
PATC
2015/06/05
Bordeaux

Understanding and managing

hardware affinities

on hierarchical platforms

With Hardware Locality (hwloc)

Brice Goglin – TADaaM Team – Inria Bordeaux Sud-Ouest

Agenda

● Quick example as an Introduction
● Bind your processes
● What's the actual problem?
● Introducing hwloc (Hardware Locality)
● Command-line tools
● C Programming API
● Conclusion

1 Quick example
as an Introduction

2015/06/05 PATC 4

Machines are increasingly complex

2015/06/05 PATC 5

Machines are increasingly complex

● Multiple processors
● Multicore processors
● Simultaneous multithreading
● Shared caches
● NUMA
● Multiple GPUs, NICs, …

● We cannot expect users to understand all this

2015/06/05 PATC 6

Example with MPI

● New cluster being installed in PlaFRIM
● 12-core Xeon E5-2600v3 with NVIDIA K40, etc.

● Nice, let's run some benchmarks!
● Open MPI 1.8.1
● Intel MPI benchmarks 3.2

2015/06/05 PATC 7

Example with MPI (2/3)

● Between cores 0 and 1
● 540ns, 3500MiB/s

● Between cores 0 and 2
● 330ns, 4220MiB/s

● Between cores 0 and 12
● 430ns, 4290MiB/s

● Between cores 0 and 23
● 590ns, 3410MiB/s

2015/06/05 PATC 8

What is going on?

2015/06/05 PATC 9

Example with MPI (3/3)

● Between cores in same NUMA node
● 330ns, 4220MiB/s

● Between cores in different NUMA nodes of same
processor
● 430ns, 4290MiB/s

● Between cores in different processors
● 540ns, 3500MiB/s

● Between cores in different processors and NUMA
nodes far away from each other
● 590ns, 3410MiB/s

2015/06/05 PATC 10

What about AMD machines?
Even worse!

Dual core
Compute

Unit

2015/06/05 PATC 11

First take away messages

● Locality matters to communication
performance
● Machines are really far from flat

● Cores numbering is crazy
● Never expect anything sane

2015/06/05 PATC 12

It's actually worse than that

GPUs
attached

to one NUMA
node

2015/06/05 PATC 13

I/O affinity

● If you use GPUs or high performance
networks, you must allocate host memory
close to them
● Otherwise DMA to GPUs slows down by 10-20%

here
● InfiniBand latency increases by 10%

● Need a way to know which cores/memory is
close to which I/O device

2 Bind your processes

2015/06/05 PATC 15

Where does locality actually matter?

● MPI communication between processes on the
same node

● Shared memory too (threads, OpenMP, etc.)
● Synchronization

● Barriers use caches and memory too
● Concurrent access to shared buffers

● Producer-consumer, etc

● 15 years ago, locality was mostly an issue for
large NUMA SMP machines (SGI, etc.)
● Today it's everywhere

● Because multicores and NUMA are everywhere

2015/06/05 PATC 16

What to do about locality
in runtimes?

● Place processes/tasks according to their
affinities
● If two tasks communicate/synchronize/share a lot,

keep them physically close
● Main focus of this talk

● Adapt your algorithms to the locality
● Adapt communication/synchronization

implementations to the topology
● Ex: hierarchical OpenMP barriers
● Another example in the next slide

2015/06/05 PATC 17

Adapting MPI implementation
thresholds to shared caches

0

500

1000

1500

2000

2500

3000

256B 1KiB 4KiB 16KiB 64KiB 256KiB 1MiB 4MiB

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

M
iB

/s
)

Message size

Nemesis
KNEM

KNEM with I/OAT

Threshold between
strategies

Depends on
cache size,
contention, etc.

2015/06/05 PATC 18

Process binding

● Some MPI implementations bind processes by
default (Intel MPI, Open MPI 1.8)
● Because it's better for reproducibility

● Some don't
● Because it may hurt your application

● Oversubscribing? Dynamic processes?

● Binding doesn't guarantee that your processes
are optimally placed
● It just means your processes won't move

● No migration, less cache issues, etc.

2015/06/05 PATC 19

To bind or not to bind?

2015/06/05 PATC 20

Ok, I need to bind.
But where?

● Default binding strategies?
● By core first (compact, --map-by core, etc.)

