

PATC 2014/05/22 Bordeaux

Understanding and managing hardware affinities on hierarchical platforms With Hardware Locality (hwloc)

Brice Goglin – Runtime Team-Project – Inria Bordeaux Sud-Ouest

Agenda

- Quick example as an Introduction
- Bind your processes
- What's the actual problem?
- Introducing hwloc (Hardware Locality)
- Command-line tools
- C Programming API
- Conclusion

Innia

Machines are increasingly complex

Machines are increasingly complex

- Multiple processor sockets
- Multicore processors
- Simultaneous multithreading
- Shared caches
- NUMA
- GPUs, NICs, ...
 - Close to some sockets (NUIOA)

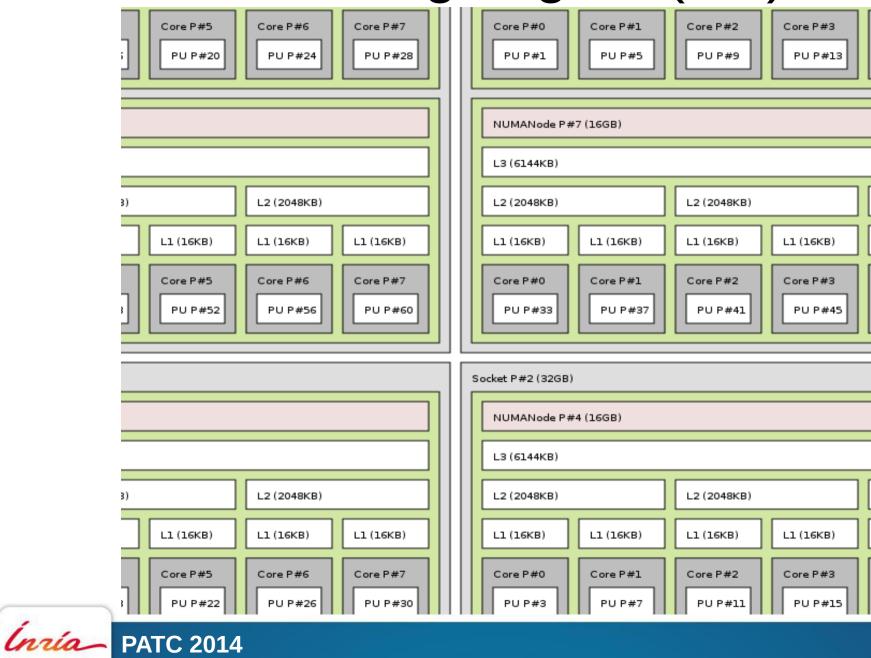
Example with MPI

• Let's say I have a 64-core AMD machine

- Not unusual (about 6000\$)

- I am running a MPI pingpong between pairs of cores
 - Open MPI 1.6
 - Intel MPI Benchmarks 3.2

Example with MPI (2/3)


- Between cores 0 and 1
 - 1.39 μs latency 1900MB/s throughput
- Between cores 0 and 4
 - 1.63 μs 1400 MB/s Interesting !
- Between cores 0 and 5
 - 0.68 μ s 3600 MB/s What ?!
- Between cores 0 and 8
 - 1.24 μs 2400 MB/s
- Between cores 0 and 32
 - 1.34 μs 2100 MB/s

What is going on

Machine (1286B)			Socket P#3 (32GB)				
NUMANode P#0 (16GB)			NUMANode P#6 (16GB)				
L3 (6144KB)	L3 (6144KB)						
L2 (2048KB) L2 (2048KB)	L2 (2048KB)	L2 (2048KB)		L2 (2048KB)	L2 (2048KB)	L2 (2048KB)	L2 (2048KB)
L1 (16KB) L1 (16KB) L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)		L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)
Core P#0 Core P#1 Core P#2 Core P#3 PU P#0 PU P#4 PU P#8 PU P#12	Core P#4 PU P#16 Core P#5 PU P#20	Core P#6 PU P#24 Core P#7 PU P#28		Core P#0 PU P#1 Core P#1 PU P#5	Core P#2 PU P#9 Core P#3 PU P#13	Core P#4 PU P#17 Core P#5 PU P#21	Core P#6 PU P#25 PU P#29
NUMANode P#1 (16GB)			ill	NUMANode P#7 (16GB)			
L3 (6144KB)				L3 (6144KB)			
L2 (2048KB)	L2 (2048KB)	L2 (2048KB)		L2 (2048KB)	L2 (2048KB)	L2 (2048KB)	L2 (2048KB)
L1 (16KB) L1 (16KB) L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)		L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)
Core P#0 Core P#1 Core P#2 Core P#3 PU P#32 PU P#36 PU P#40 PU P#44	Core P#4 PU P#48 Core P#5 PU P#52	Core P#6 PU P#56 Core P#7 PU P#60		Core P#0 PU P#33 Core P#1 PU P#37	Core P#2 PU P#41 Core P#3 PU P#45	Core P#4 PU P#49 Core P#5 PU P#53	Core P#6 PU P#57 Core P#7 PU P#61
Socket P#1 (32GB)			٦r	Socket P#2 (32GB)			
NUMANode P#2 (16GB)				NUMANode P#4 (16GB)			
L3 (6144KB)				L3 (6144KB)			
L2 (2048KB)	L2 (2048KB)	L2 (2048KB)		L2 (2048KB)	L2 (2048KB)	L2 (2048KB)	L2 (2048KB)
L1 (16KB) L1 (16KB) L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)		L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)
Core P#0 Core P#1 Core P#2 Core P#3 PU P#2 PU P#6 PU P#10 PU P#14	Core P#4 Core P#5	Core P#6 PU P#26 Core P#7 PU P#30		Core P#0 PU P#3 Core P#1 PU P#7	Core P#2 PU P#11 Core P#3 PU P#15 PU P#15	Core P#4 Core P#5 PU P#19 PU P#23	Core P#6 Core P#7 PU P#27 PU P#31
NUMANode P#3 (16GB)]	1	NUMANode P#5 (16GB)]
L3 (6144KB)				L3 (6144KB)			
L2 (2048KB) L2 (2048KB)	L2 (2048KB)	L2 (2048KB)		L2 (2048KB)	L2 (2048KB)	L2 (2048KB)	L2 (2048KB)
L1 (16KB) L1 (16KB) L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)		L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)
Core P#0 Core P#1 Core P#2 Core P#3 PU P#34 PU P#38 PU P#42 PU P#46	Core P#4 PU P#50 Core P#5	Core P#6 PU P#58 Core P#7 PU P#58		Core P#0 PU P#35 Core P#1 PU P#39	Core P#2 PU P#43 Core P#3 PU P#47	Core P#4 PU P#51 Core P#5	Core P#6 PU P#59 PU P#63

