
VampirTrace 5.4.13

User Manual

TU Dresden
Center for Information Services and
High Performance Computing (ZIH)
01062 Dresden
Germany

http://www.tu-dresden.de/zih/
http://www.tu-dresden.de/zih/vampirtrace/

E-Mail: vampirsupport@zih.tu-dresden.de

ii

http://www.tu-dresden.de/zih/
http://www.tu-dresden.de/zih/vampirtrace/
vampirsupport@zih.tu-dresden.de

Contents

Contents

1 Introduction 1

2 Instrumentation 3
2.1 The Compiler Wrappers . 3
2.2 Instrumentation Types . 5
2.3 Automatic Instrumentation . 5

2.3.1 Notes for Using the GNU, Intel, or PathScale Compiler . . . 6
2.3.2 Notes on Instrumentation of Inline Functions 6

2.4 Manual Instrumentation using the VampirTrace API 7
2.5 Manual Instrumentation using POMP 8
2.6 Binary instrumentation using Dyninst 9

3 Runtime Measurement 11
3.1 Environment Variables . 11
3.2 Influencing Trace File Size . 12
3.3 Unification of local Traces . 13

4 Recording additional Events and Counters 15
4.1 PAPI Hardware Performance Counters 15
4.2 Memory Allocation Counters . 15
4.3 Application I/O Calls . 16
4.4 User Defined Counters . 16

5 Filtering & Grouping 19
5.1 Function Filtering . 19
5.2 Function Grouping . 20

A Command Reference 21
A.1 Compiler Wrappers (vtcc,vtcxx,vtf77,vtf90) 21
A.2 Local Trace Unifier (vtunify) . 23
A.3 Dyninst Mutator (vtdyn) . 24
A.4 Trace Filter Tool (vtfilter) . 25

B PAPI Counter Specifications 27

C VampirTrace Installation 29
C.1 Basics . 29

iii

Contents

C.2 Configure Options . 29
C.3 Cross Compilation . 32
C.4 Environment Set-Up . 32
C.5 Notes for Developers . 33

This documentation describes how to prepare application programs in order to
have traces generated, when executed. This step is called instrumentation. Fur-
thermore, it explains how to control the run-time measurement system during
execution (tracing). This also includes hardware performance counter sampling,
as well as selective filtering and grouping of functions.

iv

CHAPTER 1. INTRODUCTION

1 Introduction

VampirTrace consists of a tool-set and a run-time library for instrumentation and
tracing of software applications. It is particularly tailored towards parallel and
distributed High Performance Computing (HPC) applications.

The instrumentation part modifies a given application in order to inject addi-
tional measurement calls during run-time. The tracing part provides the current
measurement functionality used by the instrumentation calls. By this means, a
variety of detailed performance properties can be collected and recorded during
run-time. This includes

• Function call enter and leave events

• MPI communication events

• OpenMP events

• Hardware performance counters

• various special purpose events

After a successful trace run, VampirTrace writes all collected data to a trace in
the Open Trace Format (OTF), see http://www.tu-dresden.de/zih/otf.

As a result the information is available for post-mortem analysis and visualiza-
tion by various tools. Most notably, VampirTrace provides the input data for the
Vampir analysis and visualization tool, see http://www.vampir.eu.

VampirTrace is included in Open MPI 1.3 and later. If not disabled explicitly,
VampirTrace is built automatically when installing Open MPI. Refer to http://
www.open-mpi.org/faq/?category=vampirtrace for more information.

Trace files can quickly become very large. With automatic instrumentation,
even tracing applications that run only for a few seconds can result in trace files of
several hundred megabytes. To protect users from creating trace files of several
gigabytes, the default behavior of VampirTrace limits the internal buffer to 32 MB.
This produces trace files that are not larger than 32 MB per process, typically a
lot smaller. Please read Section 3.2 on how to remove or change the limit.

VampirTrace supports various Unix and Linux platforms common in HPC nowa-
days. It comes as open source software under a BSD License.

1

http://www.tu-dresden.de/zih/otf
http://www.vampir.eu
http://www.open-mpi.org/faq/?category=vampirtrace
http://www.open-mpi.org/faq/?category=vampirtrace

2

CHAPTER 2. INSTRUMENTATION

2 Instrumentation
To make measurements with VampirTrace, the user’s application program needs
to be instrumented, i.e., at specific important points (called “events”) VampirTrace
measurement calls have to be activated. As an example, common events are
entering and leaving of function calls, as well as sending and receiving of MPI
messages.

By default, VampirTrace handles this automatically. In order to enable instru-
mentation of function calls, the user only needs to replace the compiler and linker
commands with VampirTrace’s wrappers, see Section 2.1 below. VampirTrace
supports different ways of instrumentation as described in Section 2.2.

2.1 The Compiler Wrappers

All the necessary instrumentation of user functions as well as MPI and
OpenMP events is handled by VampirTrace’s compiler wrappers (vtcc, vtcxx,
vtf77, and vtf90). In the script used to build the application (e.g. a makefile),
all compile and link commands should be replaced by the VampirTrace compiler
wrapper. The wrappers perform the necessary instrumentation of the program
and link the suitable VampirTrace library. Note that the VampirTrace version in-
cluded in Open MPI 1.3 has additional wrappers (mpicc-vt, mpicxx-vt, mpif77-vt,
and mpif90-vt) which are like the ordinary MPI compiler wrappers (mpicc and
friends) with the extension of automatic instrumentation.

The following list shows some examples depending on the parallelization type
of the program:

• Serial programs: Compiling serial code is the default behavior of the wrap-
pers. Simply replace the compiler by VampirTrace’s wrapper:

original: gfortran a.f90 b.f90 -o myprog
with instrumentation: vtf90 a.f90 b.f90 -o myprog

This will instrument user functions (if supported by compiler) and link the
VampirTrace library.

• MPI parallel programs: MPI instrumentation is always handled by means
of the PMPI interface which is part of the MPI standard. This requires
the compiler wrapper to link with an MPI-aware version of the Vampir-
Trace library. If your MPI implementation uses MPI compilers (e.g. mpicc,

3

2.1. THE COMPILER WRAPPERS

mpxlf90), you need to tell VampirTrace’s wrapper to use this compiler in-
stead of the serial one:

original: mpicc hello.c -o hello
with instrumentation: vtcc -vt:cc mpicc hello.c -o hello

MPI implementations without own compilers require the user to link the MPI
library manually. In this case, you simply replace the compiler by Vampir-
Trace’s compiler wrapper:

original: icc hello.c -o hello -lmpi
with instrumentation: vtcc hello.c -o hello -lmpi

If you want to instrument MPI events only (creates smaller trace files and
less overhead) use the option -vt:inst manual to disable automatic
instrumentation of user functions (see also Section 2.4).

• OpenMP parallel programs: When VampirTrace detects OpenMP flags
on the command line, OPARI is invoked for automatic source code instru-
mentation of OpenMP events:

original: ifort -openmp pi.f -o pi
with instrumentation: vtf77 -openmp pi.f -o pi

For more information about OPARI refer to share/vampirtrace/doc/
opari/Readme.html in VampirTrace’s installation directory.

• Hybrid MPI/OpenMP parallel programs: With a combination of the above
mentioned approaches, hybrid applications can be instrumented:

original: mpif90 -openmp hybrid.F90 -o hybrid
with instrumentation: vtf90 -vt:f90 mpif90 -openmp

hybrid.F90 -o hybrid

The VampirTrace compiler wrappers try to detect automatically which paral-
lelization method is used by means of the compiler flags (e.g. -openmp or
-lmpi) and the compiler command (e.g. mpif90). If the compiler wrapper
failed to detect this correctly, the instrumentation could be incomplete and an
unsuitable VampirTrace library would be linked to the binary. In this case, you
should tell the compiler wrapper which parallelization method your program uses
by the switches -vt:mpi, -vt:omp, and -vt:hyb for MPI, OpenMP, and hybrid
programs, respectively. Note that these switches do not change the underlying
compiler or compiler flags. Use the option -vt:verbose to see the command
line the compiler wrapper executes. Refer to Appendix A.1 for a list of all compiler
wrapper options.

The default settings of the compiler wrappers can be modified in the files
share/vampirtrace/vtcc-wrapper-data.txt (and similar for the other

4

CHAPTER 2. INSTRUMENTATION

languages) in the installation directory of VampirTrace. The settings include
compilers, compiler flags, libraries, and instrumentation types. For example, you
could modify the default C compiler from gcc to mpicc by changing the line
compiler=gcc to compiler=mpicc. This may be convenient if you instru-
ment MPI parallel programs only.

2.2 Instrumentation Types

The wrapper’s option -vt:inst <insttype> specifies the instrumentation type
to use. Following values for <insttype> are possible:

• fully-automatic instrumentation by the compiler (see Section 2.3):

insttype Compilers
gnu GNU (e.g., gcc, g++, gfortran, g95)
intel Intel version ≥10.0 (e.g., icc, icpc, ifort)
pgi Portland Group (PGI) (e.g., pgcc, pgCC, pgf90, pgf77)
phat SUN Fortran 90 (e.g., cc, CC, f90)
xl IBM (e.g., xlcc, xlCC, xlf90)
ftrace NEC SX (e.g., sxcc, sxc++, sxf90)

• manual instrumentation (needs source-code modifications):

insttype
manual VampirTrace’s API (see Section 2.4)
pomp POMP INST directives (see Section 2.5)

• special instrumentation types (uses external tools):

insttype
dyninst binary-instrumentation with Dyninst (Section 2.6)

To determine which instrumentation type will be used by default and which
other are available on your system take look at the entry inst avail in the
wrapper’s configuration file (e.g. share/vampirtrace/vtcc-wrapper-data.
txt in the installation directory of VampirTrace for the C compiler wrapper).

See Appendix A.1 or type vtcc -vt:help for other options that can be
passed through VampirTrace’s compiler wrapper.

2.3 Automatic Instrumentation

Automatic Instrumentation is the most convenient way to instrument your pro-
gram. Simply use the compiler wrappers without any parameters, e.g.:

% vtf90 myprog1.f90 myprog2.f90 -o myprog

5

2.3. AUTOMATIC INSTRUMENTATION

2.3.1 Notes for Using the GNU, Intel, or PathScale Compiler

For these compilers the command nm is required to get symbol information of
the running application executable. For example on Linux systems, this program
is a part of the GNU Binutils, which is downloadable from http://www.gnu.
org/software/binutils.

To get the application executable for nm during runtime, VampirTrace uses the
/proc file system. As /proc is not present on all operating systems, automatic
symbol information might not be available. In this case, it is necessary to set the
environment variable VT APPPATH to the pathname of the application executable
to get symbols resolved via nm.

Should any problems emerge to get symbol information automatically, then the
environment variable VT NMFILE can be set to a symbol list file, which is created
with the command nm, like:

% nm hello > hello.nm

To get the source code line for the application functions use nm -l on Linux
systems. VampirTrace will include this information into the trace. Note that the
output format of nm must be written in BSD-style. See the manual page of nm to
obtain help for dealing with the output format setting.

2.3.2 Notes on Instrumentation of Inline Functions

Compilers behave differently when they automatically instrument inlined func-
tions. The GNU and Intel ≥10.0 compilers instrument all functions by default
when they are used with VampirTrace. They therefore switch off inlining com-
pletely, disregarding the optimization level chosen. One can prevent these par-
ticular functions from being instrumented by appending the following attribute to
function declarations, hence making them able to be inlined (this works only for
C/C++):

__attribute__ ((__no_instrument_function__))

The PGI and IBM compilers prefer inlining over instrumentation when compil-
ing with inlining enabled. Thus, one needs to disable inlining to enable instru-
mentation of inline functions and vice versa.

The bottom line is that you cannot inline and instrument a function at the same
time. For more information on how to inline functions read your compiler’s man-
ual.

6

http://www.gnu.org/software/binutils
http://www.gnu.org/software/binutils

CHAPTER 2. INSTRUMENTATION

2.4 Manual Instrumentation using the VampirTrace
API

The VT USER START, VT USER END instrumentation calls can be used to mark
any user-defined sequence of statements.

Fortran:
#include "vt_user.inc"
VT_USER_START(’name’)
...
VT_USER_END(’name’)

C:
#include "vt_user.h"
VT_USER_START("name");
...
VT_USER_END("name");

If a block has several exit points (as it is often the case for functions), all exit
points have to be instrumented by VT USER END, too.

For C++ it is simpler, as shown in the following example. Only entry points into
a scope need to be marked. Exit points are detected automatically, when C++
deletes scope-local variables.

C++:
#include "vt_user.h"
{
VT_TRACER("name");
...

}

For all three languages, the instrumented sources have to be compiled with
-DVTRACE otherwise the VT * calls are ignored. Note that Fortran source files
instrumented this way have to be preprocessed, too.

In addition, you can combine this instrumentation type with all other ones.
For example, all user functions can be instrumented by a compiler while special
source code regions (e.g. loops) can be instrumented by VT’s API.

Use VT’s compiler wrapper (described above) for compiling and linking the
instrumented source code, like:

• without other instrumentation (e.g., compiler):

% vtcc -vt:inst manual myprog1.c -DVTRACE -o myprog

7

2.5. MANUAL INSTRUMENTATION USING POMP

• combined with compiler-instrumentation:

% vtcc -vt:inst gnu myprog1.c -DVTRACE -o myprog

Note that you can also use the option -vt:inst manual with non-instru-
mented sources. Binaries created this way only contain MPI and OpenMP in-
strumentation, which might be desirable in some cases.

2.5 Manual Instrumentation using POMP

POMP (OpenMP Profiling Tool) instrumentation directives are supported for For-
tran and C/C++. The main advantage is that by using directives, the instrumen-
tation is ignored during normal compilation.

The INST BEGIN and INST END directives can be used to mark any user-
defined sequence of statements. If this block has several exit points, all but the
last exit point have to be instrumented by INST ALTEND.

Fortran:
!POMP$ INST BEGIN(name)
...
[!POMP$ INST ALTEND(name)]

...
!POMP$ INST END(name)

C/C++:
#pragma pomp inst begin(name)
...
[#pragma pomp inst altend(name)]

...
#pragma pomp inst end(name)

At least the main program function has to be instrumented in this way, and ad-
ditionally, the following must be inserted as the first executable statement of the
main program:

Fortran:
!POMP$ INST INIT

C/C++:
#pragma pomp inst init

8

CHAPTER 2. INSTRUMENTATION

2.6 Binary instrumentation using Dyninst

The option -vt:inst dyninst selects the compiler wrapper to instrument the
application during run-time (binary instrumentation) by using Dyninst (http:
//www.dyninst.org). Recompiling is not necessary for this way of instru-
menting, but relinking, as shown:

% vtf90 -vt:inst dyninst myprog1.o myprog2.o -o myprog

The compiler wrapper dynamically links the library libvt.dynatt.so to the
application. This library attaches the Mutator -program vtdyn during run-time
which invokes the instrumenting by using the Dyninst-API. Note that the appli-
cation should have been compiled with the -g switch in order to have symbol
names visible. After a trace-run by using this way of instrumenting, the vtunify
utility needs to be invoked manually (see Sections 3.3 and A.2).

To prevent certain functions from being instrumented you can set the envi-
ronment variable VT DYN BLACKLIST to a file containing a newline-separated
list of function names. All additional overhead due to instrumentation of these
functions will be removed.

VampirTrace also allows binary instrumentation of functions located in shared
libraries. Ensure that the shared libraries have been compiled with -g and assign
a colon-separated list of their names to the environment variable VT DYN SHLIBS,
e.g.:

VT_DYN_SHLIBS=libsupport.so:libmath.so

9

http://www.dyninst.org
http://www.dyninst.org

2.6. BINARY INSTRUMENTATION USING DYNINST

10

CHAPTER 3. RUNTIME MEASUREMENT

3 Runtime Measurement

By default, running a VampirTrace instrumented application should result in an
OTF trace file in the current working directory where the application was exe-
cuted. Use the environment variables VT FILE PREFIX and VT PFORM GDIR
described below to change the name of the trace file and its final location. In
case a problem occurs, set the environment variable VT VERBOSE to yes before
executing the instrumented application in order to see control messages of the
VampirTrace run-time system which might help tracking down the problem.

The internal buffer of VampirTrace is limited to 32 MB. Use the environment
variable VT BUFFER SIZE and VT MAX FLUSHES to increase this limit. Section
3.2 contains further information on influencing trace file size.

3.1 Environment Variables

The following environment variables can be used to control the measurement of
a VampirTrace instrumented executable:

Variable Purpose Default
VT PFORM GDIR Name of global directory to store final trace file in ./

VT PFORM LDIR Name of node-local directory that can be used to
store temporary trace files

/tmp/

VT FILE PREFIX Prefix used for trace filenames a

VT APPPATH Path to the application executable (see Section 2.3.1) –
VT BUFFER SIZE Size of internal event trace buffer. This is the place

where event records are stored, before being written
to a file.

32M

VT MAX FLUSHES Maximum number of buffer flushes 1
VT VERBOSE Print VampirTrace related control information during

measurement?
no

VT METRICS Specify counter metrics to be recorded with trace
events as a colon-separated list of names. (for de-
tails see Appendix B)

–

VT MEMTRACE Enable memory allocation counters? (see Sec. 4.2) no
VT IOTRACE Enable tracing of application I/O calls? (see Sec. 4.3) no
VT MPITRACE Enable tracing of MPI events? yes

11

3.2. INFLUENCING TRACE FILE SIZE

VT DYN BLACKLIST Name of blacklist file for Dyninst instrumentation (see
Section 2.6)

–

VT DYN SHLIBS Colon-separated list of shared libraries for Dyninst in-
strumentation (see Section 2.6)

–

VT FILTER SPEC Name of function/region filter file (see Section 5.1) –
VT GROUPS SPEC Name of function grouping file (See Section 5.2) –
VT UNIFY Unify local trace files afterwards? yes
VT COMPRESSION Write compressed trace files? yes
VT NM Command to list symbols from object files. (see Sec-

tion 2.3)
nm

VT NMFILE Name of file with symbol list information. (see Section
2.3)

–

The value for the first three variables can contain (sub)strings of the form $XYZ
or ${XYZ} where XYZ is the name of another environment variable. Evaluation
of the environment variable is done at measurement run-time.

When you use these environment variables, make sure that they have the
same value for all processes of your application on all nodes of your cluster.
Some cluster environments do not automatically transfer your environment when
executing parts of your job on remote nodes of the cluster, and you may need to
explicitly set and export them in batch job submission scripts.

3.2 Influencing Trace File Size

The default values of the environment variables VT BUFFER SIZE and
VT MAX FLUSHES limit the internal buffer of VampirTrace to 32 MB and the num-
ber of times that the buffer is flushed to 1. Events that should be recorded after
the limit has been reached are no longer written into the trace file. The envi-
ronment variables apply to every process of a parallel application, meaning that
applications with n processes will typically create trace files n times the size of a
serial application.

To remove the limit and get a complete trace of an application, set
VT MAX FLUSHES to 0. This causes VampirTrace to always write the buffer to
disk when the buffer is full. To change the size of the buffer, use the variable
VT BUFFER SIZE. The optimal value for this variable depends on the applica-
tion that should be traced. Setting a small value will increase the memory that
is available to the application but will trigger frequent buffer flushes by Vampir-
Trace. These buffer flushes can significantly change the behavior of the appli-
cation. On the other hand, setting a large value, like 2G, will minimize buffer
flushes by VampirTrace, but decrease the memory available to the application. If

12

CHAPTER 3. RUNTIME MEASUREMENT

not enough memory is available to hold the VampirTrace buffer and the applica-
tion data this may cause parts of the application to be swapped to disk leading
also to a significant change in the behavior of the application.

3.3 Unification of local Traces

After a run of an instrumented application the traces of the single processes
need to be unified in terms of timestamps and event IDs. In most cases, this
happens automatically. But under certain circumstances it is necessary to per-
form unification of local traces manually. To do this, use the command:

% vtunify <no-of-traces> <prefix>

For example, this is required on the BlueGene/L platform or when using Dyninst
instrumentation.

13

3.3. UNIFICATION OF LOCAL TRACES

14

CHAPTER 4. RECORDING ADDITIONAL EVENTS AND COUNTERS

4 Recording additional Events and
Counters

4.1 PAPI Hardware Performance Counters

If VampirTrace has been built with hardware-counter support enabled (see Sec-
tion C), VampirTrace is capable of recording hardware counter information as
part of the event records. To request the measurement of certain counters, the
user must set the environment variable VT METRICS. The variable should con-
tain a colon-separated list of counter names, or a predefined platform-specific
group. Metric names can be any PAPI preset names or PAPI native counter
names. For example, set

VT_METRICS=PAPI_FP_OPS:PAPI_L2_TCM

to record the number of floating point instructions and level 2 cache misses. See
Appendix B for a full list of PAPI preset counters.

The user can leave the environment variable unset to indicate that no counters
are requested. If any of the requested counters are not recognized or the full
list of counters cannot be recorded due to hardware-resource limits, program
execution will be aborted with an error message.

4.2 Memory Allocation Counters

The GNU glibc implementation provides a special hook mechanism that allows
intercepting all calls to allocation and free functions (e.g. malloc, realloc,
free). This is independent from compilation or source code access, but relies
on the underlying system library.

If VampirTrace has been built with memory-tracing support enabled (see Sec-
tion C), VampirTrace is capable of recording memory allocation information as
part of the event records. To request the measurement of the application’s al-
located memory, the user must set the environment variable VT MEMTRACE to
yes.

Note: This approach to get memory allocation information requires changing
internal function pointers in a non-thread-safe way, so VampirTrace doesn’t sup-
port memory tracing for OpenMP-parallelized programs!

15

4.3. APPLICATION I/O CALLS

4.3 Application I/O Calls

Calls to functions which reside in external libraries can be intercepted by imple-
menting identical functions and linking them before the external library. Such
“wrapper functions” can record the parameters and return values of the library
functions.

If VampirTrace has been built with I/O tracing support, it uses this technique
for recording calls to I/O functions of the standard C library which are executed
by the application. Following functions are intercepted by VampirTrace:

open read fdopen fread
open64 write fopen fwrite
creat readv fopen64 fgetc
creat64 writev fclose getc
close pread fseek fputc
dup pwrite fseeko putc
dup2 pread64 fseeko64 fgets
lseek pwrite64 rewind fputs
lseek64 fsetpos fscanf

fsetpos64 fprintf

The gathered information will be saved as I/O event records in the trace file.
This feature has to be activated for each tracing run by setting the environment
variable VT IOTRACE to yes.

4.4 User Defined Counters

In addition to the manual instrumentation (see Section 2.4) the VampirTrace API
provides instrumentation calls which allow recording of program variable values
(e.g. iteration counts, calculation results, ...) or any other numerical quantity. A
user defined counter is identified by its name, the counter group it belongs to, the
type of its value (integer or floating-point), and the unit that the value is quoted
(e.g. “GFlop/sec”).

The VT COUNT GROUP DEF and VT COUNT DEF instrumentation calls can be
used to define counter groups and counters:

Fortran:
#include "vt_user.inc"
integer :: id, gid
VT_COUNT_GROUP_DEF(’name’, gid)
VT_COUNT_DEF(’name’, ’unit’, type, gid, id)

C/C++:
#include "vt_user.h"

16

CHAPTER 4. RECORDING ADDITIONAL EVENTS AND COUNTERS

unsigned int id, gid;
gid = VT_COUNT_GROUP_DEF(’name’);
id = VT_COUNT_DEF("name", "unit", type, gid);

The definition of a counter group is optionally. If no special counter group is
desired the default group “User” can be used. In this case, set the parameter
gid of VT COUNT DEF to VT COUNT DEFGROUP.

The third parameter type of VT COUNT DEF specifies the data type of the
counter value. To record a value for any of the defined counters the correspond-
ing instrumentation call VT COUNT * VAL must be invoked.

Fortran:
Type Count call Data type
VT COUNT TYPE INTEGER VT COUNT INTEGER VAL integer (4 byte)
VT COUNT TYPE INTEGER8 VT COUNT INTEGER8 VAL integer (8 byte)
VT COUNT TYPE REAL VT COUNT REAL VAL real
VT COUNT TYPE DOUBLE VT COUNT DOUBLE VAL double precision

C/C++:
Type Count call Data type
VT COUNT TYPE SIGNED VT COUNT SIGNED VAL signed int (max. 64-bit)
VT COUNT TYPE UNSIGNED VT COUNT UNSIGNED VAL unsigned int (max. 64-bit)
VT COUNT TYPE FLOAT VT COUNT FLOAT VAL float
VT COUNT TYPE DOUBLE VT COUNT DOUBLE VAL double

The following example records the loop index i:

Fortran:

#include "vt_user.inc"

program main
integer :: i, cid, cgid

VT_COUNT_GROUP_DEF(’loopindex’, cgid)
VT_COUNT_DEF(’i’, ’#’, VT_COUNT_TYPE_INTEGER, cgid, cid)

do i=1,100
VT_COUNT_INTEGER_VAL(cid, i)

end do

end program main

17

4.4. USER DEFINED COUNTERS

C/C++:

#include "vt_user.h"

int main() {
unsigned int i, cid, cgid;

cgid = VT_COUNT_GROUP_DEF(’loopindex’);
cid = VT_COUNT_DEF("i", "#", VT_COUNT_TYPE_UNSIGNED,

cgid);

for(i = 1; i <= 100; i++) {
VT_COUNT_UNSIGNED_VAL(cid, i);

}

return 0;
}

For all three languages the instrumented sources have to be compiled with
-DVTRACE. Otherwise the VT * calls are ignored. If additionally any functions
or regions are manually instrumented by VT’s API (see Section 2.4) and only
the instrumentation calls for user defined counter should be disabled, then the
sources have to be compiled with -DVTRACE NO COUNT, too.

18

CHAPTER 5. FILTERING & GROUPING

5 Filtering & Grouping

5.1 Function Filtering

By default, all calls of instrumented functions will be traced, so that the resulting
trace files can easily become very large. In order to decrease the size of a
trace, VampirTrace allows the specification of filter directives before running an
instrumented application. The user can decide on how often an instrumented
function/region is to be recorded to a trace file. To use a filter, the environment
variable VT FILTER SPEC needs to be defined. It should contain the path and
name of a file with filter directives.

Below, there is an example of a file containing filter directives:

VampirTrace region filter specification
#
call limit definitions and region assignments
#
syntax: <regions> -- <limit>
#
regions semicolon-separated list of regions
(can be wildcards)
limit assigned call limit
0 = region(s) denied
-1 = unlimited
#
add;sub;mul;div -- 1000

* -- 3000000

These region filter directives cause that the functions add, sub, mul and div
to be recorded at most 1000 times. The remaining functions * will be recorded
at most 3000000 times.

Besides creating filter files by hand, you can also use the vtfilter tool to
generate them automatically. This tool reads the provided trace and decides
whether a function should be filtered or not, based on the evaluation of certain
parameters. For more information see Section A.4.

19

5.2. FUNCTION GROUPING

5.2 Function Grouping

VampirTrace allows assigning functions/regions to a group. Groups can, for in-
stance, be highlighted by different colors in Vampir displays. The following stan-
dard groups are created by VampirTrace:

Group name Contained functions/regions
MPI MPI functions
OMP OpenMP constructs and functions
MEM Memory allocation functions (see 4.2)
I/O I/O functions (see 4.3)
Application remaining instrumented functions and source code regions

Additionally, you can create your own groups, e.g. to better distinguish different
phases of an application. To use function/region grouping set the environment
variable VT GROUPS SPEC to the path of a file which contains the group assign-
ments. Below, there is an example of how to use group assignments:

VampirTrace region groups specification
#
group definitions and region assignments
#
syntax: <group>=<regions>
#
group group name
regions semicolon-separated list of regions
(can be wildcards)
#
CALC=add;sub;mul;div
USER=app_*

These group assignments make the functions add, sub, mul and div asso-
ciated with group “CALC” and all functions with the prefix app are associated
with group “USER”.

20

APPENDIX A. COMMAND REFERENCE

A Command Reference

A.1 Compiler Wrappers (vtcc,vtcxx,vtf77,vtf90)

vtcc,vtcxx,vtf77,vtf90 - compiler wrappers for C, C++,
Fortran 77, Fortran 90

Syntax: vt<cc|cxx|f77|f90> [-vt:<cc|cxx|f77|f90> <cmd>]
[-vt:inst <insttype>] [-vt:<seq|mpi|omp|hyb>]
[-vt:opari <args>] [-vt:verbose] [-vt:version]
[-vt:showme] [-vt:showme_compile]
[-vt:showme_link] ...

options:
-vt:help Show this help message.
-vt:<cc|cxx|f77|f90> <cmd>

Set the underlying compiler command.

-vt:inst <insttype> Set the instrumentation type.

possible values:

gnu fully-automatic by GNU compiler
intel ... Intel (version >= 10.x) ...
pgi ... Portland Group (PGI) ...
phat ... SUN Fortran 90 ...
xl ... IBM ...
ftrace ... NEC SX ...
manual manual by using VampirTrace’s API
pomp manual by using using POMP INST directives
dyninst binary by using Dyninst (www.dyninst.org)

-vt:opari <args> Set options for OPARI command. (see
share/vampirtrace/doc/opari/Readme.html)

-vt:<seq|mpi|omp|hyb>
Force application’s parallelization type.
Necessary, if this cannot be determined
by underlying compiler and flags.
seq = sequential

21

A.1. COMPILER WRAPPERS (VTCC,VTCXX,VTF77,VTF90)

mpi = parallel (uses MPI)
omp = parallel (uses OpenMP)
hyb = hybrid parallel (MPI + OpenMP)
(default: automatically determining by
underlying compiler and flags)

-vt:verbose Enable verbose mode.

-vt:showme Do not invoke the underlying compiler.
Instead, show the command line that
would be executed.

-vt:showme_compile Do not invoke the underlying compiler.
Instead, show the compiler flags that
would be supplied to the compiler.

-vt:showme_link Do not invoke the underlying compiler.
Instead, show the linker flags that
would be supplied to the compiler.

See the man page for your underlying compiler for other
options that can be passed through ’vt<cc|cxx|f77|f90>’.

Environment variables:
VT_CC Equivalent to ’-vt:cc’
VT_CXX Equivalent to ’-vt:cxx’
VT_F77 Equivalent to ’-vt:f77’
VT_F90 Equivalent to ’-vt:f90’
VT_INST Equivalent to ’-vt:inst’

The corresponding command line options overwrite the
environment variable settings.

Examples:
automatically instrumentation by using GNU compiler:

vtcc -vt:cc gcc -vt:inst gnu -c foo.c -o foo.o
vtcc -vt:cc gcc -vt:inst gnu -c bar.c -o bar.o
vtcc -vt:cc gcc -vt:inst gnu foo.o bar.o -o foo

manually instrumentation by using VT’s API:

vtf90 -vt:inst manual foobar.F90 -o foobar -DVTRACE

IMPORTANT: Fortran source files instrumented by VT’s API or
POMP directives have to be preprocessed by CPP.

22

APPENDIX A. COMMAND REFERENCE

A.2 Local Trace Unifier (vtunify)

vtunify - local trace unifier for VampirTrace.

Syntax: vtunify <#files> <iprefix> [-o <oprefix>]
[-c|--compress <on|off>] [-k|--keeplocal]
[-v|--verbose]

Options:
-h, --help Show this help message.

#files number of local trace files
(equal to # of ’*.uctl’ files)

iprefix prefix of input trace filename.

-o <oprefix> prefix of output trace filename.

-s <statsofile> statistics output filename
default=<oprefix>.stats

-q, --noshowstats Don’t show statistics on stdout.

-c, --nocompress Don’t compress output trace files.

-k, --keeplocal Don’t remove input trace files.

-v, --verbose Enable verbose mode.

23

A.3. DYNINST MUTATOR (VTDYN)

A.3 Dyninst Mutator (vtdyn)

vtdyn - Dyninst Mutator for VampirTrace.

Syntax: vtdyn [-v|--verbose] [-s|--shlib <shlib>[,...]]
[-b|--blacklist <bfile> [-p|--pid <pid>]
<app> [appargs ...]

Options:
-h, --help Show this help message.

-v, --verbose Enable verbose mode.

-s, --shlib Comma-separated list of shared libraries
<shlib>[,...] which should also be instrumented.

-b, --blacklist Set path of blacklist file containing
<bfile> a newline-separated list of functions

which should not be instrumented.

-p, --pid <pid> application’s process id
(attaches the mutator to a running process)

app path of application executable

appargs application’s arguments

24

APPENDIX A. COMMAND REFERENCE

A.4 Trace Filter Tool (vtfilter)

vtfilter - filter generator for VampirTrace

Syntax:
Filter a trace file using an already existing filter file:

vtfilter -filt [filt-options] <input trace file>
Generate a filter:

vtfilter -gen [gen-options] <input trace file>

general options:
-h, --help show this help message
-p show progress

filt-options:
-to <file> output trace file name

-fi <file> input filter file name

-z <zlevel> Set the compression level. Level
reaches from 0 to 9 where 0 is no
compression and 9 is the highest
level. Standard is 4.

-f <n> Set max number of file handles
available. Standard is 256.

gen-options:
-fo <file> output filter file name

-r <n> Reduce the trace size to <n> percent
of the original size. The program
relies on the fact that the major
part of the trace are function calls.
The approximation of size will get
worse with a rising percentage of
communication and other non function
calling or performance counter
records.

-l <n> Limit the number of accepted
function calls for filtered functions
to <n>. Standard is 0.

-ex <f>,<f>,... Exclude certain symbols from
filtering. A symbol may contain

25

A.4. TRACE FILTER TOOL (VTFILTER)

wildcards.