● One process per core on first node,
then one process per core on second node, …

● By node first (scatter, --map-by node/socket, etc.)
● One process on first core of each node,

then one process on second core of each node, …

● Your application likely prefers one to the other
● Often the first one

● Because your algorithms often communicate more between
immediate neighbots

● Sometimes the other one...

2015/06/05 PATC 21

Binding strategy impact

2015/06/05 PATC 22

How do I choose?

● Dilemma
● Use cores 0 & 1 to share cache and

improve synchronization cost?
● Use cores 0 & 2 to maximize

memory bandwidth?

● Depends on the application needs
● And machine characteristics

● More about this later

3 What's the actual
problem ?

2015/06/05 PATC 24

Example of dual
Nehalem Xeon machine

2015/06/05 PATC 25

Another example of dual
Nehalem Xeon machine

2015/04/14 Maison de la Simulation 26

Processor and core numbers
are crazy

● Resource ordering/numbering is unpredictable
● Ordering by any combination of

NUMA/processor/core/hyperthread
● Can (and does) change with the vendor, BIOS

version, etc.

● Some resources may be unavailable
● Batch schedulers allocates parts of machines

● Core numbers may be non-consecutive, not start at 0, etc.

● Don't assume anything about these numbers
● Otherwise your code won't be portable

2015/04/14 Maison de la Simulation 27

Vertical ordering of levels
(who contains who)

2015/04/14 Maison de la Simulation 28

Vertical ordering isn't reliable either

● Modern processors (Xeon E5v3, Opteron 6000,
Power8) have 2 NUMA nodes each
● Old platforms have multiple processor sockets per

NUMA nodes

● Levels of caches and sharing may vary

● Don't assume anything about vertical ordering
● Or (again) your code won't be portable
● e.g.: Even the Intel OpenMP binding isn't always

correct

2015/04/14 Maison de la Simulation 29

Gathering topology information
is difficult

● Lack of generic, uniform interface
● Operating system specific

● /proc and /sys on Linux
● rset, sysctl, lgrp, kstat on other OS

● Hardware specific
● x86 CPUID instruction, device-tree, PCI config space, etc.

● Evolving technology
● AMD Bulldozer introduced dual-core Compute Units

● It's not two real cores, neither one hyper-threaded core
● New kinds of hierarchy/resources?

● And some BIOS report buggy information

2015/04/14 Maison de la Simulation 30

Binding is difficult too

● Lack of generic, uniform interface (again)
● Process/thread binding

● sched_affinity() system call changed twice in Linux
● Memory binding

● 3 different system-calls on Linux
● mbind(), migrate_pages(), move_pages()

● Different constraints
● Bind to single core only? To contiguous set of cores? To

random sets of cores?
● Many different policies

4 Introducing hwloc
(Hardware Locality)

2015/06/05 PATC 32

What hwloc is

● Detection of hardware resources
● Processing units (PU) = logical processors, hardware

threads, hyperthreads
● Things that can run a task

● Core, sockets, … (things that contain PUs)
● Memory nodes, shared caches
● I/O devices

● PCI devices and corresponding software handles

● Described as a tree
● Logical resources identification and organization

● Based on locality

2015/06/05 PATC 33

What hwloc is (2/2)

● API and tools to consult the topology
● Which cores are near this memory node ?
● Give me a single thread in this socket
● Which memory node is near this GPU ?
● What shared cache size between these cores ?

● Without caring about hardware strangeness
● Non portable and crazy numbers, names, …

● A portable binding API
● No more Linux sched_setaffinity() API breakage
● No more tens of different binding API with different types

2015/06/05 PATC 34

What hwloc is NOT

● A placement algorithm
● hwloc gives hardware information
● You're the one that knows what your software does/needs
● You're the one that must match software affinities to

hardware localities
● We give you the hardware information you need

● More in next talk

● A profiling tool
● Other tools (e.g. likwid) give you hardware performance

counters
● hwloc can match them with the actual resource organization

2015/06/05 PATC 35

History

● Runtime Inria project in Bordeaux, France
● Thread scheduling over NUMA machines (2003...)

● Marcel threads, ForestGOMP OpenMP runtime
● Portable detection of NUMA nodes, cores and threads

● Linux wasn't that popular on NUMA platforms 10 years ago
● Other Unixes have good NUMA support

● Extended to caches, sockets, … (2007)
● Raised questions for new topology users

● MPI process placement (2008)

2015/06/05 PATC 36

History

● Marcel's topology detection extracted as
standalone library (2009)

● Noticed by the Open MPI community
● They knew their PLPA library wasn't that good

● Merged both libraries as hwloc (2009)
● BSD-3
● Still mainly developed by Inria Bordeaux

● Collaboration with Open MPI community
● Contributions from MPICH, Redhat, IBM, Oracle, ...

2015/06/05 PATC 37

Alternative software
with advanced topology knowledge

● Likwid
● x86 only, needs update for each new processor

generation, no extensive C API
● It's more kind of a performance optimization tool

● Intel Compiler (icc)
● x86 specific, no API

● lscpu, lshw, lsusb, …
● Specific to some resources
● Inventory without locality information

2015/06/05 PATC 38

hwloc's view of the hardware

● Tree of objects
● Machines, NUMA memory nodes, sockets, caches,

cores, threads
● Logically ordered

● Grouping similar objects using distances between them
● Avoids enormous flat topologies

● Many attributes
● Memory node size
● Cache type, size, line size, associativity
● Physical ordering
● Miscellaneous info, customizable

2015/06/05 PATC 39

Using hwloc for this tutorial

● On PlaFRIM, just use

 $ module load hardware/hwloc
● (and for GPU-related tests)

 $ module load compiler/cuda

● You may also install it on your local machine
● It will make remote machine consulting easier

2015/06/05 PATC 40

Installing hwloc

● Packages available in Debian, Ubuntu,
Redhat, Fedora, CentOS, ArchLinux, NetBSD

● You want the development headers too
● libhwloc-dev, hwloc-devel, …

2015/06/05 PATC 41

Manual installation

● Take a recent tarball at
http://www.open-mpi.org/projects/hwloc

● Dependencies
● On Linux, numactl/libnuma development headers
● Cairo headers for lstopo graphics

● ./configure --prefix=$PWD/install
● Very few configure options

● Check the summary at the end of configure

http://www.open-mpi.org/projects/hwloc

2015/06/05 PATC 42

Manual installation

● make
● make install
● Useful environment variables

export PATH=$PATH:<prefix>/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<prefix>/lib

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:<prefix>/lib/pkgconfig

export MANPATH=$MANPATH:<prefix>/share/man

2015/06/05 PATC 43

Using hwloc

● Many hwloc command-line tools
● lstopo and hwloc-*

● … but the actual hwloc power is in the C API
● Perl and Python bindings

5 Command-line Tools

2015/06/05 PATC 45

lstopo
(displaying topologies)

Machine (3828MB)
 Socket L#0 + L3 L#0 (4096KB)
 L2 L#0 (256KB) + Core L#0
 PU L#0 (P#0)
 PU L#1 (P#2)
 L2 L#1 (256KB) + Core L#1
 PU L#2 (P#1)
 PU L#3 (P#3)
 HostBridge L#0
 PCI 8086:0046
 GPU L#0 "controlD64"
 PCI 8086:10ea
 Net L#2 "eth0"
 PCIBridge
 PCI 8086:422b
 Net L#3 "wlan0"
 PCI 8086:3b2f
 Block L#4 "sda"
 Block L#5 "sr0"

2015/06/05 PATC 46

lstopo

● Many output formats
● Text, Cairo (PDF, PNG, SVG, PS), Xfig, ncurses

● Automatically guessed from the file extension

● XML dump/reload
● Faster, convenient for remote debugging

● Configuration options for nice figures for papers
● Horizontal/Vertical placement
● Legend
● Ignoring things
● Creating fake topologies

2015/06/05 PATC 47

lstopo

$ lstopo

$ lstopo --no-io -

$ lstopo myfile.png

$ ssh host lstopo saved.xml

$ lstopo -i saved.xml

$ ssh myhost lstopo -.xml | lstopo --if xml -i -

$ lstopo -i “node:4 socket:2 core:2 pu:2”

2015/06/05 PATC 48

hwloc-bind
(binding processes, threads and memory)

● Bind a process to a given set of CPUs

 $ hwloc-bind socket:1 -- mycommand myargs...