Innía PATC 2014

What is going on (2/3)

9

What is going on (3/3)

Machine																
Socket	Socket P#0 (3268)						Socket P#3 (32GB))]		
	JMANode P#0 (16GB)								NUMANode P#	¢6 (16GB)						
L3	L3 (6144KB)					L3 (6144KB)										
L2	(2048KB)	L2 (2048KB)	L2 (20	048KB)		L2 (2048KB)			L2 (2048KB)		L2 (2048KB)		L2 (2048KB)		L2 (2048KB)	
	(16KB) L1 (16KB)	L1 (16KB) L1 (1	L6KB) L1 (16	6КВ)	L1 (16KB)	L1 (16KB)	L1 (16KB)		L1 (16KB)	L1 (16KB)	L1 (16KB)	L1 (16KB)	L1 (16KB)	L1 (16KB)	L1 (16KB)	L1 (16KB)
	0 4	8 Core	P#3 Core F	P#4	Core P#5	Core P#6	Core P#7		1	Core P#1	Core P#2	Core P#3	Core P#4	Core P#5	Core P#6	Core P#7
	U 4		PUP	P#16	PU P#20	PU P#24	PU P#28			PU P#5	PU P#9	PU P#13	PU P#17	PU P#21	PU P#25	PU P#29
	JMANode P#1 (16GB)							illi	NUMANode P#	≠7 (16GB)						
	(6144KB)								L3 (6144KB)							
	(2048KB)	L2 (2048KB)	L2 (20	048KB)		L2 (2048KB)			L2 (2048KB)		L2 (2048KB)		L2 (2048KB)		L2 (2048KB)	
	(16KB) L1 (16KB)	L1 (16KB) L1 (1			L1 (16KB)	L1 (16KB)	L1 (16KB)		L1 (16KB)	L1 (16KB)	L1 (16KB)	L1 (16KB)	L1 (16KB)	L1 (16KB)	L1 (16KB)	L1 (16KB)
			2 P#3 Core F		Core P#5	Core P#6	Core P#7		Core P#0	Core P#1	Core P#2	Core P#3	Core P#4	Core P#5	Core P#6	Core P#7
	5 2 PU P#36	PU P#40 PU	I P#44 PU F	P#48	PU P#52	PU P#56	PU P#60		PU P#33	PU P#37	PU P#41	PU P#45	PU P#49	PU P#53	PU P#57	PU P#61
	Socket P#1 (3268)															
Socket	:P#1(32GB)								Socket P#2 (32GB))						
	: P#1 (32GB) JMANode P#2 (16GB)								Socket P#2 (32GB)							
	JMANode P#2 (16GB)	L2 (2048KB)	L2 (20	048KB)		L2 (2048KB)			NUMANode P#		L2 (2048KB)		L2 (2048KB)		L2 (2048KB)	
L3	JMANode P#2 (16GB) (6144KB)	L2 (2048KB) L1 (16KB) L1 (1			L1 (16KB)	L2 (2049KB) L1 (16KB)	L1 (16KB)		NUMANode P#		L2 (2048KB) L1 (16KB)	L1 (16KB)	L2 (2048KB) L1 (16KB)	L1 (16KB)	L2 (2049KB) L1 (16KB)	L1 (16KB)
	UMANode P#2 (16GB) (6144KB) (2048KB) (16KB) L1 (16KB) Core P#0 Core P#1	L1 (16KB) L1 (1 Core P#2 Core	L6KB) L1 (16	бКВ) Р#4	Core P#5	L1 (16KB)	Core P#7		NUMANode P#	44 (16GB)	L1 (16KB)	Core P#3	L1 (16KB)	Core P#5	L1 (16KB)	Core P#7
L3	JMANode P#2 (16GB) (6144KB) (2048KB) (16KB) L1 (16KB)	L1 (16KB) L1 (1 Core P#2 Core	L6KB) L1 (16	бКВ)		L1 (16KB)			NUMANode P#	#4 (16GB)	L1 (16KB)		L1 (16KB)		L1 (16KB)	
	UMANode P#2 (16GB) (6144KB) (2048KB) (16KB) L1 (16KB) Core P#0 Core P#1	L1 (16KB) L1 (1 Core P#2 Core	L6KB) L1 (16	бКВ) Р#4	Core P#5	L1 (16KB)	Core P#7		NUMANode P#	#4 (1668) L1 (16K8) Core P#1 PU P#7	L1 (16KB)	Core P#3	L1 (16KB)	Core P#5	L1 (16KB)	Core P#7
	JMANode P#2 (166B) (6144KB) (2049KB) (16KB) L1 (16KB) vre P#0 PU P#2 Core P#1 PU P#6	L1 (16KB) L1 (1 Core P#2 Core	L6KB) L1 (16	бКВ) Р#4	Core P#5	L1 (16KB)	Core P#7		NUMANode P# L3 (6144KB) L2 (2048KB) L1 (16KB) 3	#4 (1668) L1 (16K8) Core P#1 PU P#7	L1 (16KB)	Core P#3	L1 (16KB)	Core P#5	L1 (16KB)	Core P#7
	JMANode P#2 (16GB) ((6144KB) ((2048KB) (16KB) L1 (16KB) (16KB) Core P#1 PU P#2 Core P#1 PU P#6 JMANode P#3 (16GB)	L1 (16KB) L1 (1 Core P#2 Core	L1 (16 19#3 Core F 9U f 9U f	бКВ) Р#4	Core P#5	L1 (16KB)	Core P#7		NUMANode P# L3 (6144KB) L2 (2048KB) L1 (16KB) 3 NUMANode P#	#4 (1668) L1 (16K8) Core P#1 PU P#7	L1 (16KB)	Core P#3	L1 (16KB)	Core P#5	L1 (16KB)	Core P#7
	JMANode P#2 (166B) (6144KB) (1648B) (16KB) (16KB) L1 (16KB) Core P#1 PU P#2 JMANode P#3 (166B) (6144KB)	L1 (16KB) L1 (1 Core P#2 PU P#10 PU	LL (16 P#3 C ore F PU F LL (20	6KB) P#4 P#18	Core P#5	L1 (16KB) Core P#6 PU P#26	Core P#7		NUMANode P# L3 (6144KB) L2 (2048KB) L1 (16KB) L1 (16KB) L1 (16KB) L3 (6144KB)	#4 (1668) L1 (16K8) Core P#1 PU P#7	L1 (16KB) Core P#2 PU P#11	Core P#3	L1 (16KB) Core P#4 PU P#19	Core P#5	L1 (16KB) Core P#6 PU P#27	Core P#7
	JMANode P#2 (16GB) (6144KB) (2048KB) (16KB) L1 (16KB) Core P#1 PU P#2 JMANode P#3 (16GB) (6144KB) (2048KB)	L1 (16KB) L1 (1 Core P#2 PU P#10 PU L2 (2049KB) L1 (16KB) L1 (1	LL (16 P#3 C ore F PU F LL (20	6KB) P#4 P#18 048KB) 6KB)	Core P#5 PU P#22	L1 (16KB) Core P#6 PU P#26	Core P#7 PU P#30		NUMANode P# L3 (6144KB) L2 (2048KB) L1 (16KB) L1 (16KB) L3 (6144KB) L3 (6144KB) L2 (2048KB)	F4 (1668)	L1 (15K8) Core P#2 PU P#11 L2 (2048K8)	Core P#3 PU P#15	L1 (16K8) Core P#4 PU P#19 L2 (2048KB)	Core P#5 PU P#23	L1 (15KB) Core P#6 PU P#27 L2 (2048KB)	Core P#7 PU P#31
NUU 1.3 1.2 1.2 1.2 1.2 1.1 1.2 1.2 1.2 1.2 1.2	JMANode P#2 (166B) (6144KB) (1648B) (16KB) (16KB) (16KB) (16KB) (16KB) (16KB) (16KB) (16KB) (16KB) (16KB)	L1 (16KB) L1 (1 Core P#2 PU P#10 L2 (2048KB) L1 (16KB) L1 (1 Core P#2 Core	LGKB) L1 (16 19 #3 Core F 19 #14 PU F L2 (20 L6KB) L1 (16 19 #3 Core F	6KB) P#4 P#18 048KB) 6KB)	Core P#5 PU P#22	L1 (16KB) Core P#6 PU P#26 L2 (2048KB) L1 (16KB)	Core P#7 PU P#30		NUMANode P# L3 (6144KB) L2 (2048KB) L1 (16KB) L1 (16KB) L3 (6144KB) L2 (2048KB) L1 (16KB)	P4 (1668) L1 (16K8) Core P#1 PU P#7 P5 (1668) L1 (16K8) L1 (16K8)	L1 (16KB) Core P#2 PU P#11 L2 (2048KB) L1 (16KB)	Core P#3 PU P#15	L1 (16KB) Core P#4 PU P#19 L2 (2048KB) L1 (16KB)	Core P#5 PU P#23	L1 (16KB) Core P#6 PU P#27 L2 (2048KB) L1 (16KB)	Core P#7 PU P#31

