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Materials

● All hwloc tutorials are available at

http://www.open-mpi.org/projects/hwloc/tutorials

http://www.open-mpi.org/projects/hwloc/tutorials


1 Quick example
as an Introduction
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Machines are increasingly complex
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Machines are increasingly complex

● Multiple processors
● Multicore processors (package = socket)
● Simultaneous multithreading
● Shared caches
● NUMA nodes
● Multiple GPUs, NICs, …

● We cannot expect users to understand all this
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Example with MPI

● Our latest cluster at Inria Bordeaux
● 12-core Xeon E5-2600v3 with NVIDIA K40, etc.

● Nice, let's run some benchmarks!
● Open MPI 1.8.1
● Intel MPI benchmarks 3.2
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Example with MPI – Results

● Between cores 0 and 1
● 540ns, 3500MiB/s

● Between cores 0 and 2
● 330ns, 4220MiB/s

● Between cores 0 and 12
● 430ns, 4290MiB/s

● Between cores 0 and 23
● 590ns, 3410MiB/s
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What is going on?

540ns
3500MiB/s

430ns
4290MiB/s

590ns
3410MiB/s

330ns
4220MiB/s



2016/06/06 PATC 10

First take away messages

● Locality matters to communication 
performance
● Machines are really far from flat

● Similar issues with POWER8, AMD Opterons, Fujitsu 
Sparc XIfx

● Cores numbering is crazy
● Never expect anything sane



2016/06/06 PATC 11

It's actually worse than that

GPUs 
attached

to one NUMA 
node
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I/O affinity

● If you use GPUs or high performance 
networks, you must allocate host memory 
close to them
● Otherwise DMA to GPUs slows down by 10-20% 

here
● InfiniBand latency increases by 10%

● Need a way to know which cores/memory is 
close to which I/O device



2 Bind your processes
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Where does locality actually matter?

● MPI communication performance varies with distance
● Inside or outside nodes

● Shared memory too (threads, OpenMP, etc.)
● Synchronization

● Barriers use caches and memory too
● Concurrent access to shared buffers

● Producer-consumer, etc

● 15 years ago, locality was mostly an issue for large 
NUMA SMP machines (SGI, etc.)
● Today it's everywhere

● Because multicores and NUMA are everywhere
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What to do about locality
in runtimes?

● Place processes/tasks according to their 
affinities
● If two tasks communicate/synchronize/share a lot, 

keep them physically close
● Main focus of this talk

● Adapt your algorithms to the locality
● Adapt communication/synchronization 

implementations to the topology
● Hierarchical OpenMP barriers
● Adapt your buffers to (shared) cache size
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Process binding

● Some MPI implementations bind processes by 
default (Intel MPI, Open MPI 1.8 in some cases)
● Because it's better for reproducibility

● Some don't
● Because it may hurt your application

● Oversubscribing? Dynamic processes?

● Binding doesn't guarantee that your processes 
are optimally placed
● It just means your processes won't move

● No migration, less cache issues, etc.
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To bind or not to bind?
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Ok, I need to bind.
But where?

● Default binding strategies?
● By core first (compact, --map-by core, etc.)

● One process per core on first node,
then one process per core on second node, …

● By node first (scatter, --map-by node/socket, etc.)
● One process on first core of each node,

then one process on second core of each node, …

● Your application likely prefers one to the other
● The first one?

● Because your algorithms often communicate more between 
immediate neighbors

● Sometimes the other one...
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Binding strategy impact
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How do I choose?

● Dilemma
● Use cores 0 & 1 to share cache and 

improve synchronization cost?
● Use cores 0 & 2 to maximize 

memory bandwidth?

● Depends on the application needs
● And machine characteristics
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Topology-aware MPI process
placement with TreeMatch

● Some tasks communicate 
a lot with each other
● The physical distance will 

slow down some 
messages

● Try to keep them close!

● Some don't
● No constraint on 

placement
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Reordering tasks to improve locality
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Reordering with TreeMatch

● At process launch-time
● mpiexec options

● Dynamically
● MPI_Dist_graph_create() to swap MPI ranks' roles

between application steps
● Charm++ load-balancer

● The communication volume is unchanged
● But big volumes move inside nodes

● Faster execution!



3 What's the actual 
problem ?
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Example of dual
Nehalem Xeon machine
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Another example of dual
Nehalem Xeon machine
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Processor and core numbers
are crazy

● Resource ordering/numbering is unpredictable
● Can (and does) change with the vendor, BIOS 

version, etc.

● Some resources may be unavailable
● Batch schedulers allocates parts of machines

● Core numbers may be non-consecutive, not start at 0, 
etc.

