

PATC 2016/06/06 Maison de la Simulation

Understanding and managing hardware affinities on hierarchical platforms With Hardware Locality (hwloc)

Brice Goglin – TADaaM Team – Inria Bordeaux Sud-Ouest

Agenda

- Quick example as an Introduction
- Bind your processes
- What's the actual problem?
- Introducing hwloc (Hardware Locality)
- Command-line tools
- C Programming API
- Conclusion

Materials

• All hwloc tutorials are available at

http://www.open-mpi.org/projects/hwloc/tutorials

Innin

Machines are increasingly complex

Machines are increasingly complex

- Multiple processors
- Multicore processors (package = socket)
- Simultaneous multithreading
- Shared caches
- NUMA nodes

2016/06/06

• Multiple GPUs, NICs, ...

We cannot expect users to understand all this

Example with MPI

- Our latest cluster at Inria Bordeaux
 - 12-core Xeon E5-2600v3 with NVIDIA K40, etc.

- Nice, let's run some benchmarks!
 - Open MPI 1.8.1
 - Intel MPI benchmarks 3.2

Example with MPI – Results

- Between cores 0 and 1
 - 540ns, 3500MiB/s
- Between cores 0 and 2
 - 330ns, 4220MiB/s
- Between cores 0 and 12
 - 430ns, 4290MiB/s
- Between cores 0 and 23
 - 590ns, 3410MiB/s

What is going on?

First take away messages

- Locality matters to communication performance
 - Machines are really far from flat
 - Similar issues with POWER8, AMD Opterons, Fujitsu Sparc XIfx
- Cores numbering is crazy
 - Never expect anything sane

It's actually worse than that

PATC

Inría 2016/06/06

I/O affinity

- If you use GPUs or high performance networks, you must allocate host memory close to them
 - Otherwise DMA to GPUs slows down by 10-20% here
 - InfiniBand latency increases by 10%

 Need a way to know which cores/memory is close to which I/O device

Where does locality actually matter?

- MPI communication performance varies with distance
 - Inside or outside nodes
- Shared memory too (threads, OpenMP, etc.)
 - Synchronization
 - Barriers use caches and memory too
 - Concurrent access to shared buffers
 - Producer-consumer, etc
- 15 years ago, locality was mostly an issue for large NUMA SMP machines (SGI, etc.)

PATC

• Today it's everywhere

2016/06/06

• Because multicores and NUMA are everywhere

What to do about locality in runtimes?

- Place processes/tasks according to their affinities
 - If two tasks communicate/synchronize/share a lot, keep them physically close

PATC

• Main focus of this talk

- Adapt your algorithms to the locality
 - Adapt communication/synchronization implementations to the topology
 - Hierarchical OpenMP barriers
 - Adapt your buffers to (shared) cache size

Process binding

- Some MPI implementations bind processes by default (Intel MPI, Open MPI 1.8 in some cases)
 - Because it's better for reproducibility
- Some don't

2016/06/06

- Because it may hurt your application
 - Oversubscribing? Dynamic processes?
- Binding doesn't guarantee that your processes are optimally placed

PATC

- It just means your processes won't move
 - No migration, less cache issues, etc.

To bind or not to bind?

Zeus MHD Blast

17

Ok, I need to bind. But where?

- Default binding strategies?
 - By core first (compact, --map-by core, etc.)
 - One process per core on first node, then one process per core on second node, ...
 - By node first (scatter, --map-by node/socket, etc.)
 - One process on first core of each node, then one process on second core of each node, ...
- Your application likely prefers one to the other
 - The first one?
 - Because your algorithms often communicate more between immediate neighbors
 - Sometimes the other one...

Binding strategy impact

How do I choose?

- Dilemma
 - Use cores 0 & 1 to share cache and improve synchronization cost?
 - Use cores 0 & 2 to maximize memory bandwidth?
- Depends on the application needs
 - And machine characteristics

Machine (2048MB total)
NUMANode P#0 (1024MB)
Package P#0
L2 P#0 (4096KB)
Core P#0 Core P#1
PU P#0 PU P#1
NUMANode P#1 (1024MB)
Package P#1
L2 P#1 (4096KB)
Core P#2 PU P#2 PU P#3

Topology-aware MPI process placement with TreeMatch

PATC

- Some tasks communicate a lot with each other
 - The physical distance will slow down some messages
 - Try to keep them close!
- Some don't
 - No constraint on placement

2016/06/06

Sender rank

Reordering tasks to improve locality

PATC

Receiver rank

Ínría 2016/06/06

22

Reordering with TreeMatch

- At process launch-time
 - mpiexec options
- Dynamically
 - MPI_Dist_graph_create() to swap MPI ranks' roles between application steps
 - Charm++ load-balancer
- The communication volume is unchanged
 - But big volumes move inside nodes
- Faster execution!

What's the actual problem ?

Innia

Example of dual Nehalem Xeon machine

Machine (48GB)	
NUMANode P#0 (24GB)	NUMANode P#1 (24GB)
Socket P#0	Socket P#1
L3 (8192KB)	L3 (8192KB)
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)	L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)
L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)	L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)
L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)	L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)
Core P#0 Core P#1 Core P#2 Core P#3 PU P#0 PU P#1 PU P#2 PU P#3	Core P#0 Core P#1 Core P#2 Core P#3 PU P#4 PU P#5 PU P#6 PU P#7

Another example of dual Nehalem Xeon machine

Machine (24GB) NUMANode P#0 (12GB)	NUMANode P#1 (12GB)
Socket P#1 L3 (8192KB)	Socket P#0 L3 (8192KB)
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)	L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)
L1d (32KB) L1d (32KB) L1d (32KB)	L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)
Lli (32KB) Lli (32KB) Lli (32KB) Lli (32KB) Core P#0 Core P#1 Core P#2 Core P#3	Lli (32KB) Lli (32KB) Lli (32KB) Lli (32KB) Core P#0 Core P#1 Core P#2 Core P#3
PU P#0 PU P#2 PU P#4 PU P#6	PU P#1 PU P#3 PU P#5 PU P#7

Processor and core numbers are crazy

- Resource ordering/numbering is unpredictable
 - Can (and does) change with the vendor, BIOS version, etc.
- Some resources may be unavailable
 - Batch schedulers allocates parts of machines
 - Core numbers may be non-consecutive, not start at 0, etc.
- Don't assume anything about these numbers
 - Otherwise your code won't be portable

Vertical ordering of levels (who contains who)

Mach	inte (040B cocal)															
ackage P#0								F	Package P#1							
	NUMANode P#0 (16GB)								NUMANode P#2 (16GB)							
	L3 (18MB)	(18MB)							L3 (18MB)							
	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)		L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	
	L1d (32KB)	L1d (32KB)	L1d (32KB)	L1d (32KB)	L1d (32KB)	L1d (32KB)	L1d (32KB)		L1d (32KB)	L1d (32KB)	L1d (32KB)	L1d (32KB)	L1d (32KB)	L1d (32KB)	L1d (32KB)	
	L1i (32KB)	Lli (32KB)	L1i (32KB)	L1i (32KB)	L1i (32KB)	Lli (32KB)	L1i (32KB)		L1i (32KB)	Lli (32KB)	L1i (32KB)	L1i (32KB)	L1i (32KB)	Lli (32KB)	L1i (32KB)	
	Core P#0 PU P#0	Core P#1 PU P#1	Core P#2 PU P#2	Core P#3 PU P#3	Core P#4 PU P#4	Core P#5 PU P#5	Core P#6 PU P#6		Core P#0 PU P#14	Core P#1 PU P#15	Core P#2 PU P#16	Core P#3 PU P#17	Core P#4 PU P#18	Core P#5 PU P#19	Core P#6 PU P#20	
_																
[NUMANode P#1	.(16GB)							NUMANode P#3	3 (16GB)						
	NUMANode P#1 L3 (18MB)	. (16GB)							NUMANode P#3	3 (16GB)						
	NUMANode P#1 L3 (18MB) L2 (256KB)	. (16GB) L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	ſ	NUMANode P#3	3 (16GB) L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	
	NUMANode P#1 L3 (18MB) L2 (256KB) L1d (32KB)	. (16GB) L2 (256KB) L1d (32KB)	L2 (256KB) L1d (32KB)	L2 (256KB) L1d (32KB)	L2 (256KB) L1d (32KB)	L2 (256KB) L1d (32KB)	L2 (256KB) L1d (32KB)		NUMANode P#3 L3 (18MB) L2 (256KB) L1d (32KB)	3 (166B) L2 (256KB) L1d (32KB)	L2 (256KB) L1d (32KB)	L2 (256KB) L1d (32KB)	L2 (256KB) L1d (32KB)	L2 (256KB) L1d (32KB)	L2 (256KB) L1d (32KB)	
	NUMANode P#1 L3 (18MB) L2 (256KB) L1d (32KB) L1i (32KB)	. (16GB) L2 (256KB) L1d (32KB) L1i (32KB)	L2 (256KB) L1d (32KB) L1i (32KB)	L2 (256KB) L1d (32KB) L1i (32KB)	L2 (256KB) L1d (32KB) L1i (32KB)	L2 (256KB) L1d (32KB) L1i (32KB)	L2 (256KB) L1d (32KB) L1i (32KB)		NUMANode P#3 L3 (18MB) L2 (256KB) L1d (32KB) L1i (32KB)	3 (166B) L2 (256KB) L1d (32KB) L1i (32KB)	L2 (256KB) L1d (32KB) L1i (32KB)	L2 (256KB) L1d (32KB) L1i (32KB)	L2 (256KB) L1d (32KB) L1i (32KB)	L2 (256KB) L1d (32KB) L1i (32KB)	L2 (256KB) L1d (32KB) L1i (32KB)	
	NUMANode P#1 L3 (18MB) L2 (256KB) L1d (32KB) L1i (32KB) Core P#8	.(16GB) L2(256KB) L1d(32KB) L1i(32KB) Core P#9	L2 (256KB) L1d (32KB) L1i (32KB) Core P#10	L2 (256KB) L1d (32KB) L1i (32KB) Core P#11	L2 (256KB) L1d (32KB) L1i (32KB) Core P#12	L2 (256KB) L1d (32KB) L1i (32KB) Core P#13	L2 (256KB) L1d (32KB) L1i (32KB) Core P#14		NUMANode P#3 L3 (18MB) L2 (256KB) L1d (32KB) L1i (32KB) Core P#8	3 (166B) L2 (256KB) L1d (32KB) L1i (32KB) Core P#9	L2 (256KB) L1d (32KB) L1i (32KB) Core P#10	L2 (256KB) L1d (32KB) L1i (32KB) Core P#11	L2 (256KB) L1d (32KB) L1i (32KB) Core P#12	L2 (256KB) L1d (32KB) L1i (32KB) Core P#13	L2 (256KB) L1d (32KB) L1i (32KB) Core P#14	
	NUMANode P#1 L3 (18MB) L2 (256KB) L1d (32KB) L1i (32KB) Core P#8 PU P#7	(16GB) L2 (256KB) L1d (32KB) L1i (32KB) Core P#9 PU P#8	L2 (256KB) L1d (32KB) L1i (32KB) Core P#10 PU P#9	L2 (256KB) L1d (32KB) L1i (32KB) Core P#11 PU P#10	L2 (256KB) L1d (32KB) L1i (32KB) Core P#12 PU P#11	L2 (256KB) L1d (32KB) L1i (32KB) Core P#13 PU P#12	L2 (256KB) L1d (32KB) L1i (32KB) Core P#14 PU P#13	ſ	NUMANode P#3 L3 (18MB) L2 (256KB) L1d (32KB) L1i (32KB) Core P#8 PU P#21	3 (166B) L2 (256KB) L1d (32KB) L1i (32KB) Core P#9 PU P#22	L2 (256KB) L1d (32KB) L1i (32KB) Core P#10 PU P#23	L2 (256KB) L1d (32KB) L1i (32KB) Core P#11 PU P#24	L2 (256KB) L1d (32KB) L1i (32KB) Core P#12 PU P#25	L2 (256KB) L1d (32KB) L1i (32KB) Core P#13 PU P#26	L2 (256KB) L1d (32KB) L1i (32KB) Core P#14 PU P#27	

PATC

Vertical ordering isn't reliable either

- Modern processors have 2 NUMA nodes each
 - Xeon E5v3, Opteron 6000, Power8, Sparc64 XIfx
 - But old platforms have multiple processor packages per NUMA nodes
- Levels of caches and sharing may vary

- Don't assume anything about vertical ordering
 - Or (again) your code won't be portable

2016/06/06

 e.g.: Even the Intel OpenMP binding isn't always correct

PATC

Gathering topology information is difficult

- Lack of generic, uniform interface
 - Operating system specific
 - /proc and /sys on Linux
 - rset, sysctl, lgrp, kstat on other OS
 - Hardware specific
 - x86 CPUID instruction, device-tree, PCI config space, etc.
- Evolving technology

- AMD Bulldozer introduced dual-core Compute Units
 - It's not two real cores, neither one hyper-threaded core
- New kinds of hierarchy/resources?
- And some BIOS report buggy information

Binding is difficult too

- Lack of generic, uniform interface (again)
 - Process/thread binding
 - sched_affinity() system call changed twice in Linux
 - Memory binding
 - 3 different system-calls on Linux
 - mbind(), migrate_pages(), move_pages()
 - Different constraints
 - Bind to single core only? To contiguous set of cores? To random sets of cores?
 - Many different policies

Introducing hwloc (Hardware Locality)

What hwloc is

- Detection of hardware resources
 - Processing units (PU) = logical processors, hardware threads, hyperthreads
 - Things that can run a task
 - Core, packages (sockets), ... (things that contain PUs)
 - Memory nodes, shared caches
 - I/O devices

- PCI devices and corresponding software handles
- Described as a tree
 - Logical resources identification and organization
 - Based on locality

What hwloc is (2/2)

- API and tools to consult the topology
 - Which cores are near this NUMA memory node ?
 - Give me a single thread in this package
 - Which NUMA memory node is near this GPU ?
 - What shared cache size between these cores ?
- Without caring about hardware strangeness
 - Non portable and crazy numbers, names, ...
- A portable binding API

- No more Linux sched_setaffinity() API breakage
- No more tens of different binding API with different types

What hwloc is **NOT**

- A placement algorithm
 - hwloc gives hardware information
 - You're the one that knows what your software does/needs
 - You're the one that must match software affinities to hardware localities
 - We give you the hardware information you need
- A performance analysis tool

hwloc's History

- Ideas from Samuel Thibault's PhD on hierarchical thread scheduling (2003)
- Standalone library to ease MPI process placement (2009)
- Mainly developed by TADaaM@Inria Bordeaux
 - Within the Open MPI consortium
 - Collaboration with many industrial and academic partners
- BSD-3 license

2016/06/06

Many users
Alternative software with advanced topology knowledge

- numactl/libnuma
 - Only for NUMA + hardware threads
 - No cache, core, package/socket, etc.
- Iscpu, Ishw, Isusb, ...
 - Specific to some resources
 - Inventory without locality information
- Likwid (performance optimization tool)
 - Now uses hwloc internally
- Intel Compiler (icc)

2016/06/06

x86 specific, no API

hwloc Status

- Current stable release : 1.11.3 (April 2016)
- Support for most operating systems and HPC platforms
- Major release every 6 months
 - Backward compatible
- Next major release will be super-major
 - 2.0 expected in 2016H2

- Will break the ABI (not fully backward compatible)
 - Fix bad ideas from the first hwloc API

hwloc's view of the hardware

- Tree of objects
 - Machines, NUMA memory nodes, packages, caches, cores, threads
 - Logically ordered
 - Grouping similar objects using distances between them

PATC

- Avoids enormous flat topologies
- Many attributes

- Memory node size
- Cache type, size, line size, associativity
- Physical ordering
- Miscellaneous info, customizable

Installing hwloc

- Packages available in Debian, Ubuntu, Redhat, Fedora, CentOS, ArchLinux, NetBSD, etc
- You want the development headers too
 - libhwloc-dev, hwloc-devel, ...

Manual installation

- Take a recent tarball at http://www.open-mpi.org/projects/hwloc
- Dependencies

- On Linux, numactl/libnuma development headers
- Cairo headers for Istopo graphics
- ./configure --prefix=\$PWD/install
 - Very few configure options
- Check the summary at the end of configure

Manual installation

- make
- make install
- Useful environment variables
 export C_INCLUDE_PATH=\$C_INCLUDE_PATH:<prefix>/include
 export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:<prefix>/lib
 export PKG_CONFIG_PATH=\$PKG_CONFIG_PATH:<prefix>/lib/pkgconfig
 export PATH=\$PATH:<prefix>/bin
 export MANPATH=\$MANPATH:<prefix>/share/man

Using hwloc for this tutorial

• Install hwloc on your preferred cluster

- And install it on your laptop too
 - It will make remote machine consulting easier

Using hwloc

- Many hwloc command-line tools
 - Istopo and hwloc-*
- ... but the actual hwloc power is in the CAPI

Perl and Python bindings

Inría

Istopo (displaying topologies)

PATC

Inia 2016/06/06

Machine (3828MB) Package L#0 + L3 L#0 (4096KB) L2 L#0 (256KB) + Core L#0 L2 L#1 (256KB) + Core L#1 GPU L#0 "controlD64" Net L#2 "eth0" PCI 8086:422b Net L#3 "wlan0" Block L#4 "sda" Block L#5 "sr0"

Istopo

- Many output formats
 - Text, Cairo (PDF, PNG, SVG, PS), Xfig, ncurses
 - Automatically guessed from the file extension
- XML dump/reload
 - Faster, convenient for remote debugging
- Configuration options for nice figures for papers
 - Horizontal/Vertical placement
 - Legend
 - Ignoring some resources
 - Creating fake topologies

Istopo

- \$ Istopo
- \$ Istopo --no-io -
- \$ Istopo myfile.png
- \$ ssh host Istopo saved.xml
- \$ Istopo -i saved.xml
- \$ ssh myhost Istopo -.xml | Istopo --if xml -i -
- \$ Istopo -i "numa:4 package:2 core:2 pu:2"

hwloc-bind (binding processes, threads and memory)

- Bind a process to a given set of CPUs
 \$ hwloc-bind package:1 -- mycommand myargs...
 \$ hwloc-bind os=mlx4_0 -- mympiprogram ...
- Bind an existing process
 \$ hwloc-bind --pid 1234 numa:0
- Bind memory
 - \$ hwloc-bind --membind numa:1 --cpubind numa:0 ...

PATC

- Find out if a process is already bound
 \$ hwloc-bind --get --pid 1234
 - \$ hwloc-ps

hwloc-calc (calculating with objects)

PATC

 Convert between ways to designate sets of CPUs, objects... and combine them

\$ hwloc-calc package:1.core:1 ~pu:even
0x0000008

\$ hwloc-calc --number-of core numa:0
2

\$ hwloc-calc --intersect pu package:1
2,3

- The result may be passed to other tools
- Multiple invocations may be combined
- I/O devices also supported \$ hwloc-calc os=eth0

Other tools

- Get some object information
 - hwloc-info
- Generate bitmaps for distributing multiple processes on a topology
 - hwloc-distrib
- Save a Linux node topology info for debugging
 - hwloc-gather-topology
- Manipulating multiple topologies, etc.

Hands-on Istopo

- Gather the topology of one server
- Display it on another machine
- Hide caches
- Remove the legend
- Restrict the display to a single package
- Export to PDF

Hands-on hwloc-bind and hwloc-calc

- Bind a process to a core and verify its binding
- Find out how many cores are in the second NUMA node
- Find out the physical numbers of all non-first hyperthreads
- Find out which cores are close to InfiniBand
- Compare the DMA bandwidth from GPU#0 to both NUMA nodes using cudabw

API basics

PATC

 A hwloc program looks like this #include <hwloc.h>

```
hwloc_topology_t topo;
```

```
hwloc_topology_init(&topo);
/* ... configure what topology to build ... */
hwloc_topology_load(topo);
```

/* ... play with the topology ... */

hwloc_topology_destroy(topo);

Major hwloc types

- The topology context : hwloc_topology_t
 - You always need one

2016/06/06

- The main hwloc object : hwloc_obj_t
 - That's where the actual info is
 - The structure isn't opaque
 - It contains many pointers to ease traversal
- Object type : hwloc_obj_type_t
 - HWLOC_OBJ_PU, _PACKAGE, _CORE, _NUMANODE, ...

PATC

Object information

- Type
- Optional name string
- Indexes (see later)
- cpusets and nodesets (see later)
- Tree pointers (*cousin, *sibling, arity, *child*, parent)
- Type-specific attribute union
 - obj->attr->cache.size
 - obj->attr->pcidev.linkspeed
- String info pairs

Browsing as a tree

- The root is hwloc_get_root_obj(topo)
- Objects have children
 - obj->arity is the number of children
 - The array of children is obj->children[]
 - They are also in a list
 - obj->first_child, obj->last_child
 - child->prev_sibling, child->next_sibling
 - NULL-terminated
- The parent is obj->parent (or NULL)

Browsing as levels

- The topology is also organized as levels of identical objects
 - Cores, L2d Caches, …
 - All PUs at the bottom
- Number of levels hwloc_topology_get_depth(topo)
- Number of objects on a level hwloc_get_nbobjs_by_type(topo, type) hwloc_get_nbobjs_by_depth(topo, depth)
- Convert between depth and type using hwloc_get_type_depth() or hwloc_get_depth_type()

Browsing as levels

- Find objects by level and index
 - hwloc_get_obj_by_type(topo, type, index)
 - There are variants taking a depth instead of a type
 - Note : the depth of my child is not always my depth + 1
 - Think of asymmetric topologies
- Iterate over objects of a level

- Objects at the same levels are also interconnect by prev/next_cousin pointers
 - Don't mix up siblings (children list) and cousins (level)
- hwloc_get_next_obj_by_type/depth()

Hands-on browsing the topology

Starting from basic.c

- Print the number of cores
- Print the type of the common ancestor of cores 0 and 2
- Print the memory size near core 0
- Iterate over all PUs and print their physical numbers

Physical or OS indexes

- obj->os_index
 - The ID given by the OS/hardware

• P#3

- Default in Istopo graphic mode
- Istopo -p
- NON PORTABLE
 - Depend on motherboards, BIOS, version, …
- DON'T USE THEM

Logical indexes

- obj->logical_index
 - The index among an entire level

• L#2

- Default in Istopo except in graphic mode
- Istopo -I
- Always represent proximity (depth-first walk)

PATC

• PORTABLE

- Does not depend on OS/BIOS/weather
- That's what you want to use

But I still need OS indexes when binding ?!

- NO !
- Just use hwloc for binding, you won't need physical/OS indexes ever again

- If you want to bind the execution to a core
 - hwloc_set_cpubind(core->cpuset)
 - Other API functions for binding entire processes, single thread, memory, for allocating bound memory, etc.

Bitmap, CPU sets, Node sets

- Generic mask of bits : hwloc_bitmap_t
 - Possibly infinite
 - Opaque, used to describe object contents
 - Which PU are inside this object (obj->cpuset)
 - Which NUMA nodes are close to this object (obj->nodeset)
 - Can be combined to bind to multiple cores, etc.
 - and, or, xor, not, …

Hands-on bitmaps and binding

- Bind a process to 1st core
- Rebind the same process to cores 2 and 4
- Print its binding
- Print where it's actually running
 - Repeat
- Rebind to avoid migrating between cores
 - hwloc_bitmap_singlify()

I/O devices

- Binding tasks near the devices they use improves their data transfer time
 - GPUs, high-performance NICs, InfiniBand, ...
- You cannot bind tasks or memory on these devices

- But these devices may have interesting attributes
 - Device type, GPU capabilities, embedded memory, link speed, ...

I/O objects

- Some I/O trees are attached to the object they are close to
- PCI device objects
 - Optional I/O bridge objects
- How to match your software handle with a PCI device ?
 - OS/Software devices (when known)
 - sda, eth0, ib0, mlx4_0
- Disabled by default
 - Except in Istopo

Hands-on I/O

• Load cuda modules, etc.

Starting from cuda.c

• Find the NUMA node near each CUDA device

Starting form ib.c

• Find the NUMA node near each IB device

Extended attributes

- obj->userdata pointer
 - Your application may store whatever it needs there
 - hwloc won't look at it, it doesn't know what's it contains

- (name,value) info attributes
 - Basic string annotations, hwloc adds some
 - Hostname, Kernel release, CPU model, PCI vendor, ...
 - See Istopo -v for (many) examples
 - You may add your own

Configuring the topology

- Between hwloc_topology_init() and load()
 - hwloc_topology_set_xml(), set_synthetic()
 - hwloc_topology_set_flags(), set_pid()
 - hwloc_topology_ignore_type()
- After hwloc_topology_load()
 - hwloc_topology_restrict()
 - hwloc_topology_insert_misc_object...

Helpers

- hwloc/helper.h contains a lot of helper functions
 - Iterators on levels, children, restricted levels
 - Finding caches
 - Converting between cpusets and nodesets
 - Finding I/O objects
 - And much more
- Use them to avoid rewriting basic functions
- Use them to understand how things work and write what you need

More information

- The documentation
 - http://www.open-mpi.org/projects/hwloc/doc/
 - Related pages
 - http://www.open-mpi.org/projects/hwloc/doc/v1.11.3/pages.php
 - FAQ
 - http://www.open-mpi.org/projects/hwloc/doc/v1.11.3/a00030.php
- README and HACKING in the source
- hwloc-users@open-mpi.org for questions
- hwloc-devel@open-mpi.org for contributing
- hwloc-announce@open-mpi.org for new releases
- https://github.com/open-mpi/hwloc/issues for reporting bugs

Thanks!

Questions?

http://www.open-mpi.org/projects/hwloc

Brice.Goglin@inria.fr