Inría

Example with MPI (3/3)

- Between cores that share a L2 cache
 - 0.68 μs 3600 MB/s
- Between cores that only share a L3 cache
 - 1.24 μs 2400 MB/s
- Between cores inside the same socket
 - 1.34 μs 2100 MB/s
- Between cores of another socket
 - 1.39 μs 1900MB/s
- Between cores of another socket further away
 - 1.63 μs 1400 MB/s

Ok, what about Intel machines?

NUMANode P#0	(24GB)				
Socket P#0					
L3 (12MB)					
L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)
L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)
Core P#0	Core P#1	Core P#2	Core P#8	Core P#9	Core P#10
PU P#0	PU P#1	PU P#2	PU P#3	PU P#4	PU P#5
PU P#12	PU P#13	PU P#14	PU P#15	PU P#16	PU P#17
]
NUMANode P#1	(24GB)				
NUMANode P#1 Socket P#1	(24GB)				
	(24GB)				
Socket P#1	(24GB) L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)
Socket P#1		L2 (256KB) L1 (32KB)	L2 (256KB) L1 (32KB)	L2 (256KB)	L2 (256KB) L1 (32KB)
Socket P#1 L3 (12MB) L2 (256KB)	L2 (256KB)				
Socket P#1 L3 (12MB) L2 (256KB) L1 (32KB)	L2 (256KB) L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)
Socket P#1 L3 (12MB) L2 (256KB) L1 (32KB) Core P#0	L2 (256KB) L1 (32KB) Core P#1	L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)

PATC 2014

- Less hierarchy levels
 - 4 vs 3
 - HyperThreading?

• But same problems

First take away messages

- Locality matters to communication performance
 - Machines are really far from flat
- Cores/processors numbering is crazy
 - Never expect anything sane here

Where does locality actually matter?

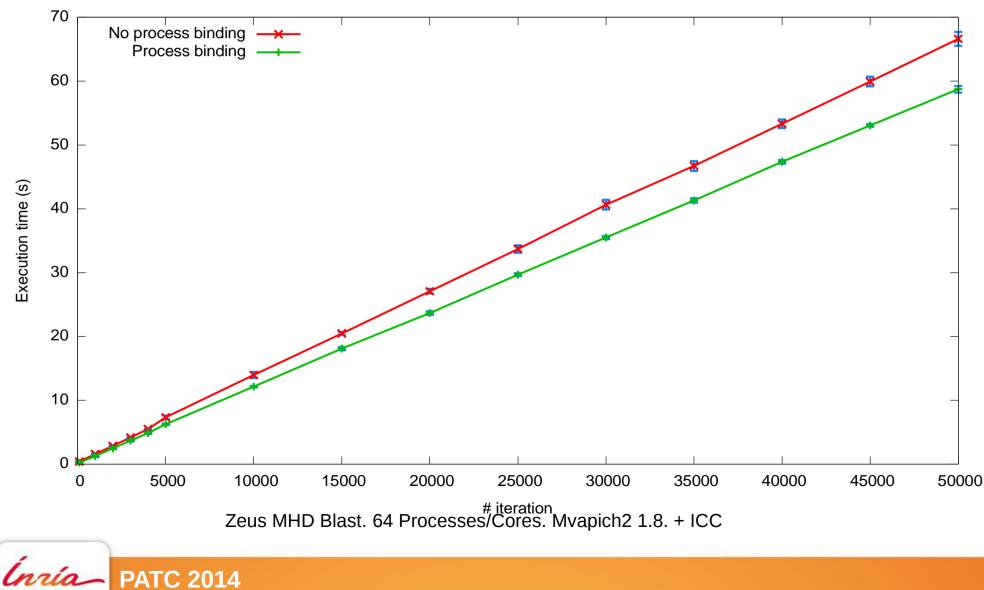
- MPI communication between processes on the same node
- Shared-memory too (threads, OpenMP, etc)
 - Synchronization
 - Barriers use caches and memory too
 - Concurrent access to shared buffers
 - Producer-consumer, etc
- 10 years ago, locality was mostly an issue for large NUMA SMP machines (SGI, etc)
 - Today it's everywhere

PATC 2014

• Because multicores and NUMA are everywhere

What to do about locality?

- Place processes/tasks according to their affinities
 - If two tasks communicate/synchronize/share a lot, keep them close
- Adapt your algorithms to the locality
 - Adapt communication/synchronization implementations to the topology
 - Ex: hierarchical barriers

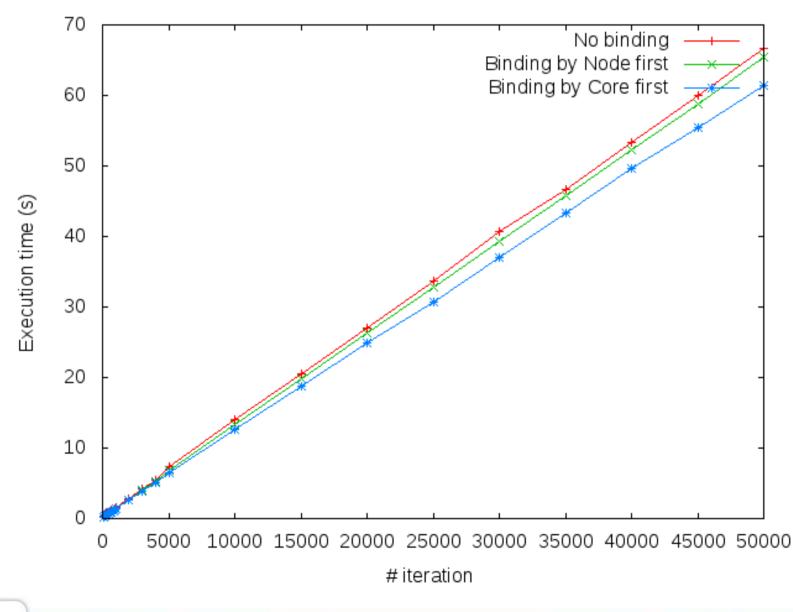

Process binding

- Some MPI implementations bind processes by default (Intel MPI, Open MPI 1.8)
 - Because it's better for reproducibility
- Some don't

- Because it may hurt your application
 - Oversubscribing?
- Binding doesn't guarantee that your processes are optimally placed
 - It just means your process won't move
 - No migration, less cache issues, etc

To bind or not to bind ?

Zeus MHD Blast



Where to bind ?

- Default binding strategies ?
 - By core first :
 - One process per core on first node, then one process per on second node, ...
 - By node first :

- One process on first core of each node, then one process on second core on each node, ...
- Your application likely prefers one to the other
 - Usually the first one
 - Because you often communicate with nearby ranks

Binding strategy impact

How to bind in MPI?

- MPI standard says nothing
- Manually
 - mpiexec
 - -np 1 -H node1 numactl --physcpubind 0 ./myprogram : -np 1 -H node1 numactl --physcpubind 1 ./myprogram : -np 1 -H node2 numactl --physcpubind 0 ./myprogram
 - Rank files, etc

How to bind in MPI? (2/2)

Open MPI

- mpiexec --bind-to core --map-by core ...
 - Map by core
- Mpiexec --bind-to-core --mca rmaps_lama_map nsc ...
 - Map by node, then by socket, then by core
- See mpiexec --help
- MPICH

- mpiexec -bind-to core -map-by BSC ...
 - Map by node (Board), then by socket, then by core
- See mpiexec -bind-to help

How to bind in OpenMP? (more later)

- Intel Compiler
 - KMP_AFFINITY=scatter or compact
- GCC
 - GOMP_CPU_AFFINITY=1,3,5,2,4,6

How do I choose?

Dilemma

- Use cores 0 & 1 to share cache and improve synchronization cost ?
- Use core 0 & 2 to maximize memory bandwidth ?
- Depends on
 - The machine structure
 - The application needs
- Locality-aware is very active research topic
 - TreeMatch for MPI process placement
 - Based on communication pattern
 - StarPU for task-based scheduling
 - Based on history
 - Many others

Machine (2048MB)	
NUMANode P#0	(1024MB)
Socket P#0 L2 P#0 (4096K Core P#0	B) Core P#1
PU P#0	PU P#1
NUMANode P#1	(1024MB)
Socket P#1	
L2 P#1 (4096K	B)
Core P#2 PU P#2	Core P#3 PU P#3
PU P#2	PU P#3

What's the actual problem ?

Example of dual Nehalem Xeon machine

Machine (48GB)	
NUMANode P#0 (24GB)	NUMANode P#1 (24GB)
Socket P#0	Socket P#1
L3 (8192KB)	L3 (8192KB)
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)	L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)
L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)	L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)
Lli (32KB) Lli (32KB) Lli (32KB) Lli (32KB)	L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)
Core P#0 Core P#1 Core P#2 Core P#3 PU P#0 PU P#1 PU P#2 PU P#3	Core P#0 Core P#1 Core P#2 Core P#3 PU P#4 PU P#5 PU P#6 PU P#7

Another example of dual Nehalem Xeon machine

Machine (24GB) NUMANode P#0 (12GB)	NUMANode P#1 (12GB)
Socket P#1	Socket P#0
L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)	L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)
L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)	Lld (32KB) Lld (32KB) Lld (32KB) Lld (32KB)
L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)	L1i (32KB) L1i (32KB) L1i (32KB) L1i (32KB)
Core P#0 Core P#1 Core P#2 Core P#3 PU P#0 PU P#2 PU P#4 PU P#6	Core P#0 Core P#1 Core P#2 Core P#3 PU P#1 PU P#3 PU P#5 PU P#7

Processor and core numbers are crazy

- Resources ordering is unpredictable
 - Ordered by any combination of NUMA/socket/core/hyperthread
 - Can change with the vendor, the BIOS version, etc
- Some resources may be unavailable
 - Batch schedulers can give only parts of machines
 - Core numbers may be non-consecutive, non starting at 0, etc
- Don't assume anything about indexes
 - Don't use these indexes

PATC 2014

• Or you won't be portable

Level ordering isn't much better

lachine (48GB)					
NUMANode P#0	(24GB)				
Socket P#0					
L3 (12MB)					
L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)
L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)
Core P#0	Core P#1	Core P#2	Core P#8	Core P#9	Core P#10
PU P#0	PU P#1	PU P#2	PU P#3	PU P#4	PU P#5
PU P#12	PU P#13	PU P#14	PU P#15	PU P#16	PU P#17
NUMANode P#1	(24GB)				
NUMANode P#1	(24GB)				
	(24GB)				
Socket P#1	(24GB)	L2 (256KB)	L2 (256KB)	L2 (256KB)	L2 (256KB)
Socket P#1		L2 (256KB) L1 (32KB)	L2 (256KB) L1 (32KB)	L2 (256KB) L1 (32KB)	L2 (256KB) L1 (32KB)
Socket P#1 L3 (12MB) L2 (256KB)	L2 (256KB)				
Socket P#1 L3 (12MB) L2 (256KB) L1 (32KB)	L2 (256KB) L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)	L1 (32KB)

- Intel is usually
 - Machine
 - Socket = NUMA = L3
 - Core = L1 = L2
 - Hyperthread (PU)

Level ordering isn't much better (2/3)

	Socket P#3 (32GB)			
	NUMANode P#6 (16GB)			
	L3 (6144KB)			
L2 (2048KB)	L2 (2048KB)	L2 (2048KB)	L2 (2048KB)	L2 (2048KB)
L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)
Core P#6 PU P#24 Core P#7 PU P#28	Core P#0 PU P#1 Core P#1 PU P#5	Core P#2 PU P#9 Core P#3 PU P#13	Core P#4 PU P#17 Core P#5 PU P#21	Core P#6 PU P#25
	NUMANode P#7 (16GB)			
	L3 (6144KB)			
L2 (2048KB)	L2 (2048KB)	L2 (2048KB)	L2 (2048KB)	L2 (2048KB)
L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)	L1 (16KB) L1 (16KB)
Core P#6 PU P#56	Core P#0 Core P#1 PU P#33 PU P#37	Core P#2 PU P#41 Core P#3 PU P#45	Core P#4 PU P#49 Core P#5 PU P#53	Core P#6 PU P#57 Core P#7 PU P#61
	Socket P#2 (32GB)			
	Socket P#2 (32GB) NUMANode P#4 (16GB)			
L2 (2048KB)	NUMANode P#4 (16GB)	L2 (2048KB)	L2 (2048KB)	L2 (2048KB)
L2 (2048KB) L1 (16KB) L1 (16KB)	NUMANode P #4 (166B) L3 (6144KB)	L2 (2049KB) L1 (16KB) L1 (16KB)	L2 (2048KB) L1 (16KB) L1 (16KB)	L2 (2048KB) L1 (16KB) L1 (16KB)
	NUMANode P#4 (166B) L3 (6144KB) L2 (2048KB)			
Ll (16KB) Ll (16KB) Core P#6 Core P#7	NUMANode P#4 (166B) L3 (6144KB) L2 (2048KB) L1 (16KB) L1 (16KB) Core P#0 PU P#3	Ll (16KB) Ll (16KB) Core P#2 Core P#3	L1 (16KB) L1 (16KB) Core P#4 Core P#5	Ll (16KB) Ll (16KB) Core P#6 Core P#7
Ll (16KB) Ll (16KB) Core P#6 Core P#7	NUMANode P#4 (1668) L3 (6144KB) L2 (2049KB) L1 (16KB) L1 (16KB) Core P#0 PU P#3 PU P#7 NUMANode P#5 (166B)	Ll (16KB) Ll (16KB) Core P#2 Core P#3	L1 (16KB) L1 (16KB) Core P#4 Core P#5	Ll (16KB) Ll (16KB) Core P#6 Core P#7
L1 (16KB) Core P#6 PU P#26 Core P#7 PU P#30	NUMANode P#4 (165B) L3 (6144KB) L1 (16KB) L1 (16KB) Core P#0 Core P#1 PU P#3 PU P#7 NUMANode P#5 (166B) L3 (6144KB)	L1 (16KB) L1 (16KB) Core P#2 PU P#11 PU P#15	L1 (16KB) Core P#4 PU P#19 Core P#5 PU P#23	L1 (16KB) Core P#6 PU P#27 PU P#31
L1 (16KB) Core P#6 PU P#26 Core P#7 PU P#30 L2 (2048KB)	NUMANode P#4 (16GB) L3 (6144KB) L2 (2048KB) L1 (16KB) L1 (16KB) Core P#0 PU P#3 PU P#7 NUMANode P#5 (16GB) L3 (6144KB) L2 (2048KB)	L1 (16KB) Core P#2 PU P#1 Core P#3 PU P#15 L2 (2048KB)	L1 (16KB) Core P#4 PU P #19 Core P#5 PU P #23 L2 (2048KB)	L1 (16KB) Core P#6 PU P#27 PU P#31 L2 (2048KB)
L1 (16KB) Core P#6 PU P#26 Core P#7 PU P#30	NUMANode P#4 (165B) L3 (6144KB) L1 (16KB) L1 (16KB) Core P#0 Core P#1 PU P#3 PU P#7 NUMANode P#5 (166B) L3 (6144KB)	L1 (16KB) L1 (16KB) Core P#2 PU P#11 PU P#15	L1 (16KB) Core P#4 PU P#19 Core P#5 PU P#23	L1 (16KB) Core P#6 PU P#27 PU P#31

- AMD is different
 - Machine
 - Socket
 - NUMA = L3
 - L2 = L1i
 - Core = L1d

Level ordering isn't much better (3/3)

- Sometimes there are multiple sockets per NUMA nodes
 - And different levels of caches
- Don't assume anything about level ordering
 - Or (again) you won't be portable
 - e.g.: Intel Compiler OpenMP binding may be wrong on AMD machines

Gathering topology information is difficult

- Lack of generic, uniform interface
 - Operating system specific
 - /proc and /sys on Linux
 - rset, sysctl, lgrp, kstat on others
 - Hardware specific
 - x86 cpuid instruction, device-tree, PCI config space, ...
- Evolving technology

- AMD Bulldozer dual-core compute units
 - It's not two real cores, neither a dual-threaded core
- New levels? New ordering?

Binding is difficult too

- Lack of generic, uniform interface, again
 - Process/thread binding
 - sched_setaffinity API changed twice on Linux
 - rset, Idom_bind, radset, affinity_set on others
 - Memory binding
 - mbind, migrate_pages, move_pages on Linux
 - rset, mmap, radset, nmadvise, affinity_set on others
 - Different constraints
 - Bind on single core only, on contiguous set of cores, on random sets ?
 - Many different policies

Introducing hwloc (Hardware Locality)

What hwloc is

- Detection of hardware resources
 - Processing units (PU), logical processors, hardware threads
 - Everything that can run a task
 - Memory nodes, shared caches
 - Cores, Sockets, ... (things that contain multiple PUs)
 - I/O devices

- PCI devices and corresponding software handles
- Described as a tree
 - Logical resource identification and organization
 - Based on locality

What hwloc is (2/2)

- API and tools to consult the topology
 - Which cores are near this memory node ?
 - Give me a single thread in this socket
 - Which memory node is near this GPU ?
 - What shared cache size between these cores ?
- Without caring about hardware strangeness
 - Non portable and crazy numbers, names, ...
- A portable binding API

- No more Linux sched_setaffinity API breakage
- No more tens of different binding API with different types

What hwloc is **NOT**

- A placement algorithm
 - hwloc gives hardware information
 - You're the one that knows what your software does/needs
 - You're the one that must match software affinities to hardware localities
 - We give you the hardware information you need
- A profiling tool

- Other tools (e.g. likwid) give you hardware performance counters
 - hwloc can match them with the actual resource organization

History

- Runtime Inria project in Bordeaux, France
 - Thread scheduling over NUMA machines (2003...)
 - Marcel threads, ForestGOMP OpenMP runtime
 - Portable detection of NUMA nodes, cores and threads
 - Linux wasn't that popular on NUMA platforms 10 years ago
 - Other Unixes have good NUMA support
 - Extended to caches, sockets, ... (2007)
 - Raised questions for new topology users
 - MPI process placement (2008)

History

- Marcel's topology detection extracted as standalone library (2009)
- Noticed by the Open MPI community
 - They knew their PLPA library wasn't that good
- Merged both libraries as hwloc (2009)
- BSD-3

- Still mainly developed by Inria Bordeaux
 - Collaboration with Open MPI community
 - Contributions from MPICH, Redhat, IBM, Oracle, ...

Alternative software with advanced topology knowledge

- PLPA (old Open MPI library)
 - Linux specific, no NUMA support, obsolete, dead
- libtopology (IBM)
 - Dead
- Likwid
 - x86 only, needs update for each new processor generation, no extensive C API
 - It's more kind of a performance optimization tool
- Intel Compiler (icc)

PATC 2014

x86 specific, no API

hwloc's view of the hardware

- Tree of objects
 - Machines, NUMA memory nodes, sockets, caches, cores, threads
 - Logically ordered
 - Grouping similar objects using distances between them
 - Avoids enormous flat topologies
 - Many attributes

- Memory node size
- Cache type, size, line size, associativity
- Physical ordering
- Miscellaneous info, customizable

Using hwloc for this tutorial

• On **PlaFRIM**, just use

\$ module load hardware/hwloc

(and for GPU-related tests)
 \$ module load gpu/cuda

- You may also install it on your local machine
 - It will make remote machine consulting easier

Installing hwloc

- Packages available in Debian, Ubuntu, Redhat, Fedora, CentOS, ArchLinux, NetBSD
- You want the development headers too
 - libhwloc-dev, hwloc-devel, …

Manual installation

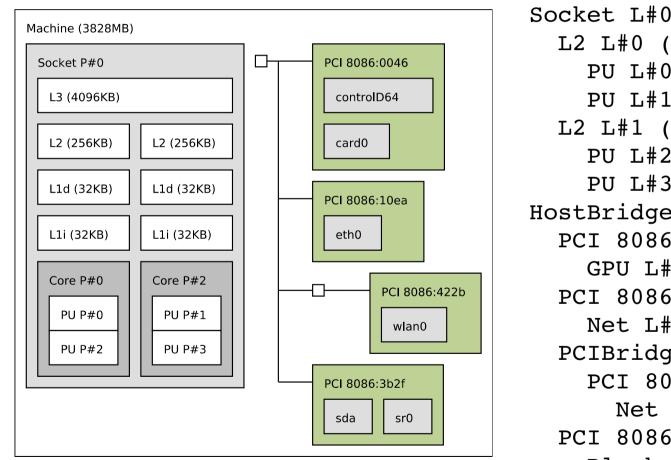
- Take a recent tarball at http://www.open-mpi.org/projects/hwloc
- Dependencies
 - On Linux, numactl/libnuma development headers
 - Cairo headers for Istopo graphics
- ./configure --prefix=\$PWD/install
 - Very few configure options
- Check the summary at the end of configure

Manual installation

- make
- make install

- Useful environment variables
 - export PATH=\$PATH:<prefix>/bin
 - export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:<prefix>/lib
 - export PKG_CONFIG_PATH=\$PKG_CONFIG_PATH:<prefix>/lib/ pkgconfig
 - export MANPATH=\$MANPATH:<prefix>/share/man

Using hwloc


- Many hwloc command-line tools
 - Istopo and hwloc-*
- ... but the actual hwloc power is in the CAPI
- Perl and Python bindings