● Don't assume anything about these numbers
● Otherwise your code won't be portable
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Vertical ordering of levels
(who contains who)
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Vertical ordering isn't reliable either

● Modern processors have 2 NUMA nodes each
● Xeon E5v3, Opteron 6000, Power8, Sparc64 XIfx
● But old platforms have multiple processor packages 

per NUMA nodes

● Levels of caches and sharing may vary

● Don't assume anything about vertical ordering
● Or (again) your code won't be portable
● e.g.: Even the Intel OpenMP binding isn't always 

correct
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Gathering topology information
is difficult

● Lack of generic, uniform interface
● Operating system specific

● /proc and /sys on Linux
● rset, sysctl, lgrp, kstat on other OS

● Hardware specific
● x86 CPUID instruction, device-tree, PCI config space, etc.

● Evolving technology
● AMD Bulldozer introduced dual-core Compute Units

● It's not two real cores, neither one hyper-threaded core
● New kinds of hierarchy/resources?

● And some BIOS report buggy information
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Binding is difficult too

● Lack of generic, uniform interface (again)
● Process/thread binding

● sched_affinity() system call changed twice in Linux
● Memory binding

● 3 different system-calls on Linux
● mbind(), migrate_pages(), move_pages()

● Different constraints
● Bind to single core only? To contiguous set of cores? To 

random sets of cores?
● Many different policies



4 Introducing hwloc
(Hardware Locality)
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What hwloc is

● Detection of hardware resources
● Processing units (PU) = logical processors, hardware 

threads, hyperthreads
● Things that can run a task

● Core, packages (sockets), … (things that contain PUs)
● Memory nodes, shared caches
● I/O devices

● PCI devices and corresponding software handles

● Described as a tree
● Logical resources identification and organization

● Based on locality
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What hwloc is (2/2)

● API and tools to consult the topology
● Which cores are near this NUMA memory node ?
● Give me a single thread in this package
● Which NUMA memory node is near this GPU ?
● What shared cache size between these cores ?

● Without caring about hardware strangeness
● Non portable and crazy numbers, names, …

● A portable binding API
● No more Linux sched_setaffinity() API breakage
● No more tens of different binding API with different types
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What hwloc is NOT

● A placement algorithm
● hwloc gives hardware information
● You're the one that knows what your software 

does/needs
● You're the one that must match software affinities 

to hardware localities
● We give you the hardware information you need

● A performance analysis tool
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hwloc’s History

● Ideas from Samuel Thibault’s PhD on hierarchical 
thread scheduling (2003)

● Standalone library to ease MPI process placement 
(2009)

● Mainly developed by TADaaM@Inria Bordeaux
● Within the Open MPI consortium
● Collaboration with many industrial and academic 

partners

● BSD-3 license
● Many users
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Alternative software
with advanced topology knowledge

● numactl/libnuma
● Only for NUMA + hardware threads

● No cache, core, package/socket, etc.

● lscpu, lshw, lsusb, …
● Specific to some resources
● Inventory without locality information

● Likwid (performance optimization tool)
● Now uses hwloc internally

● Intel Compiler (icc)
● x86 specific, no API
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hwloc Status

● Current stable release : 1.11.3 (April 2016)
● Support for most operating systems and HPC 

platforms

● Major release every 6 months
● Backward compatible

● Next major release will be super-major
● 2.0 expected in 2016H2
● Will break the ABI (not fully backward compatible)

● Fix bad ideas from the first hwloc API
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hwloc's view of the hardware

● Tree of objects
● Machines, NUMA memory nodes, packages, caches, 

cores, threads
● Logically ordered

● Grouping similar objects using distances between them
● Avoids enormous flat topologies

● Many attributes
● Memory node size
● Cache type, size, line size, associativity
● Physical ordering
● Miscellaneous info, customizable
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Installing hwloc

● Packages available in Debian, Ubuntu, 
Redhat, Fedora, CentOS, ArchLinux, NetBSD, 
etc

● You want the development headers too
● libhwloc-dev, hwloc-devel, …
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Manual installation

● Take a recent tarball at 
http://www.open-mpi.org/projects/hwloc

● Dependencies
● On Linux, numactl/libnuma development headers
● Cairo headers for lstopo graphics

● ./configure --prefix=$PWD/install
● Very few configure options

● Check the summary at the end of configure

http://www.open-mpi.org/projects/hwloc
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Manual installation

● make
● make install
● Useful environment variables

export C_INCLUDE_PATH=$C_INCLUDE_PATH:<prefix>/include

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<prefix>/lib

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:<prefix>/lib/pkgconfig

export PATH=$PATH:<prefix>/bin

export MANPATH=$MANPATH:<prefix>/share/man
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Using hwloc for this tutorial

● Install hwloc on your preferred cluster

● And install it on your laptop too
● It will make remote machine consulting easier
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Using hwloc

● Many hwloc command-line tools
● lstopo and hwloc-*

● … but the actual hwloc power is in the C API

● Perl and Python bindings



5 Command-line Tools
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lstopo
(displaying topologies)

Machine (3828MB)
  Package L#0 + L3 L#0 (4096KB)
    L2 L#0 (256KB) + Core L#0
      PU L#0 (P#0)
      PU L#1 (P#2)
    L2 L#1 (256KB) + Core L#1
      PU L#2 (P#1)
      PU L#3 (P#3)
  HostBridge L#0
    PCI 8086:0046
      GPU L#0 "controlD64"
    PCI 8086:10ea
      Net L#2 "eth0"
    PCIBridge
      PCI 8086:422b
        Net L#3 "wlan0"
    PCI 8086:3b2f
      Block L#4 "sda"
      Block L#5 "sr0"
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lstopo

● Many output formats
● Text, Cairo (PDF, PNG, SVG, PS), Xfig, ncurses

● Automatically guessed from the file extension

● XML dump/reload
● Faster, convenient for remote debugging

● Configuration options for nice figures for papers
● Horizontal/Vertical placement
● Legend
● Ignoring some resources
● Creating fake topologies
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lstopo

$ lstopo

$ lstopo --no-io -

$ lstopo myfile.png

$ ssh host lstopo saved.xml

$ lstopo -i saved.xml

$ ssh myhost lstopo -.xml | lstopo --if xml -i -

$ lstopo -i “numa:4 package:2 core:2 pu:2”
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hwloc-bind
(binding processes, threads and memory)

● Bind a process to a given set of CPUs

    $ hwloc-bind package:1 -- mycommand myargs...

    $ hwloc-bind os=mlx4_0 -- mympiprogram ...
● Bind an existing process

    $ hwloc-bind --pid 1234 numa:0
● Bind memory

    $ hwloc-bind --membind numa:1 --cpubind numa:0 …
● Find out if a process is already bound

    $ hwloc-bind --get --pid 1234

    $ hwloc-ps
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hwloc-calc
(calculating with objects)

● Convert between ways to designate sets 
of CPUs, objects... and combine them

    $ hwloc-calc package:1.core:1 ~pu:even
    0x00000008
    $ hwloc-calc --number-of core numa:0
    2
    $ hwloc-calc --intersect pu package:1
    2,3
● The result may be passed to other tools
● Multiple invocations may be combined
● I/O devices also supported
    $ hwloc-calc os=eth0
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Other tools

● Get some object information
● hwloc-info

● Generate bitmaps for distributing multiple 
processes on a topology
● hwloc-distrib

● Save a Linux node topology info for debugging
● hwloc-gather-topology

● Manipulating multiple topologies, etc.
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Hands-on lstopo

● Gather the topology of one server
● Display it on another machine
● Hide caches
● Remove the legend
● Restrict the display to a single package
● Export to PDF
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Hands-on hwloc-bind
and hwloc-calc

● Bind a process to a core and verify its binding
● Find out how many cores are in the second 

NUMA node
● Find out the physical numbers of all non-first 

hyperthreads
● Find out which cores are close to InfiniBand
● Compare the DMA bandwidth from GPU#0 to 

both NUMA nodes using cudabw



6 C Programming API
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API basics

● A hwloc program looks like this

#include <hwloc.h>

hwloc_topology_t topo;

hwloc_topology_init(&topo);
/* ... configure what topology to build … */
hwloc_topology_load(topo);

/* … play with the topology … */

hwloc_topology_destroy(topo);
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Major hwloc types

● The topology context : hwloc_topology_t
● You always need one

● The main hwloc object : hwloc_obj_t
● That's where the actual info is
● The structure isn't opaque

● It contains many pointers to ease traversal

● Object type : hwloc_obj_type_t
● HWLOC_OBJ_PU, _PACKAGE, _CORE, 

_NUMANODE, …
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Object information

● Type
● Optional name string
● Indexes (see later)
● cpusets and nodesets (see later)
● Tree pointers (*cousin, *sibling, arity, *child*, parent)
● Type-specific attribute union

● obj->attr->cache.size
● obj->attr->pcidev.linkspeed

● String info pairs
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Browsing as a tree

● The root is hwloc_get_root_obj(topo)
● Objects have children

● obj->arity is the number of children
● The array of children is obj->children[]
● They are also in a list

● obj->first_child, obj->last_child
● child->prev_sibling, child->next_sibling
● NULL-terminated

● The parent is obj->parent (or NULL)
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Browsing as levels

● The topology is also organized as levels of identical 
objects
● Cores, L2d Caches, …
● All PUs at the bottom

● Number of levels hwloc_topology_get_depth(topo)
● Number of objects on a level 

hwloc_get_nbobjs_by_type(topo, type) 
hwloc_get_nbobjs_by_depth(topo, depth)

● Convert between depth and type using
hwloc_get_type_depth() or hwloc_get_depth_type()
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Browsing as levels

● Find objects by level and index
● hwloc_get_obj_by_type(topo, type, index)
● There are variants taking a depth instead of a type

● Note : the depth of my child is not always my depth + 1
● Think of asymmetric topologies

● Iterate over objects of a level
● Objects at the same levels are also interconnect 

by prev/next_cousin pointers
● Don't mix up siblings (children list) and cousins (level)

● hwloc_get_next_obj_by_type/depth()
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Hands-on browsing the topology

Starting from basic.c
● Print the number of cores
● Print the type of the common ancestor of 

cores 0 and 2
● Print the memory size near core 0
● Iterate over all PUs and print their physical 

numbers
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Physical or OS indexes

● obj->os_index
● The ID given by the OS/hardware

● P#3
● Default in lstopo graphic mode
● lstopo -p

● NON PORTABLE
● Depend on motherboards,

BIOS, version, …

● DON'T USE THEM
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Logical indexes

● obj->logical_index
● The index among an entire level

● L#2
● Default in lstopo except in graphic mode
● lstopo -l

● Always represent proximity (depth-first walk)
● PORTABLE

● Does not depend on OS/BIOS/weather

● That's what you want to use
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But I still need OS indexes when 
binding ?!

● NO !
● Just use hwloc for binding, you won't need 

physical/OS indexes ever again

● If you want to bind the execution to a core
● hwloc_set_cpubind(core->cpuset)

● Other API functions for binding entire processes, single 
thread, memory, for allocating bound memory, etc.
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Bitmap, CPU sets, Node sets

● Generic mask of bits : hwloc_bitmap_t
● Possibly infinite
● Opaque, used to describe object contents

● Which PU are inside this object (obj->cpuset)
● Which NUMA nodes are close to this object (obj-

>nodeset)
● Can be combined to bind to multiple cores, etc.

● and, or, xor, not, ...
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Hands-on bitmaps and binding

● Bind a process to 1st core
● Rebind the same process to cores 2 and 4
● Print its binding
● Print where it's actually running

● Repeat

● Rebind to avoid migrating between cores
● hwloc_bitmap_singlify()
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I/O devices

● Binding tasks near the 
devices they use improves 
their data transfer time
● GPUs, high-performance NICs, 

InfiniBand, …

● You cannot bind tasks or 
memory on these devices
● But these devices may have 

interesting attributes
● Device type, GPU capabilities, 

embedded memory, link speed, ...
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I/O objects

● Some I/O trees are attached to 
the object they are close to

● PCI device objects
● Optional I/O bridge objects

● How to match your software
handle with a PCI device ?
● OS/Software devices (when known)

● sda, eth0, ib0, mlx4_0

● Disabled by default
● Except in lstopo
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Hands-on I/O

● Load cuda modules, etc.

Starting from cuda.c
● Find the NUMA node near each CUDA device

Starting form ib.c
● Find the NUMA node near each IB device
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Extended attributes

● obj->userdata pointer
● Your application may store whatever it needs there
● hwloc won't look at it, it doesn't know what's it 

contains

● (name,value) info attributes
● Basic string annotations, hwloc adds some

● Hostname, Kernel release, CPU model, PCI vendor, …
● See lstopo -v for (many) examples

● You may add your own
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Configuring the topology

● Between hwloc_topology_init() and load()
● hwloc_topology_set_xml(), set_synthetic()
● hwloc_topology_set_flags(), set_pid()
● hwloc_topology_ignore_type()

● After hwloc_topology_load()
● hwloc_topology_restrict()
● hwloc_topology_insert_misc_object...
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Helpers

● hwloc/helper.h contains a lot of helper functions
● Iterators on levels, children, restricted levels
● Finding caches
● Converting between cpusets and nodesets
● Finding I/O objects
● And much more

● Use them to avoid rewriting basic functions
● Use them to understand how things work and 

write what you need



8 Conclusion
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More information

● The documentation
● http://www.open-mpi.org/projects/hwloc/doc/
● Related pages

● http://www.open-mpi.org/projects/hwloc/doc/v1.11.3/pages.php
● FAQ

● http://www.open-mpi.org/projects/hwloc/doc/v1.11.3/a00030.php

● README and HACKING in the source
● hwloc-users@open-mpi.org for questions
● hwloc-devel@open-mpi.org for contributing
● hwloc-announce@open-mpi.org for new releases
● https://github.com/open-mpi/hwloc/issues for reporting bugs

http://www.open-mpi.org/projects/hwloc/doc/
http://www.open-mpi.org/projects/hwloc/doc/v1.11.3/pages.php
http://www.open-mpi.org/projects/hwloc/doc/v1.11.3/a00030.php
https://github.com/open-mpi/hwloc/issues


Thanks!

Questions?

http://www.open-mpi.org/projects/hwloc

Brice.Goglin@inria.fr

http://www.open-mpi.org/projects/hwloc
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