
LINK := vtc++ #-vt:mt

Use the compiler switches for MPI, multi-threaded and hybrid programs, if nec-
essary (e.g. the CUDA SDK example simpleMultiGPU is a multi-threaded
program, which needs to be linked with a multi-threaded VampirTrace library).

Recording Concurrent Kernels (CUDA 5)

Since CUDA 5 it is possible to record concurrently executed kernels on the GPU.
The VampirTrace CUDA runtime API wrapper uses CUDA events for GPU activity
time measurement and is therefore by default enabled for recording concurrent
kernels. The NVIDIA CUPTI library provides two possibilities for measuring ker-
nels. If a CUDA application creates the second CUDA stream, the activity buffer
will be flushed, the light-weight kernel recording disabled and concurrent kernel
recording enabled. To force concurrent kernel support at VampirTrace CUDA ini-
tialization add the GPU tracing option concurrent.

32

4 Recording Additional Events and Counters

Notes:
For 32-bit systems VampirTrace has to be configured with the 32-bit version of
the CUDA runtime library. If the link test fails, use the following configure option
(⇒A.2):

--with-cuda-lib-dir=$CUDA_INSTALL_PATH/lib

To build CUPTI support on 32-bit systems (or for CUPTI 1.0), VampirTrace has
to be configured with the 32-bit version of the CUPTI library. If the link test fails,
use the following configure option (⇒A.2):

--with-cupti-lib-dir=$CUPTI_INSTALL_PATH/lib

VampirTrace CUDA support has been successfully tested with CUDA toolkit ver-
sion 3.x, 4.0 and 4.1.

4.6. Pthread API Calls

When tracing applications with Pthreads, only user events and functions are
recorded which are automatically or manually instrumented. Pthread API func-
tions will not be traced by default.
To enable tracing of all C-Pthread API functions include the header vt_user.h
and compile the instrumented sources with -DVTRACE_PTHREAD.

C/C++:
#include "vt_user.h"

% vtcc -DVTRACE_PTHREAD hello.c -o hello

Note: Currently, Pthread instrumentation is only available for C/C++.

4.7. Plugin Counter Metrics

Plugin Counter add additional metrics to VampirTrace. They highly depend on
the plugins, which are installed on your system. Every plugin should provide
a README, which should be checked for available metrics. Once you have
downloaded and compiled a plugin, copy the resulting library to a folder, which
is part of your LD_LIBRARY_PATH. To enable the tracing of a specific metric,
you should set the environment variable VT_PLUGIN_CNTR_METRICS. It is set
in the following manner

33

4.8 I/O Calls

export VT_PLUGIN_CNTR_METRICS=<library_name>_<event_name>

If you have for example a library named libKswEvents.so with the event
page_faults, the you can set it with

export VT_PLUGIN_CNTR_METRICS=KswEvents_page_faults

Visit http://www.tu-dresden.de/zih/vampirtrace/plugin_counter
for documentation and examples.

Note: Multiple events can be concatenated by using colons.

4.8. I/O Calls

If VampirTrace has been built with I/O tracing support (⇒ Appendix A), it uses
the same technique as used to intercept memory (de)allocation functions (⇒
Section 4.3) for recording calls to I/O functions of the standard C library, which
are executed by the application. The following functions are intercepted by Vam-
pirTrace:

close creat creat64 dup
dup2 fclose fcntl fdopen
fgetc fgets flockfile fopen
fopen64 fprintf fputc fputs
fread fscanf fseek fseeko
fseeko64 fsetpos fsetpos64 ftrylockfile
funlockfile fwrite getc gets
lockf lseek lseek64 open
open64 pread pread64 putc
puts pwrite pwrite64 read
readv rewind unlink write
writev

The gathered information will be saved as I/O event records in the trace file.
This feature has to be activated for each tracing run by setting the environment
variable VT_IOTRACE to yes.

If you’d like to experiment with some other I/O library, set the environment
variable VT_IOLIB_PATHNAME to the alternative one. Beware that this library
must provide all I/O functions mentioned above otherwise VampirTrace will abort.
Setting the environment variable VT_IOTRACE_EXTENDED to yes enables the
collection of additional function arguments for some of the I/O function mentioned
above. For example, this option stores offsets for pwrite and pread addition-
ally to the I/O event record. Enabling VT_IOTRACE_EXTENDED automatically
enables VT_IOTRACE.

34

http://www.tu-dresden.de/zih/vampirtrace/plugin_counter

4 Recording Additional Events and Counters

4.9. Child Process Execution Calls

In addition to the memory allocation tracing (⇒ Section 4.3) and I/O tracing (⇒
Section 4.8), VampirTrace uses the library wrapping technique also to intercept
functions of the standard C library for creating and controling child processes.
These functions are:

execl execvp fork waitid
execlp execve system wait3
execle execvpe wait wait4
execv fexecve waitpid

When VampirTrace detects a call of an exec function, the current trace file is
closed before executing the new program. If the executed program is also in-
strumented with VampirTrace, it will create a different trace file. Note that Vam-
pirTrace aborts if the exec function returns unsuccessfully. Calling fork in an
instrumented program creates an additional process in the same trace file. Using
this feature requires building VampirTrace with support for tracing LIBC functions
for creating and controling child processes (⇒ Appendix A), and setting the en-
vironment variable VT_EXECTRACE to yes.

4.10. MPI Correctness Checking Using UniMCI

VampirTrace supports the recording of MPI correctness events, e.g., usage of in-
valid MPI requests. This is implemented by using the Universal MPI Correctness
Interface (UniMCI), which provides an interface between tools like VampirTrace
and existing runtime MPI correctness checking tools. Correctness events are
stored as markers in the trace file and are visualized by Vampir.

If VampirTrace is built with UniMCI support, the user only has to enable MPI
correctness checking. This is done by merely setting the environment variable
VT_MPICHECK to yes. Further, if your application crashes due to an MPI error
you should set VT_MPICHECK_ERREXIT to yes. This environmental variable
forces VampirTrace to write its trace to disk and exit afterwards. As a result, the
trace with the detected error is stored before the application might crash.

To install VampirTrace with correctness checking support it is necessary to
have UniMCI installed on your system. UniMCI in turn requires you to have a
supported MPI correctness checking tool installed, currently only the tool Marmot
is known to have UniMCI support. So all in all you should use the following order
to install with correctness checking support:

1. Marmot
(see http://www.hlrs.de/organization/av/amt/research/marmot)

2. UniMCI
(see http://www.tu-dresden.de/zih/unimci)

35

http://www.hlrs.de/organization/av/amt/research/marmot
http://www.tu-dresden.de/zih/unimci

4.11 User-defined Counters

3. VampirTrace
(see http://www.tu-dresden.de/zih/vampirtrace)

Information on how to install Marmot and UniMCI is given in their respec-
tive manuals. VampirTrace will automatically detect an UniMCI installation if the
unimci-config tool is in path.

4.11. User-defined Counters

In addition to the manual instrumentation (⇒ Section 2.4), the VampirTrace API
provides instrumentation calls which allow recording of program variable values
(e.g. iteration counts, calculation results, ...) or any other numerical quantity. A
user-defined counter is identified by its name, the counter group it belongs to, the
type of its value (integer or floating-point) and the unit that the value is quoted
(e.g. “GFlop/sec”).

The VT_COUNT_GROUP_DEF and VT_COUNT_DEF instrumentation calls can
be used to define counter groups and counters:

Fortran:
#include "vt_user.inc"
integer :: id, gid
VT_COUNT_GROUP_DEF(’name’, gid)
VT_COUNT_DEF(’name’, ’unit’, type, gid, id)

C/C++:
#include "vt_user.h"
unsigned int id, gid;
gid = VT_COUNT_GROUP_DEF("name");
id = VT_COUNT_DEF("name", "unit", type, gid);

The definition of a counter group is optional. If no special counter group is de-
sired, the default group “User” can be used. In this case, set the parameter gid
of VT_COUNT_DEF() to VT_COUNT_DEFGROUP.

The third parameter type of VT_COUNT_DEF specifies the data type of the
counter value. To record a value for any of the defined counters the correspond-
ing instrumentation call VT_COUNT_*_VAL must be invoked.

Fortran:
Type Count call Data type
VT_COUNT_TYPE_INTEGER VT_COUNT_INTEGER_VAL integer (4 byte)
VT_COUNT_TYPE_INTEGER8 VT_COUNT_INTEGER8_VAL integer (8 byte)
VT_COUNT_TYPE_REAL VT_COUNT_REAL_VAL real
VT_COUNT_TYPE_DOUBLE VT_COUNT_DOUBLE_VAL double precision

36

http://www.tu-dresden.de/zih/vampirtrace

4 Recording Additional Events and Counters

C/C++:
Type Count call Data type
VT_COUNT_TYPE_SIGNED VT_COUNT_SIGNED_VAL signed int (max. 64-bit)
VT_COUNT_TYPE_UNSIGNED VT_COUNT_UNSIGNED_VAL unsigned int (max. 64-bit)
VT_COUNT_TYPE_FLOAT VT_COUNT_FLOAT_VAL float
VT_COUNT_TYPE_DOUBLE VT_COUNT_DOUBLE_VAL double

The following example records the loop index i:

Fortran:

#include "vt_user.inc"

program main
integer :: i, cid, cgid

VT_COUNT_GROUP_DEF(’loopindex’, cgid)
VT_COUNT_DEF(’i’, ’#’, VT_COUNT_TYPE_INTEGER, cgid, cid)

do i=1,100
VT_COUNT_INTEGER_VAL(cid, i)

end do

end program main

C/C++:

#include "vt_user.h"

int main() {
unsigned int i, cid, cgid;

cgid = VT_COUNT_GROUP_DEF(’loopindex’);
cid = VT_COUNT_DEF("i", "#", VT_COUNT_TYPE_UNSIGNED,

cgid);

for(i = 1; i <= 100; i++) {
VT_COUNT_UNSIGNED_VAL(cid, i);

}

return 0;
}

For all three languages the instrumented sources have to be compiled with
-DVTRACE. Otherwise the VT_* calls are ignored.

37

4.12 User-defined Markers

Optionally, if the sources contain further VampirTrace API calls and only the
calls for user-defined counters shall be disabled, then the sources have to be
compiled with -DVTRACE_NO_COUNT in addition to -DVTRACE .

4.12. User-defined Markers

In addition to the manual instrumentation (⇒ Section 2.4), the VampirTrace API
provides instrumentation calls which allow recording of special user information,
which can be used to better identify parts of interest. A user-defined marker is
identified by its name and type.