Inría

Istopo (displaying topologies)

Innía PATC 2014

Machine (3828MB) Socket L#0 + L3 L#0 (4096KB) L2 L#0 (256KB) + Core L#0 PU L#0 (P#0) PU L#1 (P#2) L2 L#1 (256KB) + Core L#1 PU L#2 (P#1) PU L#3 (P#3) HostBridge L#0 PCI 8086:0046 GPU L#0 "controlD64" PCI 8086:10ea Net L#2 "eth0" PCIBridge PCI 8086:422b Net L#3 "wlan0" PCI 8086:3b2f Block L#4 "sda" Block L#5 "sr0"

Istopo

- Many output formats
 - Text, Cairo (PDF, PNG, SVG, PS), Xfig, ncurses
 - Automatically guessed from the file extension
- XML dump/reload
 - Faster, convenient for remote debugging
- Configuration options for nice figures for papers
 - Horizontal/Vertical placement
 - Legend
 - Ignoring things

PATC 2014

Creating fake topologies

Istopo

- \$ Istopo
- \$ Istopo --no-io -
- \$ Istopo myfile.png
- \$ ssh host Istopo saved.xml
- \$ Istopo -i saved.xml
- \$ ssh myhost Istopo -.xml | Istopo --if xml -i -
- \$ Istopo -i "node:4 socket:2 core:2 pu:2"

hwloc-bind (binding processes, threads and memory)

- Bind a process to a given set of CPUs
 \$ hwloc-bind socket:1 -- mycommand myargs...
 \$ hwloc-bind os=mlx4_0 -- mympiprogram ...
- Bind an existing process
 \$ hwloc-bind --pid 1234 node:0
- Bind memory
 - \$ hwloc-bind --membind node:1 --cpubind node:0 ...
- Find out if a process is already bound
 \$ hwloc-bind --get --pid 1234

\$ hwloc-ps

hwloc-calc (calculating with objects)

 Convert between ways to designate sets of CPUs, objects... and combine them

\$ hwloc-calc socket:1.core:1 ~pu:even
0x0000008

- \$ hwloc-calc --number-of core node:0
 2
- \$ hwloc-calc --intersect pu socket:1
 2,3
- The result may be passed to other tools
- Multiple invocations may be combined
- I/O devices also supported \$ hwloc-calc os=eth0

Machine (2048MB)
NUMANode P#0 (1024MB)
Socket P#0
L2 P#0 (4096KB)
Core P#0 PU P#0 PU P#1
NUMANode P#1 (1024MB)
Socket P#1
L2 P#1 (4096KB)
Core P#2 PU P#2 PU P#3

Other tools

- Get some object information
 - hwloc-info (v1.7+)
- Generate bitmaps for distributing multiple processes on a topology
 - hwloc-distrib
- Save a Linux node topology info for debugging
 - hwloc-gather-topology
- Manipulating multiple topologies, etc.

Hands-on Istopo

- Gather the topology of one server
- Display it on another machine
- Hide caches
- Remove the legend
- Restrict the display to a single socket
- Export to PDF

Hands-on hwloc-bind and hwloc-calc

- Bind a process to a core and verify its binding
- Find the DMA difference between a GPU and both NUMA nodes
 - Measured with /opt/cluster/gpu/cuda/latest/sdk/C/bin/linux/release/bandwidthTe st –memory=pinned --device=N
- Find out how many cores are in the second NUMA node
- Find out which cores are close to InfiniBand
- Find out the physical numbers of all non-first hyperthreads

API basics

 A hwloc program looks like this #include <hwloc.h>

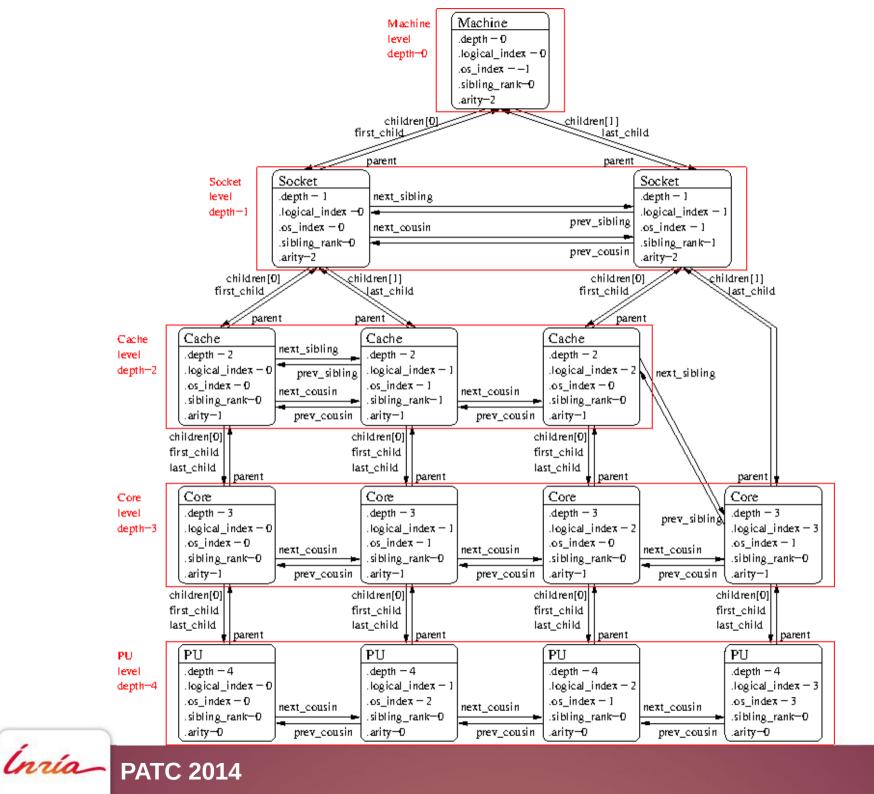
```
hwloc_topology_t topo;
```

hwloc_topology_init(&topo); /* ... configure what topology to build ... */ hwloc_topology_load(topo);

/* ... play with the topology ... */

hwloc_topology_destroy(topo);

Major hwloc types


- The topology context : hwloc_topology_t
 - You always need one
- The main hwloc object : hwloc_obj_t
 - That's where the actual info is
 - The structure isn't opaque
 - It contains many pointers to ease traversal
- Object type : hwloc_obj_type_t
 - HWLOC_OBJ_PU, _CORE, _NODE, ...

