

SEHLOC 2013/12/05 LIDIC - UNSL

Understanding and managing hardware affinities on hierarchical platforms With Hardware Locality (hwloc)

Brice Goglin

Agenda

- Quick example as an Introduction
- Bind your processes
- What's the actual problem?
- Introducing hwloc (Hardware Locality)
- Command-line tools
- Use cases
- Conclusion

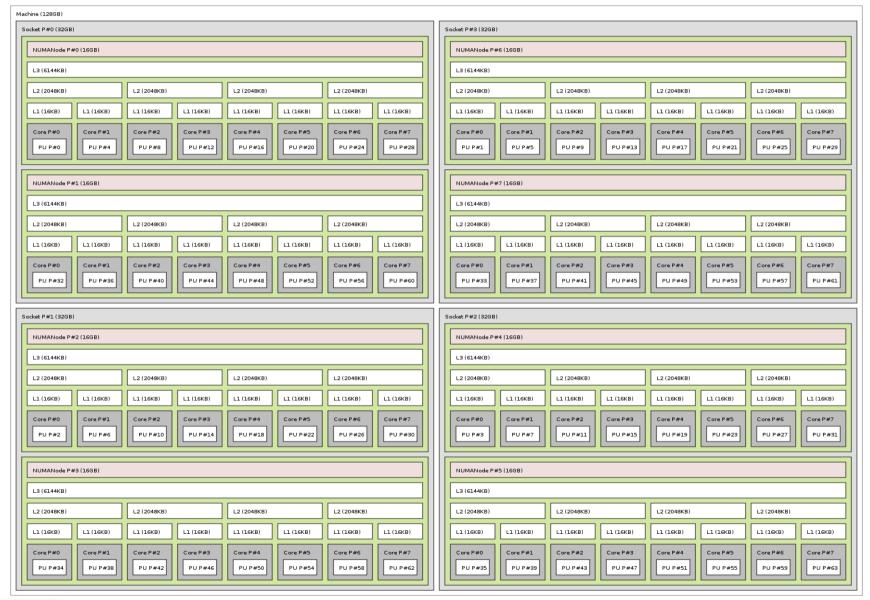
Quick example as an Introduction

Machines are increasingly complex

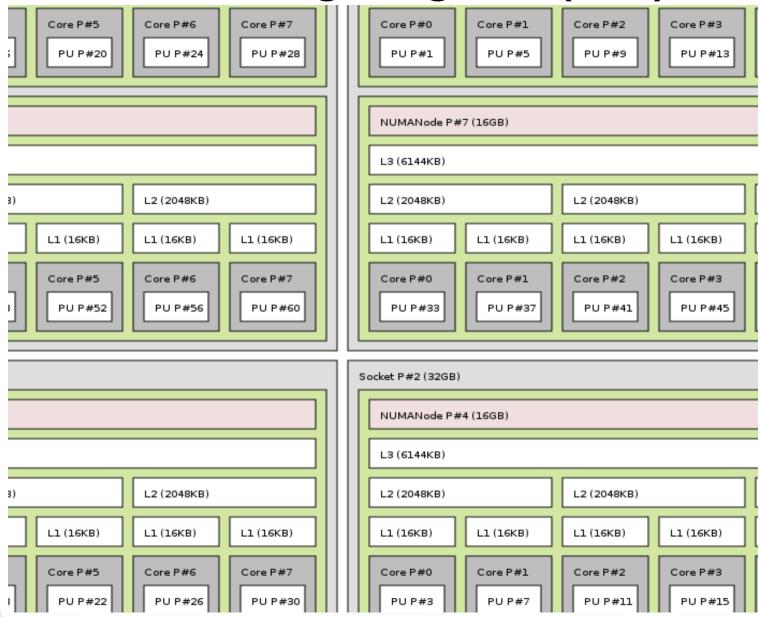
Machines are increasingly complex

- Multiple processor sockets
- Multicore processors
- Simultaneous multithreading
- Shared caches
- NUMA
- GPUs, NICs, ...
 - Close to some sockets (NUIOA)

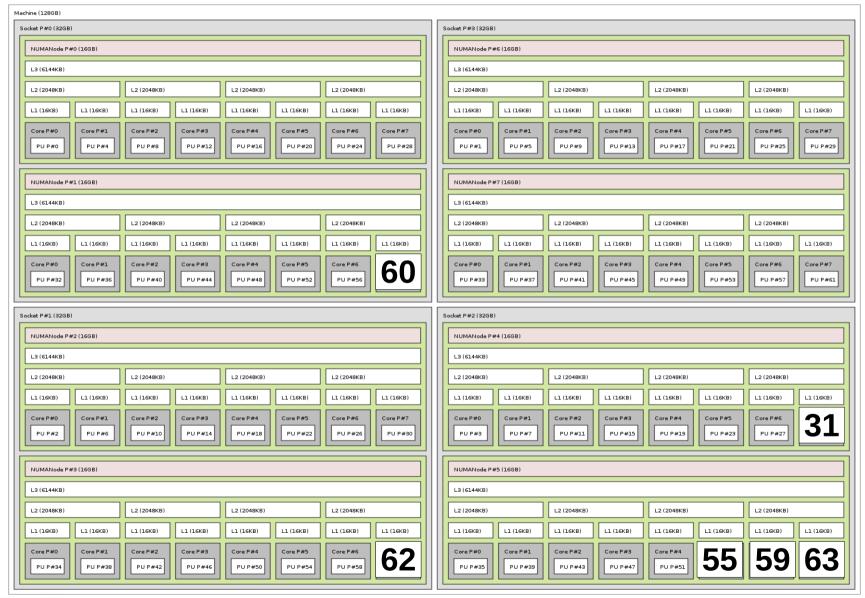
Example with MPI


- Let's say I have a 64-core AMD machine
 - Not unusual (about 6000\$)
- I am running a MPI pingpong between pairs of cores
 - Open MPI 1.6
 - Intel MPI Benchmarks 3.2