 $ hwloc-bind os=mlx4_0 -- mympiprogram ...
● Bind an existing process

 $ hwloc-bind --pid 1234 node:0
● Bind memory

 $ hwloc-bind --membind node:1 --cpubind node:0 …
● Find out if a process is already bound

 $ hwloc-bind --get --pid 1234

 $ hwloc-ps

2015/06/05 PATC 49

hwloc-calc
(calculating with objects)

● Convert between ways to designate sets
of CPUs, objects... and combine them

 $ hwloc-calc socket:1.core:1 ~pu:even
 0x00000008
 $ hwloc-calc --number-of core node:0
 2
 $ hwloc-calc --intersect pu socket:1
 2,3
● The result may be passed to other tools
● Multiple invocations may be combined
● I/O devices also supported
 $ hwloc-calc os=eth0

2015/06/05 PATC 50

Other tools

● Get some object information
● hwloc-info

● Generate bitmaps for distributing multiple
processes on a topology
● hwloc-distrib

● Save a Linux node topology info for debugging
● hwloc-gather-topology

● Manipulating multiple topologies, etc.

2015/06/05 PATC 51

Hands-on lstopo

● Gather the topology of one server
● Display it on another machine
● Hide caches
● Remove the legend
● Restrict the display to a single socket
● Export to PDF

2015/06/05 PATC 52

Hands-on hwloc-bind
and hwloc-calc

● Bind a process to a core and verify its binding
● Compare the DMA bandwidth from GPU#0 to

both NUMA nodes using cudabw
● Find out how many cores are in the second

NUMA node
● Find out which cores are close to InfiniBand
● Find out the physical numbers of all non-first

hyperthreads

6 C Programming API

2015/06/05 PATC 54

API basics

● A hwloc program looks like this

#include <hwloc.h>

hwloc_topology_t topo;

hwloc_topology_init(&topo);
/* ... configure what topology to build … */
hwloc_topology_load(topo);

/* … play with the topology … */

hwloc_topology_destroy(topo);

2015/06/05 PATC 55

Major hwloc types

● The topology context : hwloc_topology_t
● You always need one

● The main hwloc object : hwloc_obj_t
● That's where the actual info is
● The structure isn't opaque

● It contains many pointers to ease traversal

● Object type : hwloc_obj_type_t
● HWLOC_OBJ_PU, _CORE, _NODE, …

2015/06/05 PATC 56

Object information

● Type
● Optional name string
● Indexes (see later)
● cpusets and nodesets (see later)
● Tree pointers (*cousin, *sibling, arity, *child*, parent)
● Type-specific attribute union

● obj->attr->cache.size
● obj->attr->pcidev.linkspeed

● String info pairs

2015/06/05 PATC 57

2015/06/05 PATC 58

Browsing as a tree

● The root is hwloc_get_root_obj(topo)
● Objects have children

● obj->arity is the number of children
● The array of children is obj->children[]
● They are also in a list

● obj->first_child, obj->last_child
● child->prev_sibling, child->next_sibling
● NULL-terminated

● The parent is obj->parent (or NULL)

2015/06/05 PATC 59

Browsing as levels

● The topology is also organized as levels of identical
objects
● Cores, L2d Caches, …
● All PUs at the bottom

● Number of levels hwloc_topology_get_depth(topo)
● Number of objects on a level

hwloc_get_nbobjs_by_type(topo, type)
hwloc_get_nbobjs_by_depth(topo, depth)

● Convert between depth and type using
hwloc_get_type_depth() or hwloc_get_depth_type()

2015/06/05 PATC 60

Browsing as levels

● Find objects by level and index
● hwloc_get_obj_by_type(topo, type, index)
● There are variants taking a depth instead of a type

● Note : the depth of my child is not always my depth + 1
● Think of asymmetric topologies

● Iterate over objects of a level
● Objects at the same levels are also interconnect

by prev/next_cousin pointers
● Don't mix up siblings (children list) and cousins (level)

● hwloc_get_next_obj_by_type/depth()

2015/06/05 PATC 61

Hands-on browsing the topology

Starting from basic.c
● Print the number of cores
● Print the type of the common ancestor of

cores 0 and 2
● Print the memory size near core 0
● Iterate over all PUs and print their physical

numbers

2015/06/05 PATC 62

Physical or OS indexes

● obj->os_index
● The ID given by the OS/hardware

● P#3
● Default in lstopo graphic mode
● lstopo -p

● NON PORTABLE
● Depend on motherboards,

BIOS, version, …

● DON'T USE THEM

2015/06/05 PATC 63

Logical indexes

● obj->logical_index
● The index among an entire level

● L#2
● Default in lstopo except in graphic mode
● lstopo -l

● Always represent proximity (depth-first walk)
● PORTABLE

● Does not depend on OS/BIOS/weather

● That's what you want to use

2015/06/05 PATC 64

But I still need OS indexes when
binding ?!