Fortran:
#include "vt_user.inc"
integer :: mid
VT_MARKER_DEF(’name’, type, mid)
VT_MARKER(mid, ’text’)

C/C++:
#include "vt_user.h"
unsigned int mid;
mid = VT_MARKER_DEF("name",type);
VT_MARKER(mid, "text");

Types for Fortran/C/C++:
VT_MARKER_TYPE_ERROR
VT_MARKER_TYPE_WARNING
VT_MARKER_TYPE_HINT

For all three languages the instrumented sources have to be compiled with
-DVTRACE. Otherwise the VT_* calls are ignored.

Optionally, if the sources contain further VampirTrace API calls and only the
calls for user-defined markers shall be disabled, then the sources have to be
compiled with -DVTRACE_NO_MARKER in addition to -DVTRACE .

4.13. User-defined Communcation

In addition to the manual instrumentation (⇒ Section 2.4), the VampirTrace API
provides instrumentation calls which allow recording of special user information,
which can be used to better identify parts of interest. A user-defined communica-
tion operation is defined by a communicator and a tag. The default communicator
is VT_COMM_WORLD. Additionally, a user-defined communicator can be created
using VT_COMM_DEF:

38

4 Recording Additional Events and Counters

Fortran:
#include "vt_user.inc"
integer :: cid
VT_COMM_DEF(’name’, cid)

C/C++:
#include "vt_user.h"
unsigned cid;
cid = VT_COMM_DEF("name", cid);

Using VT_SEND and VT_RECV the user can insert send and receive events
into the trace:

C/C++:
int rank, size;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if(rank == 0)
{

for (int i = 1; i < size; i++)
{

VT_SEND(VT_COMM_WORLD,i,100);
}

}else
{

VT_RECV(VT_COMM_WORLD,rank,100);
}

The calls are similar for Fortran.
As can be seen, the arguments to VT_SEND and VT_RECV are a communica-

tor, a tag and the size of the message. The tag is required in order to identify both
ends of a user-defined communication. Therefore it has to be globally unique for
a given communicator and cannot be reused within a single communicator. Mes-
sages with duplicated tags will not be visible in the final trace.

For all three languages the instrumented sources have to be compiled with
-DVTRACE. Otherwise the VT_* calls are ignored. Optionally, if the sources
contain further VampirTrace API calls and only the calls for user-defined markers
shall be disabled, then the sources have to be compiled with -DVTRACE_NO_MSG
in addition to -DVTRACE .

39

5 Filtering & Grouping

5. Filtering & Grouping

5.1. Function Filtering

By default, all calls of instrumented functions will be traced, so that the result-
ing trace files can easily become very large. In order to decrease the size of a
trace, VampirTrace allows the specification of filter directives before running an
instrumented application. The user can decide on how often an instrumented
function(group) shall be recorded to a trace file. To use a filter, the environment
variable VT_FILTER_SPEC needs to be defined. It should contain the path and
name of a file with filter directives specified as follows:

<function> - <limit> [S:<[min-]max-stack-level>] [R]
or
<groups> - <limit> [S:<[min-]max-stack-level>] [R] G
or
<function-call-path> - <limit> C

functions, groups Semicolon-separated list of
functions/groups.
(can contain wildcards)

function-call-path Semicolon-separated list of
functions in a call path.
(MUST NOT contain wildcards)

limit call limit
Stop recording of functions/groups when
the specified call limit is reached.
(0 = don’t record functions/groups,
-1 record unlimited)

41

5.1 Function Filtering

S:<[min-]max-stack-level>
minimum/maximum call stack level
Don’t record functions/groups called
beyond the specified stack level
boundaries.
(values must be > 0, only valid if call
limit is != 0)

R Attribute for recursive filtering.
Don’t record callees of filtered
function/group.

G Attribute for filtering function groups.

C Attribute for filtering function a call path.
(implies recursive filtering R)

Example:

add;sub;mul;div -- 1000
MATH -- 500 G

* -- 3000000 S:5-10

These filter directives cause that the functions add, sub, mul, and div will
be recorded at most 1000 times. All the functions of the group MATH at most
500 times. The remaining functions * will only be recorded when they are called
between call stack level 5 and 10 but at most 3000000 times.

Besides creating filter files manually, you can also use the vtfilter tool
to generate them automatically. This tool reads a provided trace and decides
whether a function should be filtered or not, based on the evaluation of certain
parameters. For more information see Section B.4.

Call Path Specific Filtering

The ’C’ attribute indicates that the listed functions specify a call path - a spe-
cific sequence of function calls. Recording of the last function in the list will be
stopped if the specified call limit is reached. The call path must begin with the
root function, typically main, and MUST NOT contain wildcards.

Example:

main;foo;bar -- 0 C

42

5 Filtering & Grouping

This filter directive causes that the function bar called from foo which prior
was called from main will never be recorded. Since call path filtering impies re-
cursiveness (see attribute R) all callee functions of this call path will be excluded
from recording as well.

Rank Specific Filtering

An experimental extension allows rank specific filtering. Use @ clauses to restrict
all following filters to the given ranks. The rank selection must be given as a list of
<from> - <to> pairs or single values. Note that all rank specific rules are only
effective after MPI_Init because the ranks are unknown before. The optional
argument - OFF disables the given ranks completely, regardless of following
filter rules.

@ 35 - 42 -- OFF
@ 4 - 10, 20 - 29, 34
foo;bar -- 2000

* -- 0

The example defines two limits for the ranks 4 - 10, 20 - 29, and 34. The first
line disables the ranks 35 - 42 completely.

Attention: The rank specific rules are activated later than usual at MPI_Init,
because the ranks are not available earlier. The special MPI routines MPI_Init,
MPI_Init_thread, and MPI_Initialized cannot be filtered in this way.

5.2. Java Specific Filtering

For Java tracing there are additional possibilities of filtering. Firstly, there is a de-
fault filter applied. The rules can be found in the filter file <vt-install>/etc/
vt-java-default-filter.spec . Secondly, user-defined filters can be ap-
plied additionally by setting VT_JAVA_FILTER_SPEC to a file containing the
rules.

The syntax of the filter rules is as follows:

<method|thread> <include|exclude> <filter string[;fs]...>

Filtering can be done on thread names and method names, defined by the first
parameter. The second parameter determines whether the matching item shall
be included for tracing or excluded from it. Multiple filter strings on a line have to
be separated by ; and may contain occurences of * for wildcard matching.

The user-supplied filter rules will be applied before the default filter and the
first match counts so it is possible to include items that would be excluded by the
default filter otherwise.

43

5.3 Function Grouping

5.3. Function Grouping

VampirTrace allows assigning functions/regions to a group. Groups can, for in-
stance, be highlighted by different colors in Vampir displays. The following stan-
dard groups are created by VampirTrace:

Group name Contained functions/regions
MPI MPI functions
OMP OpenMP API function calls
OMP_SYNC OpenMP barriers
OMP_PREG OpenMP parallel regions
Pthreads Pthread API function calls
LIBC-EXEC LIBC function calls for creating and controling child processes

(⇒ Section 4.9)
LIBC-I/O LIBC functions (⇒ Section 4.8)
LIBC-MALLOC LIBC memory (de)allocation functions (⇒ Section 4.3)
Application remaining instrumented functions and source code regions

Additionally, you can create your own groups, e.g., to better distinguish differ-
ent phases of an application. To use function/region grouping set the environ-
ment variable VT_GROUPS_SPEC to the path of a file which contains the group
assignments specified as follows:

<group>=<functions>

group group name
functions semicolon-seperated list of functions

(can contain wildcards)
Example:

MATH=add;sub;mul;div
USER=app_*

These group assignments associate the functions add, sub, mul, and div
with group “MATH”, and all functions with the prefix app_ are associated with
group “USER”.

44

A VampirTrace Installation

A. VampirTrace Installation

A.1. Basics

Building VampirTrace is typically a combination of running configure and
make. Execute the following commands to install VampirTrace from the direc-
tory at the top of the tree:

% ./configure --prefix=/where/to/install
[...lots of output...]
% make all install

If you need special access for installing, you can execute make all as a user
with write permissions in the build tree and a separate make install as a user
with write permissions to the install tree.

However, for more details, also read the following instructions. Sometimes it
might be necessary to provide ./configure with options, e.g., specifications
of paths or compilers.

VampirTrace comes with example programs written in C, C++, and Fortran.
They can be used to test different instrumentation types of the VampirTrace in-
stallation. You can find them in the directory examples of the VampirTrace pack-
age.

Note that you should compile VampirTrace with the same compiler you use for
the application to trace, see F.1 .

A.2. Configure Options

Compilers and Options

Some systems require unusual options for compiling or linking which the
configure script does not know. Run ./configure -help for details on
some of the pertinent environment variables.

You can pass initial values for configuration parameters to configure by set-
ting variables in the command line or in the environment. Here is an example:

% ./configure CC=c89 CFLAGS=-O2 LIBS=-lposix

45

A.2 Configure Options

Installation Names

By default, make install will install the package’s files in /usr/local/bin,
/usr/local/include, etc. You can specify an installation prefix other than
/usr/local by giving configure the option -prefix=PATH.

Optional Features

This a summary of the most important optional features. For a full list of all
available features run ./configure -help.

-enable-compinst=TYPE
enable support for compiler instrumentation, e.g. gnu,pgi,pgi9,sun
default: automatically by configure. Note: Use pgi9 for PGI compiler ver-
sion 9.0 or higher.

-enable-dyninst
enable support for Dyninst instrumentation, default: enable if found by con-
figure. Note: Requires Dyninst 1 version 6.1 or higher!

-enable-dyninst-attlib
build shared library which attaches Dyninst to the running application, de-
fault: enable if Dyninst found by configure and system supports shared
libraries

-enable-tauinst
enable support for automatic source code instrumentation by using TAU,
default: enable if found by configure. Note: Requires PDToolkit 2 or TAU 3!

-enable-cpuidtrace
enable CPU ID tracing support, default: enable if found by configure

-enable-libtrace=LIST
enable library tracing support (gen,exec,io,malloc,cudart), default: auto-
matically by configure

-enable-exectrace
enable support for tracing LIBC functions for creating and controling child
processes (e.g. execl,fork,system,wait) via library wrapping, default: en-
able

-enable-iotrace
enable support for tracing LIBC I/O functions (e.g. fopen,fclose,fread,fwrite)
via library wrapping, default: enable

1http://www.dyninst.org
2http://www.cs.uoregon.edu/research/pdt/home.php
3http://tau.uoregon.edu

46

http://www.dyninst.org
http://www.cs.uoregon.edu/research/pdt/home.php
http://tau.uoregon.edu

A VampirTrace Installation

-enable-memtrace
enable support for tracing LIBC functions for memory de/allocation (e.g.
malloc,realloc,free) via library wrapping, default: enable

-enable-cudartwrap
enable support for tracing the CUDA runtime API via library wrapping, de-
fault: enable if no CUPTI present

-enable-rutrace
enable resource usage tracing support, default: enable if found by config-
ure

-enable-metrics=TYPE
enable support for hardware performance counter (papi,cpc,necsx),
default: automatically by configure

-enable-zlib
enable ZLIB trace compression support, default: enable if found by config-
ure

-enable-mpi
enable MPI support, default: enable if MPI found by configure

-enable-fmpi-lib
build the MPI Fortran support library, in case your system does not have
a MPI Fortran library. default: enable if no MPI Fortran library found by
configure

-enable-fmpi-handle-convert
do convert MPI handles, default: enable if MPI conversion functions found
by configure

-enable-mpi2-thread
enable MPI-2 Thread support, default: enable if found by configure

-enable-mpi2-1sided
enable MPI-2 One-Sided Communication support, default: enable if found
by configure

-enable-mpi2-extcoll
enable MPI-2 Extended Collective Operation support, default: enable if
found by configure

-enable-mpi2-io
enable MPI-2 I/O support, default: enable if found configure

47

A.2 Configure Options

-enable-mpicheck
enable support for Universal MPI Correctness Interface (UniMCI), default:
enable if unimci-config found by configure

-enable-etimesync
enable enhanced timer synchronization support, default: enable if
C-LAPACK found by configure

-enable-threads=LIST
enable support for threads (pthread, omp), default: automatically by con-
figure

-enable-java
enable Java support, default: enable if JVMTI found by configure

-enable-cupti
enable support for tracing CUDA via CUPTI, default: enable if found by
configure

Important Optional Packages

This a summary of the most important optional features. For a full list of all
available features run ./configure -help.

-with-platform=PLATFORM
configure for given platform (altix,bgl,bgp,crayt3e,crayx1,crayxt,
ibm,linux,macos,necsx,origin,sicortex,sun,generic), default:
automatically by configure

-with-bitmode=32|64
specify bit mode

-with-options=FILE
load options from FILE, default: configure searches for a config file in con-
fig/defaults based on given platform and bitmode

-with-local-tmp-dir=DIR
give the path for node-local temporary directory to store local traces to,
default: /tmp

If you would like to use an external version of OTF library, set:

-with-extern-otf
use external OTF library, default: not set

-with-extern-otf-dir=OTFDIR
give the path for OTF, default: /usr

48

A VampirTrace Installation

-with-otf-flags=FLAGS
pass FLAGS to the OTF distribution configuration (only for internal OTF
version)

-with-otf-lib=OTFLIB
use given otf lib, default: -lopen-trace-format -lz

If the supplied OTF library was built without zlib support then OTFLIB will be set
to -lopen-trace-format.

-with-dyninst-dir=DYNIDIR
give the path for DYNINST, default: /usr

-with-dyninst-inc-dir=DYNIINCDIR
give the path for Dyninst-include files, default: DYNIDIR/include

-with-dyninst-lib-dir=DYNILIBDIR
give the path for Dyninst-libraries, default: DYNIDIR/lib

-with-dyninst-lib=DYNILIB
use given Dyninst lib, default: -ldyninstAPI

-with-tau-instrumentor=TAUINSTUMENTOR
give the command for the TAU instrumentor, default: tau_instrumentor

-with-pdt-cparse=PDTCPARSE
give the command for PDT C source code parser, default: cparse

-with-pdt-cxxparse=PDTCXXPARSE
give the command for PDT C++ source code parser, default: cxxparse

-with-pdt-fparse=PDTFPARSE
give the command for PDT Fortran source code parser, default: f95parse,
f90parse, or gfparse

-with-papi-dir=PAPIDIR
give the path for PAPI, default: /usr

-with-cpc-dir=CPCDIR
give the path for CPC, default: /usr

If you have not specified the environment variable MPICC (MPI compiler com-
mand) use the following options to set the location of your MPI installation:

-with-mpi-dir=MPIDIR
give the path for MPI, default: /usr/

49

A.2 Configure Options

-with-mpi-inc-dir=MPIINCDIR
give the path for MPI-include files,
default: MPIDIR/include/

-with-mpi-lib-dir=MPILIBDIR
give the path for MPI-libraries, default: MPIDIR/lib/

-with-mpi-lib
use given mpi lib

-with-pmpi-lib
use given pmpi lib

If your system does not have an MPI Fortran library set -enable-fmpi-lib
(see above), otherwise set:

-with-fmpi-lib
use given fmpi lib

Use the following options to specify your MPI-implementation

-with-hpmpi
set MPI-libs for HP MPI

-with-pcmpi
set MPI-libs for Platform MPI

-with-intelmpi
set MPI-libs for Intel MPI

-with-intelmpi2
set MPI-libs for Intel MPI2

-with-lam
set MPI-libs for LAM/MPI

-with-mpibgl
set MPI-libs for IBM BG/L

-with-mpibgp
set MPI-libs for IBM BG/P

-with-mpich
set MPI-libs for MPICH

-with-mpich2
set MPI-libs for MPICH2

50

A VampirTrace Installation

-with-mvapich
set MPI-libs for MVAPICH

-with-mvapich2
set MPI-libs for MVAPICH2

-with-mpisx
set MPI-libs for NEC MPI/SX

-with-mpisx-ew
set MPI-libs for NEC MPI/SX with 8 Byte Fortran Integer

-with-openmpi
set MPI-libs for Open MPI

-with-sgimpt
set MPI-libs for SGI MPT

-with-sunmpi
set MPI-libs for SUN MPI

-with-sunmpi-mt
set MPI-libs for SUN MPI-MT

To enable enhanced timer synchronization a LAPACK library with C wrapper
support is needed:

-with-clapack-dir=LAPACKDIR
set the path for CLAPACK, default: /usr

-with-clapack-lib
set CLAPACK-libs, default: -lclapack -lcblas -lf2c

-with-clapack-acml
set CLAPACK-libs for ACML

-with-clapack-essl
set CLAPACK-libs for ESSL

-with-clapack-mkl
set CLAPACK-libs for MKL

-with-clapack-sunperf
set CLAPACK-libs for SUN Performance Library

To enable Java support the JVM Tool Interface (JVMTI) version 1.0 or higher is
required:

51

A.2 Configure Options

-with-jvmti-dir=JVMTIDIR
give the path for JVMTI, default: $JAVA_HOME

-with-jvmti-inc-dir=JVMTIINCDIR
give the path for JVMTI-include files, default: JVMTI/include

To enable support for generating wrapper for 3th-Party libraries the C code parser
CTool 4 is needed:

-with-ctool-dir=CTOOLDIR
give the path for CTool, default: /usr

-with-ctool-inc-dir=CTOOLINCDIR
give the path for CTool-include files, default: CTOOLDIR/include

-with-ctool-lib-dir=CTOOLLIBDIR
give the path for CTool-libraries, default: CTOOLDIR/lib

-with-ctool-lib=CTOOLLIB
use given CTool lib, default: automatically by configure

To enable support for CUDA API wrapping, the CUDA-Toolkit install path is
needed:

-with-cuda-dir=CUDATKDIR
give the path for CUDA Toolkit, default: /usr/local/cuda

-with-cuda-inc-dir=CUDATKINCDIR
give the path for CUDA Toolkit-include files, default: CUDATKDIR/include

-with-cuda-lib-dir=CUDATKLIBDIR
give the path for CUDA Toolkit-libraries, default: CUDATKDIR/lib64

-with-cudart-lib=CUDARTLIB
use given cudart lib, default: -lcudart

-with-cudart-shlib=CUDARTSHLIB
give the pathname for the shared CUDA runtime library, default: automati-
cally by configure

To enable support for CUPTI features, the CUPTI install path is needed:

-with-cupti-dir=CUPTIDIR
give the path for CUPTI, default: /usr

-with-cupti-inc-dir=CUPTIINCDIR
give the path for CUPTI-include files, default: CUPTIDIR/include

4http://sourceforge.net/projects/ctool

52

http://sourceforge.net/projects/ctool

A VampirTrace Installation

-with-cupti-lib-dir=CUPTILIBDIR
give the path for CUPTI-libraries, default: CUPTIDIR/lib64

-with-cupti-lib=CUPTILIB
use given cupti lib, default: -lcupti

A.3. Cross Compilation

Building VampirTrace on cross compilation platforms needs some special at-
tention. The compiler wrappers, OPARI, and the Library Wrapper Generator
are built for the front-end (build system) whereas the the VampirTrace libraries,
vtdyn, vtunify, and vtfilter are built for the back-end (host system). Some
configure options which are of interest for cross compilation are shown below:

• Set CC, CXX, and FC to the cross compilers installed on the front-end.

• Set CC_FOR_BUILD and CXX_FOR_BUILD to the native compilers of the
front-end.

• Set -host= to the output of config.guess on the back-end.

• Set -with-cross-prefix= to a prefix which will be prepended to the
executables of the compiler wrappers (default: “cross-”)

• Maybe you also need to set additional commands and flags for the back-
end (e.g. RANLIB, AR, MPICC, CXXFLAGS).

Examples:
BlueGene/P and BlueGene/Q:

% ./configure --host=powerpc64-ibm-linux-gnu

Cray XK6:

% ./configure --host=x86_64-cray-linux-gnu
CC_FOR_BUILD=craycc
CXX_FOR_BUILD=crayc++

NEC SX6:

% ./configure --host=sx6-nec-superux14.1

53

A.4 Environment Set-Up

A.4. Environment Set-Up

Add the bin subdirectory of the installation directory to your $PATH environment
variable. To use VampirTrace with Dyninst, you will also need to add the lib
subdirectory to your LD_LIBRARY_PATH environment variable:

for csh and tcsh:

> setenv PATH <vt-install>/bin:$PATH
> setenv LD_LIBRARY_PATH <vt-install>/lib:$LD_LIBRARY_PATH

for bash and sh:

% export PATH=<vt-install>/bin:$PATH
% export LD_LIBRARY_PATH=<vt-install>/lib:$LD_LIBRARY_PATH

A.5. Notes for Developers

Build from SVN

If you have checked out a developer’s copy of VampirTrace (i.e. checked out
from CVS), you should first run:

% ./bootstrap [--otf-package <package>]
[--version <version>]

Note that GNU Autoconf ≥2.60 and GNU Automake ≥1.9.6 are required. You
can download them from http://www.gnu.org/software/autoconf and
http://www.gnu.org/software/automake.

54

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake

B Command Reference

B. Command Reference

B.1. Compiler Wrappers (vtcc,vtcxx,vtfort)

vtcc,vtcxx,vtfort - compiler wrappers for C, C++, Fortran

Syntax: vt<cc|cxx|fc> [options] ...

options:
-vt:help Show this help message.
-vt:version Show VampirTrace version.
-vt:<cc|cxx|fc> <cmd>

Set the underlying compiler command.