Object information

- Type
- Optional name string
- Indexes (see later)
- cpusets and nodesets (see later)
- Tree pointers (*cousin, *sibling, arity, *child*, parent)
- Type-specific attribute union
 - obj->attr->cache.size
 - obj->attr->pcidev.linkspeed
- String info pairs

Browsing as a tree

- The root is hwloc_get_root_obj(topo)
- Objects have children
 - obj->arity is the number of children
 - The array of children is obj->children[]
 - They are also in a list
 - obj->first_child, obj->last_child
 - child->prev_sibling, child->next_sibling
 - NULL-terminated
- The parent is obj->parent (or NULL)

Browsing as levels

- The topology is also organized as levels of identical objects
 - Cores, L2d Caches, …
 - All PUs at the bottom
- Number of levels hwloc_topology_get_depth(topo)
- Number of objects on a level hwloc_get_nbobjs_by_type(topo, type) hwloc_get_nbobjs_by_depth(topo, depth)
- Convert between depth and type using hwloc_get_type_depth() or hwloc_get_depth_type()

Browsing as levels

- Find objects by level and index
 - hwloc_get_obj_by_type(topo, type, index)
 - There are variants taking a depth instead of a type
 - Note : the depth of my child is not always my depth + 1
 - Think of asymmetric topologies
- Iterate over objects of a level

- Objects at the same levels are also interconnect by prev/next_cousin pointers
 - Don't mix up siblings (children list) and cousins (level)
- hwloc_get_next_obj_by_type/depth()

Hands-on browsing the topology

Starting from basic.c

- Print the number of cores
- Print the type of the common ancestor of cores 0 and 2
- Print the memory size near core 0
- Iterate over all PUs and print their physical numbers

Physical or OS indexes

- obj->os_index
 - The ID given by the OS/hardware

• P#3

- Default in Istopo graphic mode
- Istopo -p
- NON PORTABLE
 - Depend on motherboards, BIOS, version, …
- DON'T USE THEM

Logical indexes

- obj->logical_index
 - The index among an entire level

• L#2

- Default in Istopo except in graphic mode
- Istopo -I
- Always represent proximity (depth-first walk)
- PORTABLE

- Does not depend on OS/BIOS/weather
- That's what you want to use

But I still need OS indexes when binding ?!

- NO !
- Just use hwloc for binding, you won't need physical/OS indexes ever again

- If you want to bind the execution to a core
 - hwloc_set_cpubind(core->cpuset)
 - Other API functions for binding entire processes, single thread, memory, for allocating bound memory, etc.

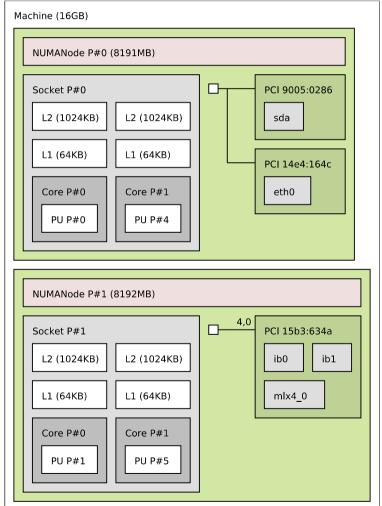
Bitmap, CPU sets, Node sets

- Generic mask of bits : hwloc_bitmap_t
 - Possibly infinite
 - Opaque, used to describe object contents
 - Which PU are inside this object (obj->cpuset)
 - Which NUMA nodes are close to this object (obj->nodeset)
 - Can be combined to bind to multiple cores, etc.
 - and, or, xor, not, …

Hands-on bitmaps and binding

- Bind a process to cores 2 and 4
- Print its binding
- Print where it's actually running
 - Repeat
- Rebind to avoid migrating between cores
 - hwloc_bitmap_singlify()

I/O devices


- Binding tasks near the devices they use improves their data transfer time
 - GPUs, high-performance NICs, InfiniBand, ...
- You cannot bind tasks or memory on these devices

- But these devices may have interesting attributes
 - Device type, GPU capabilities, embedded memory, link speed, ...

I/O objects

- Some I/O trees are attached to the object they are close to
- PCI device objects
 - Optional I/O bridge objects
- How to match your software handle with a PCI device ?
 - OS/Software devices (when known)
 - sda, eth0, ib0, mlx4_0
- Disabled by default
 - Except in Istopo

Hands-on I/O

- \$ module load gpu/cuda
- Starting from cuda.c
- Find the NUMA node near each CUDA device

Extended attributes

- obj->userdata pointer
 - Your application may store whatever it needs there
 - hwloc won't look at it, it doesn't know what's it contains

- (name,value) info attributes
 - Basic string annotations, hwloc adds some
 - HostName, Kernel Release, CPU Model, PCI Vendor, ...
 - You may add more

Configuring the topology

- Between hwloc_topology_init() and load()
 - hwloc_topology_set_xml(), set_synthetic()
 - hwloc_topology_set_flags(), set_pid()
 - hwloc_topology_ignore_type()
- After hwloc_topology_load()
 - hwloc_topology_restrict()
 - hwloc_topology_insert_misc_object...

Helpers

- hwloc/helper.h contains a lot of helper functions
 - Iterators on levels, children, restricted levels
 - Finding caches
 - Converting between cpusets and nodesets
 - Finding I/O objects
 - And much more
- Use them to avoid rewriting basic functions
- Use them to understand how things work and write what you need

More information

- The documentation
 - http://www.open-mpi.org/projects/hwloc/doc/
 - Related pages

- http://www.open-mpi.org/projects/hwloc/doc/v1.9/pages.php
- FAQ
 - http://www.open-mpi.org/projects/hwloc/doc/v1.9/a00028.php
- 3-4 hours tutorials with exercises on the webpage
- README and HACKING in the source
- hwloc-users@open-mpi.org for questions
- hwloc-devel@open-mpi.org for contributing
- hwloc-announce@open-mpi.org for new releases
- https://git.open-mpi.org/trac/hwloc/ for reporting bugs

Thanks!

Questions?

http://www.open-mpi.org/projects/hwloc

Brice.Goglin@inria.fr