● NO !
● Just use hwloc for binding, you won't need

physical/OS indexes ever again

● If you want to bind the execution to a core
● hwloc_set_cpubind(core->cpuset)

● Other API functions for binding entire processes, single
thread, memory, for allocating bound memory, etc.

2015/06/05 PATC 65

Bitmap, CPU sets, Node sets

● Generic mask of bits : hwloc_bitmap_t
● Possibly infinite
● Opaque, used to describe object contents

● Which PU are inside this object (obj->cpuset)
● Which NUMA nodes are close to this object (obj-

>nodeset)
● Can be combined to bind to multiple cores, etc.

● and, or, xor, not, ...

2015/06/05 PATC 66

Hands-on bitmaps and binding

● Bind a process to cores 2 and 4
● Print its binding
● Print where it's actually running

● Repeat

● Rebind to avoid migrating between cores
● hwloc_bitmap_singlify()

2015/06/05 PATC 67

I/O devices

● Binding tasks near the
devices they use improves
their data transfer time
● GPUs, high-performance NICs,

InfiniBand, …

● You cannot bind tasks or
memory on these devices
● But these devices may have

interesting attributes
● Device type, GPU capabilities,

embedded memory, link speed, ...

2015/06/05 PATC 68

I/O objects

● Some I/O trees are attached to
the object they are close to

● PCI device objects
● Optional I/O bridge objects

● How to match your software
handle with a PCI device ?
● OS/Software devices (when known)

● sda, eth0, ib0, mlx4_0

● Disabled by default
● Except in lstopo

2015/06/05 PATC 69

Hands-on I/O

$ module load gpu/cuda

Starting from cuda.c
● Find the NUMA node near each CUDA device

2015/06/05 PATC 70

Extended attributes

● obj->userdata pointer
● Your application may store whatever it needs there
● hwloc won't look at it, it doesn't know what's it

contains

● (name,value) info attributes
● Basic string annotations, hwloc adds some

● HostName, Kernel Release, CPU Model, PCI Vendor, ...
● You may add more

2015/06/05 PATC 71

Configuring the topology

● Between hwloc_topology_init() and load()
● hwloc_topology_set_xml(), set_synthetic()
● hwloc_topology_set_flags(), set_pid()
● hwloc_topology_ignore_type()

● After hwloc_topology_load()
● hwloc_topology_restrict()
● hwloc_topology_insert_misc_object...

2015/06/05 PATC 72

Helpers

● hwloc/helper.h contains a lot of helper functions
● Iterators on levels, children, restricted levels
● Finding caches
● Converting between cpusets and nodesets
● Finding I/O objects
● And much more

● Use them to avoid rewriting basic functions
● Use them to understand how things work and

write what you need

8 Conclusion

PATC 742015/06/05

More information

● The documentation
● http://www.open-mpi.org/projects/hwloc/doc/
● Related pages

● http://www.open-mpi.org/projects/hwloc/doc/v1.10.1/pages.php
● FAQ

● http://www.open-mpi.org/projects/hwloc/doc/v1.10.1/a00028.php

● 3-4 hours tutorials with exercises on the webpage
● README and HACKING in the source
● hwloc-users@open-mpi.org for questions
● hwloc-devel@open-mpi.org for contributing
● hwloc-announce@open-mpi.org for new releases
● https://github.com/open-mpi/hwloc/issues for reporting bugs

http://www.open-mpi.org/projects/hwloc/doc/
http://www.open-mpi.org/projects/hwloc/doc/v1.10.1/pages.php
http://www.open-mpi.org/projects/hwloc/doc/v1.10.1/a00028.php
https://github.com/open-mpi/hwloc/issues

Thanks!

Questions?

http://www.open-mpi.org/projects/hwloc

Brice.Goglin@inria.fr

http://www.open-mpi.org/projects/hwloc

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72
	Diapo 73
	Diapo 74
	Diapo 75