-vt:inst <insttype> Set the instrumentation type.

possible values:

compinst fully-automatic by compiler
manual manual by using VampirTrace’s API
dyninst binary by using Dyninst (www.dyninst.org)
tauinst automatic source code instrumentation by

using PDT/TAU

-vt:inst-exclude-file-list <file>[,file,...]
Set list of source files to be excluded
from the automatic instrumentation by the
compiler or PDT/TAU.
(file names can contain wildcards)

-vt:inst-exclude-file <file>
Set pathname of file containing a list of
source files to be excluded from the
automatic instrumentation by the compiler
or PDT/TAU.
(file names can contain wildcards, one file
name per line)

Note when using an exclusion list for automatic compiler
instrumentation:

55

B.1 Compiler Wrappers (vtcc,vtcxx,vtfort)

If a source file from the exclusion list is involved in a
compile step, the instrumentation is disabled for this step.

-vt:opari <!args> Set options for OPARI command. (see
share/vampirtrace/doc/opari/Readme.html)

-vt:opari-rcfile <file>
Set pathname of the OPARI resource file.
(default: opari.rc)

-vt:opari-table <file>
Set pathname of the OPARI runtime table file.
(default: opari.tab.c)

-vt:opari-exclude-file-list <file>[,file,...]
Set list of source files to be excluded from
the instrumentation of OpenMP constructs by
OPARI.
(file names can contain wildcards)

-vt:opari-exclude-file <file>
Set pathname of file containing a list of
source files to be excluded from the
instrumentation of OpenMP constructs by OPARI.
(file names can contain wildcards, one file name
per line)

-vt:noopari Disable instrumentation of OpenMP contructs
by OPARI.

-vt:<seq|mpi|mt|hyb>
Enforce application’s parallelization type.
It’s only necessary if it could not be determined
automatically based on underlying compiler and flags.
seq = sequential
mpi = parallel (uses MPI)
mt = parallel (uses OpenMP/POSIX threads)
hyb = hybrid parallel (MPI + Threads)
(default: automatically)

-vt:tau <!args> Set options for the TAU instrumentor
command.

-vt:pdt <!args> Set options for the PDT parse command.

-vt:preprocess Preprocess the source files before parsing

56

B Command Reference

by OPARI and/or PDT.

-vt:cpp <cmd> Set C preprocessor command.

-vt:cppflags <[!]flags>
Set/add flags for the C preprocessor.

-vt:verbose Enable verbose mode.

-vt:keepfiles Keep intermediate files.

-vt:reusefiles Reuse intermediate files, if exist.

-vt:show[me] Do not invoke the underlying compiler.
Instead, show the command line that would be
executed to compile and link the program.

-vt:showme-compile Do not invoke the underlying compiler.
Instead, show the compiler flags that would be
supplied to the compiler.

-vt:showme-link Do not invoke the underlying compiler.
Instead, show the linker flags that would be
supplied to the compiler.

See the man page for your underlying compiler for other
options that can be passed through ’vt<cc|cxx|fc>’.

Environment variables:
VT_INST Equivalent to ’-vt:inst’
VT_CC Equivalent to ’-vt:cc ’
VT_CXX Equivalent to ’-vt:cxx ’
VT_FC Equivalent to ’-vt:fc’
VT_CFLAGS C compiler flags
VT_CXXFLAGS C++ compiler flags
VT_FCFLAGS Fortran compiler flags
VT_LDFLAGS Linker flags
VT_LIBS Libraries to pass to the linker

The corresponding command line options overwrite the
environment variables setting.

Examples:
automatically instrumentation by compiler:

vtcc -vt:cc gcc -vt:inst compinst -c foo.c -o foo.o

57

B.2 Local Trace Unifier (vtunify)

vtcc -vt:cc gcc -vt:inst compinst -c bar.c -o bar.o
vtcc -vt:cc gcc -vt:inst compinst foo.o bar.o -o foo

manually instrumentation by using VT’s API:

vtfort -vt:inst manual foobar.F90 -o foobar -DVTRACE

IMPORTANT: Fortran source files instrumented by VT’s API
have to be preprocessed by CPP.

B.2. Local Trace Unifier (vtunify)

vtunify[-mpi] - local trace unifier for VampirTrace.

Syntax: vtunify[-mpi] [options] <input trace prefix>

options:
-h, --help Show this help message.

-V, --version Show VampirTrace version.

-o PREFIX Prefix of output trace filename.

-f FILE Function profile output filename.
(default=PREFIX.prof.txt)

-k, --keeplocal Don’t remove input trace files.

-p, --progress Show progress.

-v, --verbose Increase output verbosity.
(can be used more than once)

-q, --quiet Enable quiet mode.
(only emergency output)

--iofsl-servers LIST
Enable IOFSL mode where LIST contains a comma-separated
list of IOFSL server addresses.

--iofsl-mode MODE IOFSL mode (MULTIFILE or MULTIFILE_SPLIT).
(default: MULTIFILE_SPLIT)

--iofsl-asyncio Use asynchronous I/O in IOFSL mode.

58

B Command Reference

--stats Unify only summarized information (*.stats), no events

--nocompress Don’t compress output trace files.

--nosnapshots Don’t create snapshots.

--maxsnapshots N Maximum number of snapshots.
(default: 1024)

--nomsgmatch Don’t match messages.

--droprecvs Drop message receive events, if msg. matching
is enabled.

59

B.3 Binary Instrumentor (vtdyn)

B.3. Binary Instrumentor (vtdyn)

vtdyn - binary instrumentor (Dyninst mutator) for VampirTrace.

Syntax: vtdyn [options] <executable> [arguments ...]

options:
-h, --help Show this help message.

-V, --version Show VampirTrace version.

-v, --verbose Increase output verbosity.
(can be used more than once)

-q, --quiet Enable quiet mode.
(only emergency output)

-o, --output FILE Rewrite instrumented executable to specified pathname.

-f, --filter FILE Pathname of input filter file.

-s, --shlibs SHLIBS[,...]
Comma-separated list of shared libraries which shall
also be instrumented.

--outer-loops Do instrument outer loops within functions.

--inner-loops Do instrument inner loops within outer loops.
(implies --outer-loops)

--loop-iters Do instrument loop iterations.
(implies --outer-loops)

--ignore-nodbg Don’t instrument functions which have no debug
information.

60

B Command Reference

B.4. Trace Filter Tool (vtfilter)

vtfilter[-mpi] - filter tool for VampirTrace.

Syntax:
Generate a filter file:

vtfilter[-mpi] --gen [gen-options] <input trace file>

Filter a trace using an already existing filter file:
vtfilter[-mpi] [--filt] [filt-options]

--filter=<input filter file> <input trace file>

options:
--gen Generate a filter file.

See ’gen-options’ below for valid options.

--filt Filter a trace using an already existing
filter file. (default)
See ’filt-options’ below for valid options.

-h, --help Show this help message.

-V, --version Show VampirTrace version.

-p, --progress Show progress.

-v, --verbose Increase output verbosity.
(can be used more than once)

gen-options:
-o, --output=FILE Pathname of output filter file.

-r, --reduce=N Reduce the trace size to N percent of the
original size. The program relies on the
fact that the major part of the trace are
function calls. The approximation of size
will get worse with a rising percentage of
communication and other non function
calling or performance counter records.

-l, --limit=N Limit the number of calls for filtered
function to N.
(default: 0)

-s, --stats Prints out the desired and the expected
percentage of file size.

61

B.4 Trace Filter Tool (vtfilter)

-e, --exclude=FUNC[;FUNC;...]
Exclude certain functions from filtering.
A function name may contain wildcards.

--exclude-file=FILE Pathname of file containing a list of
functions to be excluded from filtering.

-i, --include=FUNC[;FUNC;...]
Force to include certain functions into
the filter. A function name may contain
wildcards.

--include-file=FILE Pathname of file containing a list of
functions to be included into the filter.

--include-callees Automatically include callees of included
functions as well into the filter.

filt-options:
-o, --output=FILE Pathname of output trace file.

-f, --filter=FILE Pathname of input filter file.

-s, --max-streams=N Maximum number of output streams.
(default: 0)

vtfilter: Set this to 0 to get the same number of
output streams as input streams.

vtfilter-mpi: Set this to 0 to get the same number of
output streams as MPI processes used, but
at least the number of input streams.

--max-file-handles=N
Maximum number of files that are allowed
to be open simultaneously.
(default: 256)

--nocompress Don’t compress output trace files.

62

B Command Reference

B.5. Library Wrapper Generator (vtlibwrapgen)

vtlibwrapgen - library wrapper generator for VampirTrace.

Syntax:
Generate a library wrapper source file:

vtlibwrapgen [gen-options] <input header file>
[input header file...]

Build a wrapper library from a generated source file:
vtlibwrapgen --build [build-options]

<input lib. wrapper source file>

options:
--gen Generate a library wrapper source file.

This is the default behavior. See
’gen-options’ below for valid options.

--build Build a wrapper library from a generated
source file. See ’build-options’ below
for valid options.

-h, --help Show this help message.

-V, --version Show VampirTrace version.

-q, --quiet Enable quiet mode.
(only emergency output)

-v, --verbose Increase output verbosity.
(can be used more than once)

gen-options:
-o, --output=FILE Pathname of output wrapper source file.

(default: wrap.c)

-l, --shlib=SHLIB Pathname of shared library that contains
the actual library functions.
(can be used more then once)

-f, --filter=FILE Pathname of input filter file.

-g, --group=NAME Separate function group name for wrapped
functions.

-s, --sysheader=FILE

63

B.5 Library Wrapper Generator (vtlibwrapgen)

Header file to be included additionally.

--nocpp Don’t use preprocessor.

--keepcppfile Don’t remove preprocessed header files.

--cpp=CPP C preprocessor command
(default: gcc -E)

--cppflags=CPPFLAGS
C preprocessor flags, e.g.
-I<include dir>

--cppdir=DIR Change to this preprocessing directory.

environment variables:
VT_CPP C preprocessor command

(equivalent to ’--cpp’)
VT_CPPFLAGS C preprocessor flags

(equivalent to ’--cppflags’)

build-options:
-o, --output=PREFIX

Prefix of output wrapper library.
(default: libwrap)

--shared Do only build shared wrapper library.

--static Do only build static wrapper library.