Example with MPI (2/3)

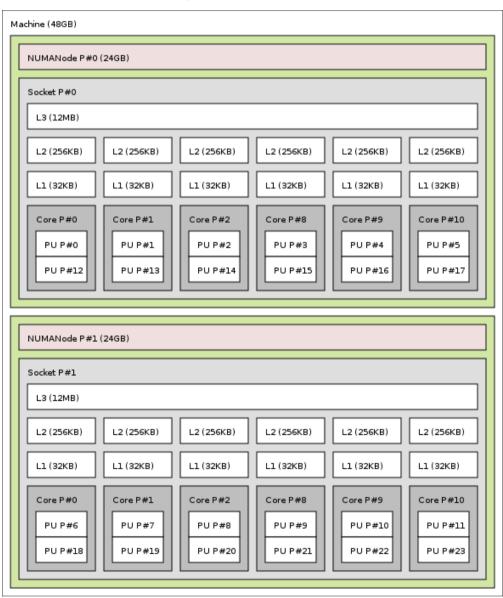

- Between cores 62 and 63
 - 1.39 μs latency 1900MB/s throughput
- Between cores 60 and 63
 - 1.63 μs 1400 MB/s Interesting!
- Between cores 59 and 63
 - $-0.68 \mu s 3600 MB/s What ?!$
- Between cores 55 and 63
 - $-1.24 \mu s 2400 MB/s$
- Between cores 31 and 63
 - $-1.34 \mu s 2100 MB/s$

What is going on



What is going on (2/3)

What is going on (3/3)


Example with MPI (3/3)

- Between cores that share a L2 cache
 - $-0.68 \mu s 3600 MB/s$
- Between cores that only share a L3 cache
 - $-1.24 \mu s 2400 MB/s$
- Between cores inside the same socket
 - $-1.34 \mu s 2100 MB/s$
- Between cores of another socket
 - $-1.39 \mu s 1900 MB/s$
- Between cores of another socket further away
 - 1.63 μ s 1400 MB/s

Brice Goglin

Ok, what about Intel machines?

- Less hierarchy levels
 - 4 vs 3
 - HyperThreading?

But same problems

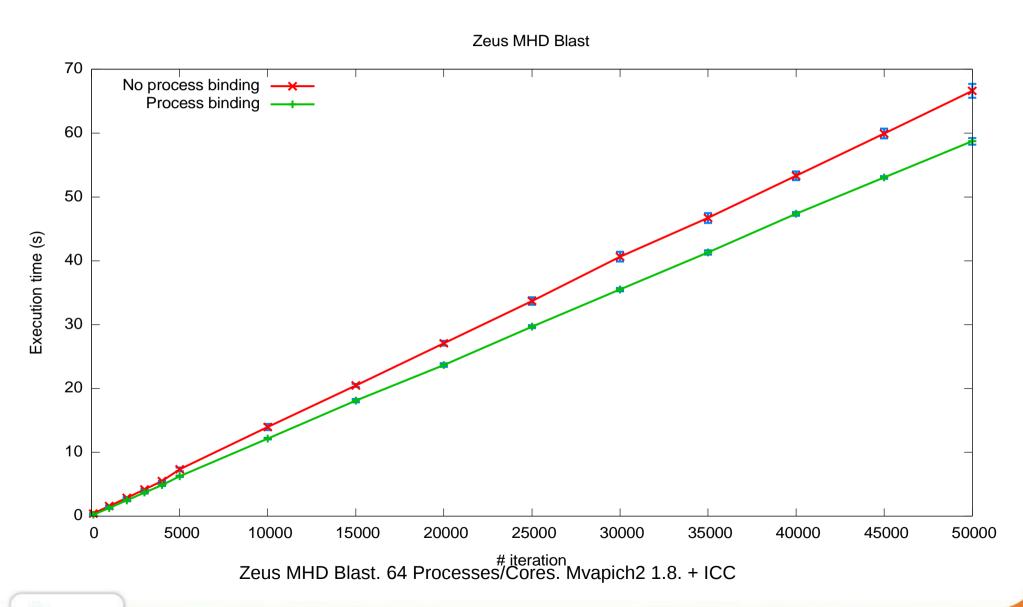
First take away messages

- Locality matters to communication performance
 - Machines are really far from flat
- Cores/processors numbering is crazy
 - Never expect anything sane here

Bind your processes

Where does locality actually matter?

- MPI communication between processes on the same node
- Shared-memory too (threads, OpenMP, etc)
 - Synchronization
 - Barriers use caches and memory too
 - Concurrent access to shared buffers
 - