
PATC
2016/06/06

Maison de la Simulation

Understanding and managing

hardware affinities

on hierarchical platforms

With Hardware Locality (hwloc)

Brice Goglin – TADaaM Team – Inria Bordeaux Sud-Ouest



Agenda

● Quick example as an Introduction
● Bind your processes
● What's the actual problem?
● Introducing hwloc (Hardware Locality)
● Command-line tools
● C Programming API
● Conclusion



PATC 32016/06/06

Materials

● All hwloc tutorials are available at

http://www.open-mpi.org/projects/hwloc/tutorials

http://www.open-mpi.org/projects/hwloc/tutorials


1 Quick example
as an Introduction



2016/06/06 PATC 5

Machines are increasingly complex



2016/06/06 PATC 6

Machines are increasingly complex

● Multiple processors
● Multicore processors (package = socket)
● Simultaneous multithreading
● Shared caches
● NUMA nodes
● Multiple GPUs, NICs, …

● We cannot expect users to understand all this



2016/06/06 PATC 7

Example with MPI

● Our latest cluster at Inria Bordeaux
● 12-core Xeon E5-2600v3 with NVIDIA K40, etc.

● Nice, let's run some benchmarks!
● Open MPI 1.8.1
● Intel MPI benchmarks 3.2



2016/06/06 PATC 8

Example with MPI – Results

● Between cores 0 and 1
● 540ns, 3500MiB/s

● Between cores 0 and 2
● 330ns, 4220MiB/s

● Between cores 0 and 12
● 430ns, 4290MiB/s

● Between cores 0 and 23
● 590ns, 3410MiB/s



2016/06/06 PATC 9

What is going on?

540ns
3500MiB/s

430ns
4290MiB/s

590ns
3410MiB/s

330ns
4220MiB/s



2016/06/06 PATC 10

First take away messages

● Locality matters to communication 
performance
● Machines are really far from flat

● Similar issues with POWER8, AMD Opterons, Fujitsu 
Sparc XIfx

● Cores numbering is crazy
● Never expect anything sane



2016/06/06 PATC 11

It's actually worse than that

GPUs 
attached

to one NUMA 
node



2016/06/06 PATC 12

I/O affinity

● If you use GPUs or high performance 
networks, you must allocate host memory 
close to them
● Otherwise DMA to GPUs slows down by 10-20% 

here
● InfiniBand latency increases by 10%

● Need a way to know which cores/memory is 
close to which I/O device



2 Bind your processes



2016/06/06 PATC 14

Where does locality actually matter?

● MPI communication performance varies with distance
● Inside or outside nodes

● Shared memory too (threads, OpenMP, etc.)
● Synchronization

● Barriers use caches and memory too
● Concurrent access to shared buffers

● Producer-consumer, etc

● 15 years ago, locality was mostly an issue for large 
NUMA SMP machines (SGI, etc.)
● Today it's everywhere

● Because multicores and NUMA are everywhere



2016/06/06 PATC 15

What to do about locality
in runtimes?

● Place processes/tasks according to their 
affinities
● If two tasks communicate/synchronize/share a lot, 

keep them physically close
● Main focus of this talk

● Adapt your algorithms to the locality
● Adapt communication/synchronization 

implementations to the topology
● Hierarchical OpenMP barriers
● Adapt your buffers to (shared) cache size



2016/06/06 PATC 16

Process binding

● Some MPI implementations bind processes by 
default (Intel MPI, Open MPI 1.8 in some cases)
● Because it's better for reproducibility

● Some don't
● Because it may hurt your application

● Oversubscribing? Dynamic processes?

● Binding doesn't guarantee that your processes 
are optimally placed
● It just means your processes won't move

● No migration, less cache issues, etc.



2016/06/06 PATC 17

To bind or not to bind?



2016/06/06 PATC 18

Ok, I need to bind.
But where?

● Default binding strategies?
● By core first (compact, --map-by core, etc.)

● One process per core on first node,
then one process per core on second node, …

● By node first (scatter, --map-by node/socket, etc.)
● One process on first core of each node,

then one process on second core of each node, …

● Your application likely prefers one to the other
● The first one?

● Because your algorithms often communicate more between 
immediate neighbors

● Sometimes the other one...



2016/06/06 PATC 19

Binding strategy impact



2016/06/06 PATC 20

How do I choose?

● Dilemma
● Use cores 0 & 1 to share cache and 

improve synchronization cost?
● Use cores 0 & 2 to maximize 

memory bandwidth?

● Depends on the application needs
● And machine characteristics



2016/06/06 PATC 21

Topology-aware MPI process
placement with TreeMatch

● Some tasks communicate 
a lot with each other
● The physical distance will 

slow down some 
messages

● Try to keep them close!

● Some don't
● No constraint on 

placement



2016/06/06 PATC 22

Reordering tasks to improve locality



2016/06/06 PATC 23

Reordering with TreeMatch

● At process launch-time
● mpiexec options

● Dynamically
● MPI_Dist_graph_create() to swap MPI ranks' roles

between application steps
● Charm++ load-balancer

● The communication volume is unchanged
● But big volumes move inside nodes

● Faster execution!



3 What's the actual 
problem ?



2016/06/06 PATC 25

Example of dual
Nehalem Xeon machine



2016/06/06 PATC 26

Another example of dual
Nehalem Xeon machine



2016/06/06 PATC 27

Processor and core numbers
are crazy

● Resource ordering/numbering is unpredictable
● Can (and does) change with the vendor, BIOS 

version, etc.

● Some resources may be unavailable
● Batch schedulers allocates parts of machines

● Core numbers may be non-consecutive, not start at 0, 
etc.

● Don't assume anything about these numbers
● Otherwise your code won't be portable



2016/06/06 PATC 28

Vertical ordering of levels
(who contains who)



2016/06/06 PATC 29

Vertical ordering isn't reliable either

● Modern processors have 2 NUMA nodes each
● Xeon E5v3, Opteron 6000, Power8, Sparc64 XIfx
● But old platforms have multiple processor packages 

per NUMA nodes

● Levels of caches and sharing may vary

● Don't assume anything about vertical ordering
● Or (again) your code won't be portable
● e.g.: Even the Intel OpenMP binding isn't always 

correct



2016/06/06 PATC 30

Gathering topology information
is difficult

● Lack of generic, uniform interface
● Operating system specific

● /proc and /sys on Linux
● rset, sysctl, lgrp, kstat on other OS

● Hardware specific
● x86 CPUID instruction, device-tree, PCI config space, etc.

● Evolving technology
● AMD Bulldozer introduced dual-core Compute Units

● It's not two real cores, neither one hyper-threaded core
● New kinds of hierarchy/resources?

● And some BIOS report buggy information



2016/06/06 PATC 31

Binding is difficult too

● Lack of generic, uniform interface (again)
● Process/thread binding

● sched_affinity() system call changed twice in Linux
● Memory binding

● 3 different system-calls on Linux
● mbind(), migrate_pages(), move_pages()

● Different constraints
● Bind to single core only? To contiguous set of cores? To 

random sets of cores?
● Many different policies



4 Introducing hwloc
(Hardware Locality)



2016/06/06 PATC 33

What hwloc is

● Detection of hardware resources
● Processing units (PU) = logical processors, hardware 

threads, hyperthreads
● Things that can run a task

● Core, packages (sockets), … (things that contain PUs)
● Memory nodes, shared caches
● I/O devices

● PCI devices and corresponding software handles

● Described as a tree
● Logical resources identification and organization

● Based on locality



2016/06/06 PATC 34

What hwloc is (2/2)

● API and tools to consult the topology
● Which cores are near this NUMA memory node ?
● Give me a single thread in this package
● Which NUMA memory node is near this GPU ?
● What shared cache size between these cores ?

● Without caring about hardware strangeness
● Non portable and crazy numbers, names, …

● A portable binding API
● No more Linux sched_setaffinity() API breakage
● No more tens of different binding API with different types



2016/06/06 PATC 35

What hwloc is NOT

● A placement algorithm
● hwloc gives hardware information
● You're the one that knows what your software 

does/needs
● You're the one that must match software affinities 

to hardware localities
● We give you the hardware information you need

● A performance analysis tool



2016/06/06 PATC 36

hwloc’s History

● Ideas from Samuel Thibault’s PhD on hierarchical 
thread scheduling (2003)

● Standalone library to ease MPI process placement 
(2009)

● Mainly developed by TADaaM@Inria Bordeaux
● Within the Open MPI consortium
● Collaboration with many industrial and academic 

partners

● BSD-3 license
● Many users



2016/06/06 PATC 37

Alternative software
with advanced topology knowledge

● numactl/libnuma
● Only for NUMA + hardware threads

● No cache, core, package/socket, etc.

● lscpu, lshw, lsusb, …
● Specific to some resources
● Inventory without locality information

● Likwid (performance optimization tool)
● Now uses hwloc internally

● Intel Compiler (icc)
● x86 specific, no API



2016/06/06 PATC 38

hwloc Status

● Current stable release : 1.11.3 (April 2016)
● Support for most operating systems and HPC 

platforms

● Major release every 6 months
● Backward compatible

● Next major release will be super-major
● 2.0 expected in 2016H2
● Will break the ABI (not fully backward compatible)

● Fix bad ideas from the first hwloc API



2016/06/06 PATC 39

hwloc's view of the hardware

● Tree of objects
● Machines, NUMA memory nodes, packages, caches, 

cores, threads
● Logically ordered

● Grouping similar objects using distances between them
● Avoids enormous flat topologies

● Many attributes
● Memory node size
● Cache type, size, line size, associativity
● Physical ordering
● Miscellaneous info, customizable



2016/06/06 PATC 40

Installing hwloc

● Packages available in Debian, Ubuntu, 
Redhat, Fedora, CentOS, ArchLinux, NetBSD, 
etc

● You want the development headers too
● libhwloc-dev, hwloc-devel, …



2016/06/06 PATC 41

Manual installation

● Take a recent tarball at 
http://www.open-mpi.org/projects/hwloc

● Dependencies
● On Linux, numactl/libnuma development headers
● Cairo headers for lstopo graphics

● ./configure --prefix=$PWD/install
● Very few configure options

● Check the summary at the end of configure

http://www.open-mpi.org/projects/hwloc


2016/06/06 PATC 42

Manual installation

● make
● make install
● Useful environment variables

export C_INCLUDE_PATH=$C_INCLUDE_PATH:<prefix>/include

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<prefix>/lib

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:<prefix>/lib/pkgconfig

export PATH=$PATH:<prefix>/bin

export MANPATH=$MANPATH:<prefix>/share/man



2016/06/06 PATC 43

Using hwloc for this tutorial

● Install hwloc on your preferred cluster

● And install it on your laptop too
● It will make remote machine consulting easier



2016/06/06 PATC 44

Using hwloc

● Many hwloc command-line tools
● lstopo and hwloc-*

● … but the actual hwloc power is in the C API

● Perl and Python bindings



5 Command-line Tools



2016/06/06 PATC 46

lstopo
(displaying topologies)

Machine (3828MB)
  Package L#0 + L3 L#0 (4096KB)
    L2 L#0 (256KB) + Core L#0
      PU L#0 (P#0)
      PU L#1 (P#2)
    L2 L#1 (256KB) + Core L#1
      PU L#2 (P#1)
      PU L#3 (P#3)
  HostBridge L#0
    PCI 8086:0046
      GPU L#0 "controlD64"
    PCI 8086:10ea
      Net L#2 "eth0"
    PCIBridge
      PCI 8086:422b
        Net L#3 "wlan0"
    PCI 8086:3b2f
      Block L#4 "sda"
      Block L#5 "sr0"



2016/06/06 PATC 47

lstopo

● Many output formats
● Text, Cairo (PDF, PNG, SVG, PS), Xfig, ncurses

● Automatically guessed from the file extension

● XML dump/reload
● Faster, convenient for remote debugging

● Configuration options for nice figures for papers
● Horizontal/Vertical placement
● Legend
● Ignoring some resources
● Creating fake topologies



2016/06/06 PATC 48

lstopo

$ lstopo

$ lstopo --no-io -

$ lstopo myfile.png

$ ssh host lstopo saved.xml

$ lstopo -i saved.xml

$ ssh myhost lstopo -.xml | lstopo --if xml -i -

$ lstopo -i “numa:4 package:2 core:2 pu:2”



2016/06/06 PATC 49

hwloc-bind
(binding processes, threads and memory)

● Bind a process to a given set of CPUs

    $ hwloc-bind package:1 -- mycommand myargs...

    $ hwloc-bind os=mlx4_0 -- mympiprogram ...
● Bind an existing process

    $ hwloc-bind --pid 1234 numa:0
● Bind memory

    $ hwloc-bind --membind numa:1 --cpubind numa:0 …
● Find out if a process is already bound

    $ hwloc-bind --get --pid 1234

    $ hwloc-ps



2016/06/06 PATC 50

hwloc-calc
(calculating with objects)

● Convert between ways to designate sets 
of CPUs, objects... and combine them

    $ hwloc-calc package:1.core:1 ~pu:even
    0x00000008
    $ hwloc-calc --number-of core numa:0
    2
    $ hwloc-calc --intersect pu package:1
    2,3
● The result may be passed to other tools
● Multiple invocations may be combined
● I/O devices also supported
    $ hwloc-calc os=eth0



2016/06/06 PATC 51

Other tools

● Get some object information
● hwloc-info

● Generate bitmaps for distributing multiple 
processes on a topology
● hwloc-distrib

● Save a Linux node topology info for debugging
● hwloc-gather-topology

● Manipulating multiple topologies, etc.



2016/06/06 PATC 52

Hands-on lstopo

● Gather the topology of one server
● Display it on another machine
● Hide caches
● Remove the legend
● Restrict the display to a single package
● Export to PDF



2016/06/06 PATC 53

Hands-on hwloc-bind
and hwloc-calc

● Bind a process to a core and verify its binding
● Find out how many cores are in the second 

NUMA node
● Find out the physical numbers of all non-first 

hyperthreads
● Find out which cores are close to InfiniBand
● Compare the DMA bandwidth from GPU#0 to 

both NUMA nodes using cudabw



6 C Programming API



2016/06/06 PATC 55

API basics

● A hwloc program looks like this

#include <hwloc.h>

hwloc_topology_t topo;

hwloc_topology_init(&topo);
/* ... configure what topology to build … */
hwloc_topology_load(topo);

/* … play with the topology … */

hwloc_topology_destroy(topo);



2016/06/06 PATC 56

Major hwloc types

● The topology context : hwloc_topology_t
● You always need one

● The main hwloc object : hwloc_obj_t
● That's where the actual info is
● The structure isn't opaque

● It contains many pointers to ease traversal

● Object type : hwloc_obj_type_t
● HWLOC_OBJ_PU, _PACKAGE, _CORE, 

_NUMANODE, …



2016/06/06 PATC 57

Object information

● Type
● Optional name string
● Indexes (see later)
● cpusets and nodesets (see later)
● Tree pointers (*cousin, *sibling, arity, *child*, parent)
● Type-specific attribute union

● obj->attr->cache.size
● obj->attr->pcidev.linkspeed

● String info pairs



2016/06/06 PATC 58



2016/06/06 PATC 59

Browsing as a tree

● The root is hwloc_get_root_obj(topo)
● Objects have children

● obj->arity is the number of children
● The array of children is obj->children[]
● They are also in a list

● obj->first_child, obj->last_child
● child->prev_sibling, child->next_sibling
● NULL-terminated

● The parent is obj->parent (or NULL)



2016/06/06 PATC 60

Browsing as levels

● The topology is also organized as levels of identical 
objects
● Cores, L2d Caches, …
● All PUs at the bottom

● Number of levels hwloc_topology_get_depth(topo)
● Number of objects on a level 

hwloc_get_nbobjs_by_type(topo, type) 
hwloc_get_nbobjs_by_depth(topo, depth)

● Convert between depth and type using
hwloc_get_type_depth() or hwloc_get_depth_type()



2016/06/06 PATC 61

Browsing as levels

● Find objects by level and index
● hwloc_get_obj_by_type(topo, type, index)
● There are variants taking a depth instead of a type

● Note : the depth of my child is not always my depth + 1
● Think of asymmetric topologies

● Iterate over objects of a level
● Objects at the same levels are also interconnect 

by prev/next_cousin pointers
● Don't mix up siblings (children list) and cousins (level)

● hwloc_get_next_obj_by_type/depth()



2016/06/06 PATC 62

Hands-on browsing the topology

Starting from basic.c
● Print the number of cores
● Print the type of the common ancestor of 

cores 0 and 2
● Print the memory size near core 0
● Iterate over all PUs and print their physical 

numbers



2016/06/06 PATC 63

Physical or OS indexes

● obj->os_index
● The ID given by the OS/hardware

● P#3
● Default in lstopo graphic mode
● lstopo -p

● NON PORTABLE
● Depend on motherboards,

BIOS, version, …

● DON'T USE THEM



2016/06/06 PATC 64

Logical indexes

● obj->logical_index
● The index among an entire level

● L#2
● Default in lstopo except in graphic mode
● lstopo -l

● Always represent proximity (depth-first walk)
● PORTABLE

● Does not depend on OS/BIOS/weather

● That's what you want to use



2016/06/06 PATC 65

But I still need OS indexes when 
binding ?!

● NO !
● Just use hwloc for binding, you won't need 

physical/OS indexes ever again

● If you want to bind the execution to a core
● hwloc_set_cpubind(core->cpuset)

● Other API functions for binding entire processes, single 
thread, memory, for allocating bound memory, etc.



2016/06/06 PATC 66

Bitmap, CPU sets, Node sets

● Generic mask of bits : hwloc_bitmap_t
● Possibly infinite
● Opaque, used to describe object contents

● Which PU are inside this object (obj->cpuset)
● Which NUMA nodes are close to this object (obj-

>nodeset)
● Can be combined to bind to multiple cores, etc.

● and, or, xor, not, ...



2016/06/06 PATC 67

Hands-on bitmaps and binding

● Bind a process to 1st core
● Rebind the same process to cores 2 and 4
● Print its binding
● Print where it's actually running

● Repeat

● Rebind to avoid migrating between cores
● hwloc_bitmap_singlify()



2016/06/06 PATC 68

I/O devices

● Binding tasks near the 
devices they use improves 
their data transfer time
● GPUs, high-performance NICs, 

InfiniBand, …

● You cannot bind tasks or 
memory on these devices
● But these devices may have 

interesting attributes
● Device type, GPU capabilities, 

embedded memory, link speed, ...



2016/06/06 PATC 69

I/O objects

● Some I/O trees are attached to 
the object they are close to

● PCI device objects
● Optional I/O bridge objects

● How to match your software
handle with a PCI device ?
● OS/Software devices (when known)

● sda, eth0, ib0, mlx4_0

● Disabled by default
● Except in lstopo



2016/06/06 PATC 70

Hands-on I/O

● Load cuda modules, etc.

Starting from cuda.c
● Find the NUMA node near each CUDA device

Starting form ib.c
● Find the NUMA node near each IB device



2016/06/06 PATC 71

Extended attributes

● obj->userdata pointer
● Your application may store whatever it needs there
● hwloc won't look at it, it doesn't know what's it 

contains

● (name,value) info attributes
● Basic string annotations, hwloc adds some

● Hostname, Kernel release, CPU model, PCI vendor, …
● See lstopo -v for (many) examples

● You may add your own



2016/06/06 PATC 72

Configuring the topology

● Between hwloc_topology_init() and load()
● hwloc_topology_set_xml(), set_synthetic()
● hwloc_topology_set_flags(), set_pid()
● hwloc_topology_ignore_type()

● After hwloc_topology_load()
● hwloc_topology_restrict()
● hwloc_topology_insert_misc_object...



2016/06/06 PATC 73

Helpers

● hwloc/helper.h contains a lot of helper functions
● Iterators on levels, children, restricted levels
● Finding caches
● Converting between cpusets and nodesets
● Finding I/O objects
● And much more

● Use them to avoid rewriting basic functions
● Use them to understand how things work and 

write what you need



8 Conclusion



PATC 752016/06/06

More information

● The documentation
● http://www.open-mpi.org/projects/hwloc/doc/
● Related pages

● http://www.open-mpi.org/projects/hwloc/doc/v1.11.3/pages.php
● FAQ

● http://www.open-mpi.org/projects/hwloc/doc/v1.11.3/a00030.php

● README and HACKING in the source
● hwloc-users@open-mpi.org for questions
● hwloc-devel@open-mpi.org for contributing
● hwloc-announce@open-mpi.org for new releases
● https://github.com/open-mpi/hwloc/issues for reporting bugs

http://www.open-mpi.org/projects/hwloc/doc/
http://www.open-mpi.org/projects/hwloc/doc/v1.11.3/pages.php
http://www.open-mpi.org/projects/hwloc/doc/v1.11.3/a00030.php
https://github.com/open-mpi/hwloc/issues


Thanks!

Questions?

http://www.open-mpi.org/projects/hwloc

Brice.Goglin@inria.fr

http://www.open-mpi.org/projects/hwloc

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75
	Diapo 76