--libtool=LT Libtool command

--cc=CC C compiler command (default: gcc)

--cflags=CFLAGS C compiler flags

--ld=LD linker command (default: CC)

--ldflags=LDFLAGS linker flags, e.g. -L<lib dir>
(default: CFLAGS)

--libs=LIBS libraries to pass to the linker,
e.g. -l<library>

environment variables:
VT_CC C compiler command

64

B Command Reference

(equivalent to ’--cc’)
VT_CFLAGS C compiler flags

(equivalent to ’--cflags’)
VT_LD linker command

(equivalent to ’--ld’)
VT_LDFLAGS linker flags

(equivalent to ’--ldflags’)
VT_LIBS libraries to pass to the linker

(equivalent to ’--libs’)

examples:
Generating wrapper library ’libm_wrap’ for the Math library
’libm.so’:

vtlibwrapgen -l libm.so -g MATH -o mwrap.c \
/usr/include/math.h
vtlibwrapgen --build -o libm_wrap mwrap.c
export LD_PRELOAD=$PWD/libm_wrap.so:libvt.so

B.6. Application Execution Wrapper (vtrun)

vtrun - application execution wrapper for VampirTrace.

Syntax: vtrun [options] <executable> [arguments]

options:
-h, --help Show this help message.

-V, --version Show VampirTrace version.

-v, --verbose Increase output verbosity.
(can be used more than once)

-q, --quiet Enable quiet mode.
(only emergency output)

-<seq|mpi|mt|hyb> Set application’s parallelization type.
It’s only necessary if it could not
be determined automatically.
seq = sequential
mpi = parallel (uses MPI)
mt = parallel (uses OpenMP/POSIX threads)
hyb = hybrid parallel (MPI + Threads)
(default: automatically)

65

B.7 IOFSL server startup script (vtiofsl-start)

--fortran Set application’s language to Fortran.
It’s only necessary for MPI-applications
and if it could not be determined
automatically.

--dyninst Instrument user functions by Dyninst.

--extra-libs=LIBS Extra libraries to preload.

example:
original:

mpirun -np 4 ./a.out
with VampirTrace:

mpirun -np 4 vtrun ./a.out

B.7. IOFSL server startup script (vtiofsl-start)

vtiofsl-start - set environment variables and start IOFSL servers.

Syntax: vtiofsl-start [options]

options:
-h, --help Show this help message.

-V, --version Show VampirTrace version.

-v, --verbose Increase output verbosity.
(can be used more than once)

-q, --quiet Enable quiet mode.
(only emergency output)

-n, --num NUM Number of IOFSL servers to start.

-m, --mode MODE IOFSL mode (MULTIFILE or MULTIFILE_SPLIT).
(default: MULTIFILE_SPLIT)

--asyncio Use asynchronous I/O.

environment variables:
VT_IOFSL_NUM_SERVERS

equivalent to ’-n’ or ’--num’
VT_IOFSL_MODE equivalent to ’-m’ or ’--mode’
VT_IOFSL_ASYNC_IO=<yes|true|1>

equivalent to ’--asyncio’

66

B Command Reference

note:
This script needs to be sourced from a shell, since it sets
environment variables.
Either -n or VT_IOFSL_NUM_SERVERS must be specified.

B.8. IOFSL server shutdown script (vtiofsl-stop)

vtiofsl-stop - stop running IOFSL servers.

Syntax: vtiofsl-stop [options]

options:
-h, --help Show this help message.

-V, --version Show VampirTrace version.

-v, --verbose Increase output verbosity.
(can be used more than once)

-q, --quiet Enable quiet mode.
(only emergency output)

note:
This script needs to be sourced from a shell, since it sets
environment variables.

67

C Counter Specifications

C. Counter Specifications

C.1. PAPI

Available counter names can be queried with the PAPI commands papi_avail
and papi_native_avail. Depending on the hardware there are limitations
in the combination of different counters. To check whether your choice works
properly, use the command papi_event_chooser.

PAPI_L[1|2|3]_[D|I|T]C[M|H|A|R|W]
Level 1/2/3 data/instruction/total cache
misses/hits/accesses/reads/writes

PAPI_L[1|2|3]_[LD|ST]M
Level 1/2/3 load/store misses

PAPI_CA_SNP Requests for a snoop
PAPI_CA_SHR Requests for exclusive access to shared cache line
PAPI_CA_CLN Requests for exclusive access to clean cache line
PAPI_CA_INV Requests for cache line invalidation
PAPI_CA_ITV Requests for cache line intervention

PAPI_BRU_IDL Cycles branch units are idle
PAPI_FXU_IDL Cycles integer units are idle
PAPI_FPU_IDL Cycles floating point units are idle
PAPI_LSU_IDL Cycles load/store units are idle

PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses
PAPI_TLB_TL Total translation lookaside buffer misses

PAPI_BTAC_M Branch target address cache misses
PAPI_PRF_DM Data prefetch cache misses
PAPI_TLB_SD Translation lookaside buffer shootdowns

PAPI_CSR_FAL Failed store conditional instructions
PAPI_CSR_SUC Successful store conditional instructions
PAPI_CSR_TOT Total store conditional instructions

PAPI_MEM_SCY Cycles Stalled Waiting for memory accesses

69

C.1 PAPI

PAPI_MEM_RCY Cycles Stalled Waiting for memory Reads
PAPI_MEM_WCY Cycles Stalled Waiting for memory writes

PAPI_STL_ICY Cycles with no instruction issue
PAPI_FUL_ICY Cycles with maximum instruction issue
PAPI_STL_CCY Cycles with no instructions completed
PAPI_FUL_CCY Cycles with maximum instructions completed

PAPI_BR_UCN Unconditional branch instructions
PAPI_BR_CN Conditional branch instructions
PAPI_BR_TKN Conditional branch instructions taken
PAPI_BR_NTK Conditional branch instructions not taken
PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_BR_PRC Conditional branch instructions correctly

predicted

PAPI_FMA_INS FMA instructions completed
PAPI_TOT_IIS Instructions issued
PAPI_TOT_INS Instructions completed
PAPI_INT_INS Integer instructions
PAPI_FP_INS Floating point instructions
PAPI_LD_INS Load instructions
PAPI_SR_INS Store instructions
PAPI_BR_INS Branch instructions
PAPI_VEC_INS Vector/SIMD instructions
PAPI_LST_INS Load/store instructions completed
PAPI_SYC_INS Synchronization instructions completed
PAPI_FML_INS Floating point multiply instructions
PAPI_FAD_INS Floating point add instructions
PAPI_FDV_INS Floating point divide instructions
PAPI_FSQ_INS Floating point square root instructions
PAPI_FNV_INS Floating point inverse instructions

PAPI_RES_STL Cycles stalled on any resource
PAPI_FP_STAL Cycles the FP unit(s) are stalled

PAPI_FP_OPS Floating point operations
PAPI_TOT_CYC Total cycles
PAPI_HW_INT Hardware interrupts

70

C Counter Specifications

C.2. CPC

Available counter names can be queried with the VampirTrace tool vtcpcavail.
In addition to the counter names, it shows how many performance counters can
be queried at a time. See below for a sample output.

% ./vtcpcavail
CPU performance counter interface: UltraSPARC T2
Number of concurrently readable performance counters
on the CPU: 2

Available events:
AES_busy_cycle
AES_op
Atomics
Br_completed
Br_taken
CPU_ifetch_to_PCX
CPU_ld_to_PCX
CPU_st_to_PCX
CRC_MPA_cksum
CRC_TCPIP_cksum
DC_miss
DES_3DES_busy_cycle
DES_3DES_op
DTLB_HWTW_miss_L2
DTLB_HWTW_ref_L2
DTLB_miss
IC_miss
ITLB_HWTW_miss_L2
ITLB_HWTW_ref_L2
ITLB_miss
Idle_strands
Instr_FGU_arithmetic
Instr_cnt
Instr_ld
Instr_other
Instr_st
Instr_sw
L2_dmiss_ld
L2_imiss
MA_busy_cycle
MA_op
MD5_SHA-1_SHA-256_busy_cycle
MD5_SHA-1_SHA-256_op
MMU_ld_to_PCX
RC4_busy_cycle

71

C.3 NEC SX Hardware Performance Counter

RC4_op
Stream_ld_to_PCX
Stream_st_to_PCX
TLB_miss

See the "UltraSPARC T2 User’s Manual" for descriptions of these
events. Documentation for Sun processors can be found at:
http://www.sun.com/processors/manuals

C.3. NEC SX Hardware Performance Counter

This is a list of all supported hardware performance counters for NEC SX ma-
chines.

SX_CTR_STM System timer reg
SX_CTR_USRCC User clock counter
SX_CTR_EX Execution counter
SX_CTR_VX Vector execution counter
SX_CTR_VE Vector element counter
SX_CTR_VECC Vector execution clock counter
SX_CTR_VAREC Vector arithmetic execution clock counter
SX_CTR_VLDEC Vector load execution clock counter
SX_CTR_FPEC Floating point data execution counter
SX_CTR_BCCC Bank conflict clock counter
SX_CTR_ICMCC Instruction cache miss clock counter
SX_CTR_OCMCC Operand cache miss clock counter
SX_CTR_IPHCC Instruction pipeline hold clock counter
SX_CTR_MNCCC Memory network conflict clock counter
SX_CTR_SRACC Shared resource access clock counter
SX_CTR_BREC Branch execution counter
SX_CTR_BPFC Branch prediction failure counter

72

C Counter Specifications

C.4. Resource Usage

The list of resource usage counters can also be found in the manual page of
getrusage. Note that, depending on the operating system, not all fields may
be maintained. The fields supported by the Linux 2.6 kernel are shown in the
table.

Name Unit Linux Description
ru_utime ms x Total amount of user time used.
ru_stime ms x Total amount of system time used.
ru_maxrss kB Maximum resident set size.
ru_ixrss kB × s Integral shared memory size (text segment)

over the runtime.
ru_idrss kB × s Integral data segment memory used over the

runtime.
ru_isrss kB × s Integral stack memory used over the run-

time.
ru_minflt # x Number of soft page faults (i.e. those ser-

viced by reclaiming a page from the list of
pages awaiting reallocation).

ru_majflt # x Number of hard page faults (i.e. those that
required I/O).

ru_nswap # Number of times a process was swapped out
of physical memory.

ru_inblock # Number of input operations via the file sys-
tem. Note: This and ru_oublock do not
include operations with the cache.

ru_oublock # Number of output operations via the file sys-
tem.

ru_msgsnd # Number of IPC messages sent.
ru_msgrcv # Number of IPC messages received.
ru_nsignals # Number of signals delivered.
ru_nvcsw # x Number of voluntary context switches, i.e.

because the process gave up the processor
before it had to (usually to wait for some re-
source to be available).

ru_nivcsw # x Number of involuntary context switches, i.e.
a higher priority process became runnable or
the current process used up its time slice.

73

D Using VampirTrace with IOFSL

D. Using VampirTrace with IOFSL

D.1. Introduction

VampirTrace and OTF can make use of the I/O Forwarding Scalability Layer
(IOFSL) which allows users to write the data of many streams of a parallel trace
into one or few physical files (so called multifiles) during program run. Compared
with the default of writing at least two files per stream, process or even thread,
this can provide a substantial performance benefit and is especially important for
stability when recording highly parallel traces.

D.2. Overview

This section gives an overview over the architecture and principles from a tech-
nical point of view.

D.2.1. File handling in OTF

The Open Trace Format (OTF) is utilized by VampirTrace to store its trace infor-
mation obtained during a run of the instrumented application. The OTF library
provides an interface for reading and writing trace files. A trace consists of one
or more so called streams, each containing the data of one process or thread.
The data is stored in records encoded using a plain ASCII format and can op-
tionally be transparently compressed. Although it basically offers a way to store
several streams in one physical file, it does not offer mechanisms to assure data
consistency for concurrent writes into one file.

To allow for arbitrary thread creation during a trace run and to avoid expensive
locking, VampirTrace writes the obtained data of each process or thread into
separate OTF files causing the creation of at least two files per process/thread
(definitions and events). With the ever increasing number of parallel processes
and the limitations of today’s parallel filesystem’s meta-data processing, this can
become a severe problem for system performance and stability. Consequently,
the goal was to significantly reduce the number of physical files used by Vampir-
Trace and OTF during a trace run from at least two files per process/thread to a
number that is acceptable for today’s filesystems.

75

D.2 Overview

D.2.2. I/O Forwarding Scalability Layer

The goal of the I/O Forwarding Scalability Layer IOFSL is to provide a forwarding
layer on the basis of a client-server architecture. It allows clients to send I/O
requests to a server which is able to execute the original I/O calls and even
aggregate these requests to improve performance. Besides the aggregation of
normal write requests, the server also offers non-blocking write requests and
a so-called atomic append mode which allows many clients to write potentially
large blocks of data concurrently into one single physical file (multifile) without
the need for client-side locking. In this case, the data is appended to the end
of the file and the corresponding offset can be obtained later. Additionally, this
atomic append feature can be used with more than one server allowing the write
requests of many clients into one file being distributed across a smaller number
of servers.

IOFSL is being developed at Argonne National Laboratory and is available at
www.iofsl.org. By relying on open software, it is portable to a wide range
of machines and has been tested on a generic Linux cluster as well as on the
leadership-class computing system Jaguar.

D.2.3. Architecture

Application

VampirTrace

OTF

IOFSL Client

IOFSL Server

Application

VampirTrace

OTF

IOFSL Client

...

File system

FS Client

...

Application

VampirTrace

OTF

IOFSL Client

Application

VampirTrace

OTF

IOFSL Client

IOFSL Server

Application

VampirTrace

OTF

IOFSL Client

...

FS Client

Application

VampirTrace

OTF

IOFSL Client

Figure D.1.: The integration of IOFSL, VampirTrace and OTF

Integrating the three previously described parts leads to an architecture with
VampirTrace and OTF built on top of IOFSL. Figure D.1 provides an illustration
of this architecture. The instrumented application generates events that are han-
dled and buffered by the VampirTrace runtime library. When the thread local
buffer is full, the events are passed to the OTF library where they are com-
pressed. If the IOFSL mode is enabled, the resulting write buffers are passed
to the IOFSL client library (zoidfs) which sends the data to the IO forwarding

76

www.iofsl.org

D Using VampirTrace with IOFSL

servers where it is aggregated (atomic append), buffered and finally sent out to
the file system.

Since IOFSL servers can handle multiple clients, an N : M mapping of clients
to servers is possible. The exact ratio depends on the amount of data the clients
send and the bandwidth available for the server nodes. In our test cases, a ratio
of up to 300 clients per server was used.

When using the IOFSL integration, all write requests in OTF are issued using
the zoidfs API1. Those writes are handled by the IOFSL forwarding servers and
aggregated into a single file using the atomic append feature. The offset in the
multifile is returned to OTF and stored in a second file, the so called index file,
in order to maintain the mapping between written blocks and streams. For any
block of a stream written into the multifile, the index file contains the ID of the
stream, the start of the block, and its length. This allows for an efficient reading
of blocks since only the index file has to be scanned for entries for a given stream
ID. Additionally, a large number of logical files (streams) can be stored using only
two physical files.

D.3. Installation

In order to use this setup, IOFSL and VampirTrace have to be compiled in order.
In the following sections, the directory <install_dir> should be replaced with
a – possibly user-local – directory used for installation, e.g. $HOME/local2.
The installation procedure for IOFSL is described at https://trac.mcs.anl.
gov/projects/iofsl/wiki/Building. Currently the iofsl_vampir git
branch is required.

D.3.1. Support Libraries

IOFSL requires several libraries in order to work correctly:

• GNU autoconf in version 2.61 or higher

• Boost packages date_time, program_options, regex, thread, and
test, available at www.boost.org

• BMI/PVFS, available at www.pvfs.org

• OpenPA, available at https://trac.mcs.anl.gov/projects/openpa/

Note that building boost, OpenPA or BMI/PVFS is not required in case it is al-
ready present on the machine. Building GNU autoconf is not covered by this doc-
ument. For the use with VampirTrace, ROMIO and therefore rebuilding MPICH
is not required.

1The OTF master control file is written using POSIX I/O in any case.
2The software packages can be installed in different directories.

77

https://trac.mcs.anl.gov/projects/iofsl/wiki/Building
https://trac.mcs.anl.gov/projects/iofsl/wiki/Building
www.boost.org
www.pvfs.org
https://trac.mcs.anl.gov/projects/openpa/

D.3 Installation

Building Boost Boost Version 1.46.1 is recommended, other Versions might
be incompatible. To build the required boost libraries, issue the following com-
mands in the source directory:

$> ./bootstrap.sh \
--with-libraries=system,date_time,\

program_options,regex,thread,test \
--prefix=<install_dir>

$> ./bjam --prefix=<install_dir> \
--libdir=<install_dir>/lib \
--includedir=<install_dir>/include \
install

Building OpenPA To build the required OpenPA library, issue the following
commands in the source directory:

$> ./configure --prefix=<install_dir>
$> make all install

Building BMI/PVFS To build the required BMI/PVFS library, issue the following
commands in the source directory:

$> ./configure --enable-bmi-only --prefix=<install_dir> \
--with-openib=<openib_install_dir>

$> make all install

Note that the option --with-openib can be omitted if support for direct access
to InfiniBand is not required.

D.3.2. Building IOFSL

Create a local copy of the git reposotiry branch:

$> mkdir iofsl
$> cd iofsl
$> git init
$> git remote add -t iofsl_vampir \

-f origin git://git.mcs.anl.gov/iofsl.git
$> git checkout iofsl_vampir
$> ./prepare

The following commands can be used to build the IOFSL client and server:

78

D Using VampirTrace with IOFSL

$> ./configure --with-bmi=<install_dir> \
--with-boost=<install_dir> --with-openpa=<install_dir> \
--prefix=<install_dir> --with-cunit=no

$> make all install

D.3.3. Building VampirTrace & OTF

After extracting the source code from the archive, issue the following commands:

$> ./configure \
--prefix=<install_dir> \
--enable-iofsl \
--with-zoidfs-dir=<install_dir> \
--with-bmi-dir=<install_dir> \

On Cray XK6 with PBS as batch system add
--enable-iofsl-scripts=crayxk6

$> make all install

D.4. Usage Examples

The use of I/O forwarding servers implicates a system specific deployment. Vam-
pirTrace mitigates this effort by providing convenient scripts for specific system
setups. Currently Cray XK6 systems are supported, which are described here.
Furthermore the IOFSL specific adjustable parameters of VampirTrace are de-
scribed.

D.4.1. Using VampirTrace with IOFSL on Cray XK6 / with PBS

Building your application with VampirTrace

We assume that VampirTrace with IOFSL support has been installed as previ-
ously described. This might be deployed to the user using a module.

Check module av vampirtrace to
see what is available at your system

$> module load vampirtrace/5.13

Build your application as usual with VampirTrace. For details please refer to
the general part of this documentation.

$> vtcc -vt:hyb application.c -o application

79

D.4 Usage Examples

Running an Example

The scripts vtiofsl-start and vtiofsl-stop are provided to control the
IOFSL server instances. They will be launched on dedicated compute nodes
that are part of the batch Job allocation.

PBS Options It is important to reserve a sufficient number of processor cores.
The number of cores requested must be large enough to contain the number
of application cores plus the number of cores required for the IOFSL server in-
stances. Each IOFSL server will run on a dedicated node3. Thus
Nallocated ≥ ((NIOFSL ∗ 16) +NApplication) must hold.

Example using 64 server instances:

#!/bin/sh
#PBS...
[...]
Allocate enough cores: (64 * 16) + 16384 => 17408
#PBS -l size=17408
Preserve environment
#PBS -V

Environment Variables It is highly recommended to set the following environ-
ment variable.

• VT_PFORM_GDIR: The directory that will contain the final trace and some
temporary IOFSL output.

Example:

[...]
The directory to which the trace is written
mkdir trace
export VT_PFORM_GDIR=$PWD/trace

Execution Launching and stopping the servers as is done using the supplied
scripts. The scripts are sourced from the job script or interactive shell to allow
them setting required environment variables for VampirTrace.

[...]
rca module need to be loaded!
. /opt/modules/default/etc/modules.sh
module load rca

3The server makes use of all the nodes resources by multithreading and allocating large I/O
buffers

80

D Using VampirTrace with IOFSL

Start server
source vtiofsl-start -n 64

Run application as usual
aprun -n 16384 application --parameter inputfile

Shutdown server
source vtiofsl-stop

Interactive Jobs Interactive jobs work the same way. You can either run a
script similar to the job submission script, or run the commands from your shell.
However the scripts are developed and tested on bash. Other shells are not
supported.

The vtiofsl-scripts assume to be run within a PBS job. If you run them
multiple times within one job, the detailed log files may be overwritten.

Log files and debug information The vtiofsl-scripts create a number of
log files and configuration files in the $VT_PFORM_GDIR/.iofsl directory.

D.4.2. Manual Usage

The machine specific installation strives to hide most of the complexity of the
I/O forwarding solution from the end-user. In the background, the forwarding
server(s) are started and environment variables are set in order to point Vampir-
Trace / OTF to them.