-in <f>,<f>,... Force to include certain symbols
into the filter. A symbol may contain
wildcards.

-inc Automatically include children of
included functions as well into the
filter.

-stats Prints out the desired and the
expected percentage of file size.

environment variables:
TRACEFILTER_EXCLUDEFILE Specifies a file containing a list

of symbols not to be filtered. The
list of members can be seperated
by space, comma, tab, newline and
may contain wildcards.

TRACEFILTER_INCLUDEFILE Specifies a file containing a list
of symbols to be filtered.

26

APPENDIX B. PAPI COUNTER SPECIFICATIONS

B PAPI Counter Specifications

Available counter names can be queried with the PAPI commands papi avail
and papi native avail. There are limitations to the combinations of coun-
ters. To check whether your choice works properly, use the command
papi event chooser.

PAPI_L[1|2|3]_[D|I|T]C[M|H|A|R|W]
Level 1/2/3 data/instruction/total cache
misses/hits/accesses/reads/writes

PAPI_L[1|2|3]_[LD|ST]M
Level 1/2/3 load/store misses

PAPI_CA_SNP Requests for a snoop
PAPI_CA_SHR Requests for exclusive access to shared cache line
PAPI_CA_CLN Requests for exclusive access to clean cache line
PAPI_CA_INV Requests for cache line invalidation
PAPI_CA_ITV Requests for cache line intervention

PAPI_BRU_IDL Cycles branch units are idle
PAPI_FXU_IDL Cycles integer units are idle
PAPI_FPU_IDL Cycles floating point units are idle
PAPI_LSU_IDL Cycles load/store units are idle

PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_TLB_IM Instruction translation lookaside buffer misses
PAPI_TLB_TL Total translation lookaside buffer misses

PAPI_BTAC_M Branch target address cache misses
PAPI_PRF_DM Data prefetch cache misses
PAPI_TLB_SD Translation lookaside buffer shootdowns

PAPI_CSR_FAL Failed store conditional instructions
PAPI_CSR_SUC Successful store conditional instructions
PAPI_CSR_TOT Total store conditional instructions

PAPI_MEM_SCY Cycles Stalled Waiting for memory accesses
PAPI_MEM_RCY Cycles Stalled Waiting for memory Reads
PAPI_MEM_WCY Cycles Stalled Waiting for memory writes

27

PAPI_STL_ICY Cycles with no instruction issue
PAPI_FUL_ICY Cycles with maximum instruction issue
PAPI_STL_CCY Cycles with no instructions completed
PAPI_FUL_CCY Cycles with maximum instructions completed

PAPI_BR_UCN Unconditional branch instructions
PAPI_BR_CN Conditional branch instructions
PAPI_BR_TKN Conditional branch instructions taken
PAPI_BR_NTK Conditional branch instructions not taken
PAPI_BR_MSP Conditional branch instructions mispredicted
PAPI_BR_PRC Conditional branch instructions correctly predicted

PAPI_FMA_INS FMA instructions completed
PAPI_TOT_IIS Instructions issued
PAPI_TOT_INS Instructions completed
PAPI_INT_INS Integer instructions
PAPI_FP_INS Floating point instructions
PAPI_LD_INS Load instructions
PAPI_SR_INS Store instructions
PAPI_BR_INS Branch instructions
PAPI_VEC_INS Vector/SIMD instructions
PAPI_LST_INS Load/store instructions completed
PAPI_SYC_INS Synchronization instructions completed
PAPI_FML_INS Floating point multiply instructions
PAPI_FAD_INS Floating point add instructions
PAPI_FDV_INS Floating point divide instructions
PAPI_FSQ_INS Floating point square root instructions
PAPI_FNV_INS Floating point inverse instructions

PAPI_RES_STL Cycles stalled on any resource
PAPI_FP_STAL Cycles the FP unit(s) are stalled

PAPI_FP_OPS Floating point operations
PAPI_TOT_CYC Total cycles
PAPI_HW_INT Hardware interrupts

28

APPENDIX C. VAMPIRTRACE INSTALLATION

C VampirTrace Installation

C.1 Basics

Building VampirTrace is typically a combination of running configure and
make. Execute the following commands to install VampirTrace from within the
directory at the top of the tree:

% ./configure --prefix=/where/to/install
[...lots of output...]
% make all install

If you need special access for installing, then you can execute make all as
a user with write permissions in the build tree, and a separate make install
as a user with write permissions to the install tree.

However, for more details, also read the following instructions. Sometimes it
might be necessary to provide ./configure with options, e.g. specifications of
paths or compilers. Please consult the CONFIG-EXAMPLES file to get an idea
of how to configure VampirTrace for your platform.

VampirTrace comes with example programs written in C, C++, and Fortran.
They can be used to test different instrumentation types of the VampirTrace in-
stallation. You can find them in the directory examples of the VampirTrace pack-
age.

C.2 Configure Options

Compilers and Options

Some systems require unusual options for compiling or linking that the
configure script does not know about. Run ./configure --help for de-
tails on some of the pertinent environment variables.

You can pass initial values for configuration parameters to configure by set-
ting variables in the command line or in the environment. Here is an example:

% ./configure CC=c89 CFLAGS=-O2 LIBS=-lposix

29

C.2. CONFIGURE OPTIONS

Installation Names

By default, make install will install the package’s files in /usr/local/bin,
/usr/local/include, etc. You can specify an installation prefix other than
/usr/local by giving configure the option --prefix=PATH.