Configuring the Server The server is configured using a configuration file. At
server start-up, this file is provided using the --config argument. The cray XK6
configuration file is provided in the package4. For more information about the
options available please refer to the IOFSL documentation5. The most important
option is the serverlist entry in the bmi section which takes a list of server
addresses, e.g. :

bmi
{

serverlist = ("tcp://192.168.97.236:12345",
"tcp://192.168.97.237:12345",
"tcp://192.168.97.238:12346");

4tools/vtiofsl/platform/crayxk6-iofwd.cf
5https://trac.mcs.anl.gov/projects/iofsl/wiki/ConfigurationFile

81

https://trac.mcs.anl.gov/projects/iofsl/wiki/ConfigurationFile

D.4 Usage Examples

}

At start-up, the server looks for the environment variable ZOIDFS_SEVER_RANK
to determine its address, e.g. ZOIDFS_SEVER_RANK=0 would cause the ad-
dress tcp://192.168.97.236:12345 to be used. The configuration file can
be shared between all server instances and lets the servers determine the coor-
dination server, which is usually rank 0.

Launching the Servers The I/O forwarding server (iofwd) can be deployed
in multiple ways. This is highly system specific, possible ways to do so are:

• ssh to the compute nodes and execute iofwd there.

• Running iofwd on dedicated I/O nodes with user access.

• Using a system specific launcher, e.g. aprun on Cray systems.

• Making use of advanced batch system features.

Pointing VampirTrace to the servers The list of available I/O forwarding servers
is provided to VampirTrace by setting VT_IOFSL_SERVERS to a comma-separated
list of addresses, e.g.

export VT_IOFSL_SERVERS= \
"tcp://192.168.1.1:12345,tcp://192.168.1.2:12345"

VampirTrace / OTF will choose a server upon opening the file based on the
stream identifier encoded in the original filename.

File modes In the default setting, each server will create two files for each
type of file, the actual file containing the appended data and an index file. This
mode is called MULTIFILE_SPLIT. It provides a good workload for parallel file
systems. In the so called MULTIFILE mode, all servers share data and in-
dex files. It requires additional synchronization between the servers. Also the
Lustre file system does not allow to stripe individual files over more than a max-
imum number of storage targets, introducing a performance-bottleneck. The
MULTIFILE mode should be considered experimental. Therefore, using the de-
fault mode is recommended. The mode can be set using VT_IOFSL_MODE to
either MULTIFILE_SPLIT or MULTIFILE.

Asynchronous I/O IOFSL offers a capability, where write requests are buffered
on the forwarding server. This can reduce the trace flush times, without consum-
ing node local resources. To enable this, VT_IOFSL_ASYNC_IO is set to yes.

82

D Using VampirTrace with IOFSL

Unification The unification step can also use the IOFSL mode for writing the
output trace. This is controlled with the same environment variables. Therefore
if VampirTrace uses IOFSL, the implicit unification at the end of the trace run will
also use IOFSL for output. If VT_UNIFY=no, then one should make sure that
the correct IOFSL environment is also available to the later vtunify(-mpi),
unless intended otherwise.

Compatibility of the generated trace All tools that work on the generated
trace need to be built with the appropriate OTF Version to ensure compatibility
with traces generated with IOFSL. This especially applies to the Vampir visual-
ization server and GUI. If backwards compatibility is required, the trace can be
transformed using otfmerge, e.g.

$> mpirun -np 1024 \
otfmerge-mpi -n 0 -o merged-trace input-trace.otf

83

E Enhanced filtering capability of VampirTrace

E. Enhanced filtering capability of
VampirTrace

E.1. Introduction

Function filtering is one important option to decrease and control the size of
a trace file. Beside the already existing functionality to filter functions, groups,
and different stack-levels, VampirTrace is able to filter functions by their calling
context. This enhanced filtering functionality allows the user to specify call-path
that should be recorded or not. To use this feature, the user only has to specify
the complete and exact call-path, which should be filtered, using the following
filtering syntax (see also Section 5.1):

<function-call-path> -- <limit> C

Note: All subfunctions of a filtered call-path will also be filtered.

E.2. Automatically Create Filter Files Using
otfprofile

The otfprofile tool, which is a part of the Open Trace Format (OTF) toolchain,
allows to automatically analyze the runtime behavior of each function on a per
call-path basis. I.e., it will become easier to identify irregularities and similarities
on different calling contexts of a function.

Call-paths that have a similiar runtime behavior, i.e., minimum, 25th percentile,
median, 75th percentile, and maximum are close together, are candidates to be
filtered out. otfprofile uses these dispersion metrics to order the call-paths
by their similarity. The most similar call-paths will be inserted in the automatically
created filter file if the option --disp filter is enabled.

The percentage of call-paths that should be filtered can be controlled with the
option --disp-reduction.

The following example creates a filter file result.filter with call-paths that
should be filtered:

85

E.2 Automatically Create Filter Files Using otfprofile

% otfprofile -i a.otf --disp filter

% cat result.filter
VampirTrace dispersion callpath filter specification
generated with otfprofile on Fri Sep 21 08:43:18 2012

MAIN__;advection_mp_advection_init_;MPI_Comm_size -- 0 C
MAIN__;FD4_UTIL_MOD::FD4_UTIL_ALLOCATE_ALL_BLOCKS -- 0 C
MAIN__;FD4_BALANCE_MOD::FD4_BALANCE_PARAMS -- 0 C
MAIN__;FD4_DOMAIN_MOD::FD4_DOMAIN_CREATE_FIXED;
FD4_DOMAIN_MOD::FD4_DOMAIN_CREATE_SPECIFIC;
FD4_VARTAB_MOD::FD4_VARTAB_CREATE_VARINFO -- 0 C
MAIN__;FD4_DOMAIN_MOD::FD4_DOMAIN_CREATE_FIXED;
FD4_DOMAIN_MOD::FD4_DOMAIN_CREATE_SPECIFIC;MPI_Comm_rank -- 0 C
MAIN__;MPI_Comm_rank -- 0 C

previous filter content

In addition, otfprofile offers the functionality to analyze a previous used
filter file and to add this filter information to the new filter file, which can be used
for upcoming measurement runs, with the option --disp-filter. This feature
can be used to iteratively create new filter files.

% cat previous.filter
MPI_Comm_free -- 0

% otfprofile -i a.otf -d filter --disp-filter previous.filter

% cat result.filter
VampirTrace dispersion callpath filter specification
generated with otfprofile on Tue Sep 21 13:13:29 2012

MAIN__;advection_mp_advection_init_;MPI_Comm_size -- 0 C
MAIN__;FD4_UTIL_MOD::FD4_UTIL_ALLOCATE_ALL_BLOCKS -- 0 C
MAIN__;FD4_BALANCE_MOD::FD4_BALANCE_PARAMS -- 0 C
MAIN__;FD4_DOMAIN_MOD::FD4_DOMAIN_CREATE_FIXED;
FD4_DOMAIN_MOD::FD4_DOMAIN_CREATE_SPECIFIC;
FD4_VARTAB_MOD::FD4_VARTAB_CREATE_VARINFO -- 0 C
MAIN__;FD4_DOMAIN_MOD::FD4_DOMAIN_CREATE_FIXED;
FD4_DOMAIN_MOD::FD4_DOMAIN_CREATE_SPECIFIC;MPI_Comm_rank -- 0 C
MAIN__;MPI_Comm_rank -- 0 C

previous filter content
MPI_Comm_free -- 0

86

E Enhanced filtering capability of VampirTrace

E.3. Example - Reducing the Level of Detail of
SPEC MPI benchmark pop2

Within this use case we monitored the SPEC MPI benchmark pop2, created a
filter file with call-paths to be filtered with otfprofile and default settings (10
percent event reduction in minimum), and rerun the benchmark with activated
call-path filter rules. Figures E.1 , E.2 , E.3 represent the visual comparision of
both monitoring runs with Vampir. The total number of invocations was reduced
from 24,369,812 to 18,692,138 (see figure E.1). It is obvious (see figure E.2) that
this call-path filtering approach does not disable the monitoring of all invocations
of a function, but reduces the number of monitored function events depending
on the calling context. Since the call-path filtering also filters subfunctions of a
call-path it may occur that even if not specified MPI communication functions will
be filtered (see figure E.3) and this may results in an incomplete communication
performance view.

87

E.3 Example - Reducing the Level of Detail of SPEC MPI benchmark pop2

Figure E.1.: Aligned and visual comparison of the SPEC MPI benchmark pop2
with no filter rules (white background) and call-path filtering (blue
background). On the left, in the mastertimeline display, is the vi-
sual representation of the runtime behavior overall processes and
on the right, in the function summary display, is the statistic infor-
mation about the number of invocations of the function groups for
each monitoring run. The total number of events was reduced from
24,369,812 to 18,692,138.

88

E Enhanced filtering capability of VampirTrace

Figure E.2.: Aligned and visual comparison of the SPEC MPI benchmark pop2
with no filter rules (white background) and call-path filtering (blue
background). On the left, in the mastertimeline display, is the visual
representation of the runtime behavior overall processes and on the
right, in the function summary display, is the statistic information
about the number of invocations of the functions for each monitoring
run. It is obvious that depending on the calling context functions
were filtered more or less.

89

E.3 Example - Reducing the Level of Detail of SPEC MPI benchmark pop2

Figure E.3.: Aligned and visual comparison of the SPEC MPI benchmark pop2
with no filter rules (white background) and call-path filtering (blue
background). On the left, in the mastertimeline display, is the visual
representation of the runtime behavior overall processes and on the
right, in the function summary display, is the statistic information
about the number of invocations of the MPI functions for each moni-
toring run. Call-path filtering also effects the monitoring of MPI func-
tions depending on their calling context even if they are not specified
explicitly in the filter rules.

90

F FAQ

F. FAQ

F.1. Can I use different compilers for VampirTrace
and my application?

There are several limitations which make this generally a bad idea:

• Using different compilers when tracing OpenMP applications does not work.

• Both compilers should have the same naming style for Fortran symbols
(i.e. uppercase/lowercase, appending underscores) when tracing Fortran
MPI applications.

• VampirTrace must be built to support the instrumentation type of the com-
piler you use for the application.

For example, the combination of a GCC compiled VampirTrace with an Intel com-
piled application will work except for OpenMP. But to avoid any trouble it is ad-
visable to compile both VampirTrace and the application with the same compiler.

F.2. Why does my application need such a long
time for starting?

If subroutines have been instrumented with automatic instrumentation by GNU,
Intel, PathScale, or Open64 compilers, VampirTrace needs to look-up the func-
tion names and their source code line before program start. In certain cases,
this may take very long. To accelerate this process prepare a file with sym-
bol information using the command nm as explained in Section 2.3 and set
VT_GNU_NMFILE to the pathname of this file. This method prevents Vampir-
Trace from getting the function names from the binary.

F.3. How can I limit compiler instrumentation?

Fully-automatic instrumentation by the compilers is the most convenient method
to instrument your program. However, a variety of functions will be instrumented
and all calls of these functions will be traced. Runtime filters do not eliminate

91

F.4 Fortran file I/O is not accounted properly?

complete overhead of tracing automatically instrumented functions. Therefore, it
is often desirable to limit compiler instrumentation to specific functions. Several
compilers provide options to configure function instrumentation. Start with Vam-
pirTrace in Profiling Mode by setting VT_MODE to STAT. The profiling information
can be used to determine functions which may be excluded from automatic in-
strumentation.

The IBM C compiler≥11 and Fortran compiler≥13 provide -qfunctrace op-
tion to enable tracing for all functions. To disable tracing for all functions you can
use -qnofunctrace. Regardless of -qnofunctrace both -qfunctrace+
and -qfunctrace- can be used to enable resp. disable tracing for a colon-
separated list of function names, classes, or namespaces. For example,

-qfunctrace -qfunctrace-myFunc1:myFunc2

enables tracing for all functions except for myFunc1 and myFunc2.
Also GNU compiler ≥4.3 provides options to limit compiler instrumentation.

-finstrument-functions-exclude-file-list sets a list of files. All func-
tions defined in a file of this list will be excluded from instrumentation. The option
-finstrument-functions-exclude-function-list sets a list of func-
tion names that are excluded from instrumentation. Arguments of both compiler
options must be separated by comma. Matching of arguments with function or
file names is done on substrings. For example,

-finstrument-functions-exclude-file-list=include

will exclude any function defined in files whose pathnames contain "include".
Maybe such a rule is too restrictive, because the "include" directory of your own
program code is affected too. The pattern needs to be specified more precisely,
for instance:

-finstrument-functions-exclude-file-list=/usr/include

This rule can be used to exclude Standard Template Library (STL) calls in C++
from tracing.

F.4. Why do I see multiple I/O operations for a
single (un)formatted file read/write from my
Fortran application?

VampirTrace does not implement any tracing at the Fortran language level. There-
fore it is unaware of any I/O function calls done by Fortran applications.

However, if you enable I/O tracing using VT_IOTRACE, VampirTrace records
all calls to LIBC’s I/O functions. As Fortran uses the LIBC interface for executing
its I/O operations, these function calls will be part of the trace. Depending on
your Fortran compiler, a single Fortran file read/write operation may be split into

92

F FAQ

several LIBC read calls which you will then see in your trace.
Beware that this may lead you to the (wrong) conclusion that your application

spends time between the LIBC I/O calls inside the user function that contains the
Fortran I/O call, especially when doing formatted I/O (see Figure F.1). It is rather
the Fortran I/O subsystem which does all the formatting of the data that is eating
your cpu cycles. But as this layer is unknown to VampirTrace, it cannot be shown
and the time is accounted to the next higher function in the call stack - the user
function.

Figure F.1.: This trace of a Fortran application shows many isolated I/O oper-
ations and much time accounted to the MAIN function. Yet only a
single formatted I/O write operation is issued in the code. As Vam-
pirTrace is not able to trace the Fortran I/O layer, it looks like the
application itself uses cpu time between the traced LIBC I/O opera-
tions, which does not reflect the actual happenings.

F.5. The application has run to completion, but
there is no *.otf file. What can I do?

The absence of an *.otf file usually means that the trace was not unified. This
is the case on certain platforms, e.g. when using DYNINST or when the local
traces are not available when the application ends and VampirTrace performs
trace unification.

93

F.6 What limitations are associated with "on/off" and buffer rewind?

In those cases, a *.uctl file can be found in the directory of the trace file and
the user needs to perform trace unification manually. See Sections 3.5 and B.2
to learn more about using vtunify.

F.6. What limitations are associated with "on/off"
and buffer rewind?

Starting and stopping tracing by using the VT_ON/VT_OFF calls as well as the
buffer rewind method are considered advanced usage of VampirTrace and should
be performed with care. When restarting the recording of events, the call stack of
the application has to have the same depth as when the recording was stopped.
The same applies for the rewind call, which has to be at the same stack level as
the rewind mark. If this is not the case, an error message will be printed during
runtime and VampirTrace will abort execution. A safe method is to call VT_OFF
and VT_ON in the same function.

It is allowed to use "on/off" in a section between a rewind mark and a buffer
rewind call. But it is not allowed to call VT_SET_REWIND_MARK or VT_REWIND
during a section deactivated by the "on/off" functionality.

Buffer flushes interfere with the rewind method: If the trace buffer is flushed
after the call to VT_SET_REWIND_MARK, the mark is removed and a subsequent
call to VT_REWIND will not work and issue a warning message.

In addition, stopping or rewinding tracing while waiting for MPI messages can
cause those MPI messages not to be recorded in the trace. This can cause
problems when analyzing the OTF trace afterwards, e.g., with Vampir.

F.7. VampirTrace warns that it “cannot lock file
a.lock”, what’s wrong?

For unique naming of multiple trace files in the same directory, a file *.lock
is created and locked for exclusive access if VT_FILE_UNIQUE is set to yes
(⇒ Section 3.1). Some file systems do not implement file locking. In this case,
VampirTrace still tries to name the trace files uniquely, but this may fail in certain
cases. Alternatively, you can manually control the unique file naming by setting
VT_FILE_UNIQUE to a different numerical ID for each program run.

94

F FAQ

F.8. Can I relocate my VampirTrace installation
without rebuilding from source?

VampirTrace hard-codes some directory paths in its executables and libraries
based on installation paths specified by the configure script. However, it’s
possible to move an existing VampirTrace installation to another location and use
it without rebuild from source. Therefore it’s necessary to set the environment
variable VT_PREFIX to the new installation prefix before using VampirTrace’s
Compiler Wrappers (⇒ Section 2.1) or launching an instrumented application.
For example:

./configure --prefix=/opt/vampirtrace
make install
mv /opt/vampirtrace $HOME/vampirtrace
export VT_PREFIX=$HOME/vampirtrace

F.9. What are the byte counts in collective
communication records?

The byte counts in collective communication records changed with version 5.10.
From 5.10 on, the byte counts of collective communication records show the

bytes per rank given to the MPI call or returned by the MPI call. This is the MPI
API perspective. It is next to impossible to find out how many bytes are actually
sent or received during a collective operation by any other MPI implementation.

In the past (until VampirTrace version 5.9), the byte count in collective oper-
ation records was defined differently. It used a simple and naive hypothetical
implementation of collectives based on point-to-point messages and derived the
byte counts from that. This might have been more confusing than helpful and
was therefore changed.

Thanks to Eugene Loh for pointing this out!

F.10. I get “error: unknown asm constraint letter”

It is a known issue with the tau_instrumentor that it doesn’t support inline assem-
bler code. At the moment there is no other solution than using another kind of
instrumentation like compiler instrumenation (⇒ Section 2.3) or manual instru-
menation (⇒ Section 2.4).

95

F.11 I have a question that is not answered in this document!

F.11. I have a question that is not answered in this
document!

You may contact us at vampirsupport@zih.tu-dresden.de for support on installing
and using VampirTrace.

F.12. I need support for additional features so I can
trace application xyz.

Suggestions are always welcome (contact: vampirsupport@zih.tu-dresden.de)
but there is a chance that we can not implement all your wishes as our resources
are limited.

Anyways, the source code of VampirTrace is open to everybody so you may
implement support for new stuff yourself. If you provide us with your additions
afterwards we will consider merging them into the official VampirTrace package.

96

mailto:vampirsupport@zih.tu-dresden.de
mailto:vampirsupport@zih.tu-dresden.de

	Introduction
	Instrumentation
	Compiler Wrappers
	Instrumentation Types
	Automatic Instrumentation
	Supported Compilers
	Notes for Using the GNU, Intel, PathScale, or Open64 Compiler
	Notes on Instrumentation of Inline Functions
	Instrumentation of Loops with OpenUH Compiler

	Manual Instrumentation
	Using the VampirTrace API
	Measurement Controls

	Source Instrumentation Using PDT/TAU
	Binary Instrumentation Using Dyninst
	Static Binary Instrumentation

	Runtime Instrumentation Using VTRun
	Tracing Java Applications Using JVMTI
	Tracing Calls to 3rd-Party Libraries

	Runtime Measurement
	Trace File Name and Location
	Environment Variables
	Influencing Trace Buffer Size
	Profiling an Application
	Unification of Local Traces
	Synchronized Buffer Flush
	Enhanced Timer Synchronization
	Environment Configuration Using VTSetup

	Recording Additional Events and Counters
	Hardware Performance Counters
	Resource Usage Counters
	Memory Allocation Counter
	CPU ID Counter
	NVIDIA CUDA
	Pthread API Calls
	Plugin Counter Metrics
	I/O Calls
	Child Process Execution Calls
	MPI Correctness Checking Using UniMCI
	User-defined Counters
	User-defined Markers
	User-defined Communcation

	Filtering & Grouping
	Function Filtering
	Java Specific Filtering
	Function Grouping

	VampirTrace Installation
	Basics
	Configure Options
	Cross Compilation
	Environment Set-Up
	Notes for Developers

	Command Reference
	Compiler Wrappers (vtcc,vtcxx,vtfort)
	Local Trace Unifier (vtunify)
	Binary Instrumentor (vtdyn)
	Trace Filter Tool (vtfilter)
	Library Wrapper Generator (vtlibwrapgen)
	Application Execution Wrapper (vtrun)
	IOFSL server startup script (vtiofsl-start)
	IOFSL server shutdown script (vtiofsl-stop)

	Counter Specifications
	PAPI
	CPC
	NEC SX Hardware Performance Counter
	Resource Usage

	Using VampirTrace with IOFSL
	Introduction
	Overview
	File handling in OTF
	I/O Forwarding Scalability Layer
	Architecture

	Installation
	Support Libraries
	Building IOFSL
	Building VampirTrace & OTF

	Usage Examples
	Using VampirTrace with IOFSL on Cray XK6 / with PBS
	Manual Usage

	Enhanced filtering capability of VampirTrace
	Introduction
	Automatically Create Filter Files Using otfprofile
	Example - Reducing the Level of Detail of SPEC MPI benchmark pop2

	FAQ
	Can I use different compilers for VampirTrace and my application?
	Why does my application need such a long time for starting?
	How can I limit compiler instrumentation?
	Fortran file I/O is not accounted properly?
	There is no *.otf file. What can I do?
	What limitations are associated with "on/off" and buffer rewind?
	VampirTrace warns that it ``cannot lock file a.lock'', what's wrong?
	Can I relocate my VampirTrace installation?
	What are the byte counts in collective communication records?
	I get ``error: unknown asm constraint letter''
	I have a question that is not answered in this document!
	I need support for additional features so I can trace application xyz.