Optional Features

--enable-compinst=COMPINSTLIST
enable support for compiler instrumentation,
e.g. (gnu,intel,pgi,phat,xl,ftrace),
A VampirTrace installation can handle different compilers.
The first item in the list is the run-time default.
default: automatically by configure

--enable-mpi
enable MPI support, default: enable if Open MPI found by configure

--enable-omp
enable OpenMP support, default: enable if compiler supports OpenMP

--enable-hyb
enable Hybrid (MPI/OpenMP) support, default: enable if MPI found and
compiler supports OpenMP

--enable-memtrace
enable memory tracing support, default: enable if found by configure

--enable-iotrace
enable libc’s I/O tracing support, default: enable if libdl found by configure

--enable-dyninst
enable support for Dyninst instrumentation,
default: enable if found by configure
Note: Requires Dyninst version 5.0.1 or higher!
(http://www.dyninst.org)

--enable-dyninst-attlib
build shared library which attaches dyninst to the running application,
default: enable if dyninst found by configure and system supports shared
libraries

--enable-papi
enable PAPI hardware counter support,
default: enable if found by configure

30

http://www.dyninst.org

APPENDIX C. VAMPIRTRACE INSTALLATION

Important Optional Packages

--with-local-tmp-dir=LTMPDIR
give the path for node-local temporary directory to store local traces to,
default: /tmp/

If you would like to use an external version of OTF library, set:

--with-extern-otf
use external OTF library, default: not set

--with-extern-otf-dir=OTFDIR
give the path for OTF, default: /usr/local/

--with-otf-flags=FLAGS
pass FLAGS to the OTF distribution configuration (only for internal OTF
version)

--with-otf-lib=OTFLIB
use given otf lib, default: -lotf -lz

If used OTF library was built without zlib support, then OTFLIB will be set to
-lotf.

--with-dyninst-dir=DYNIDIR
give the path for DYNINST, default: /usr/local/

--with-papi-dir=PAPIDIR
give the path for PAPI, default: /usr/

If you have not specified the environment variable MPICC (MPI compiler com-
mand), use the following options to set the location of your MPI installation:

--with-mpi-dir=MPIDIR
give the path for MPI, default: /usr/

--with-mpi-inc-dir=MPIINCDIR
give the path for MPI include files,
default: $MPIDIR/include/

--with-mpi-lib-dir=MPILIBDIR
give the path for MPI-libraries, default: $MPIDIR/lib/

--with-mpi-lib=MPILIB
use given mpi lib

--with-pmpi-lib=PMPILIB
use given pmpi lib, default: MPILIB

31

C.3. CROSS COMPILATION

C.3 Cross Compilation

Building VampirTrace on cross compilation platforms needs some special atten-
tion. The compiler wrappers and OPARI are built for the front-end (build system)
whereas the VampirTrace libraries, vtdyn, vtunify, and vtfilter are built for the
back-end (host system). Some configure options which are of interest for
cross compilation are shown below:

• Set CC, CXX, F77, and FC to the cross compilers installed on the front-end.

• Set CXX FOR BUILD to the native compiler of the front-end (used to com-
pile compiler wrappers and OPARI only).

• Set --host= to the output of config.guess on the back-end.

• Maybe you also need to set additional commands and flags for the back-
end (e.g. RANLIB, AR, MPICC, CXXFLAGS).

For example, this configure command line works for an NEC SX6 system with
an X86 64 based front-end:

% ./configure CC=sxcc CXX=sxc++ F77=sxf90 FC=sxf90
AR=sxar RANLIB="sxar st" CXX_FOR_BUILD=c++
--host=sx6-nec-superux14.1
--with-otf-lib=-lotf

C.4 Environment Set-Up

Add the bin subdirectory of the installation directory to your $PATH environment
variable. To use VampirTrace with Dyninst, you will also need to add the lib
subdirectory to your LD LIBRARY PATH environment variable:

for csh and tcsh:

> setenv PATH <vt-install>/bin:$PATH
> setenv LD_LIBRARY_PATH <vt-install>/lib:$LD_LIBRARY_PATH

for bash and sh:

% export PATH=<vt-install>/bin:$PATH
% export LD_LIBRARY_PATH=<vt-install>/lib:$LD_LIBRARY_PATH

32

APPENDIX C. VAMPIRTRACE INSTALLATION

C.5 Notes for Developers

Build from CVS

If you have checked out a developer’s copy of VampirTrace (i.e. checked out
from CVS), you should first run:

% ./bootstrap

Note that GNU Autoconf ≥2.60 and GNU Automake ≥1.9.6 is required. You
can download them from http://www.gnu.org/software/autoconf and
http://www.gnu.org/software/automake.

Creating a distribution tarball (VampirTrace-X.X.X.tar.gz)

If you would like to create a new distribution tarball, run:

% ./makedist -o <otftarball> <major> <minor> <release>

instead of make dist. The script makedist adapts the version number
<major>.<minor>.<release> in configure.in and extracts given OTF-
tarball <otftarball> in ./extlib/otf/.

33

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake

	Introduction
	Instrumentation
	The Compiler Wrappers
	Instrumentation Types
	Automatic Instrumentation
	Notes for Using the GNU, Intel, or PathScale Compiler
	Notes on Instrumentation of Inline Functions

	Manual Instrumentation using the VampirTrace API
	Manual Instrumentation using POMP
	Binary instrumentation using Dyninst

	Runtime Measurement
	Environment Variables
	Influencing Trace File Size
	Unification of local Traces

	Recording additional Events and Counters
	PAPI Hardware Performance Counters
	Memory Allocation Counters
	Application I/O Calls
	User Defined Counters

	Filtering & Grouping
	Function Filtering
	Function Grouping

	Command Reference
	Compiler Wrappers (vtcc,vtcxx,vtf77,vtf90)
	Local Trace Unifier (vtunify)
	Dyninst Mutator (vtdyn)
	Trace Filter Tool (vtfilter)

	PAPI Counter Specifications
	VampirTrace Installation
	Basics
	Configure Options
	Cross Compilation
	Environment Set-Up
	Notes for Developers

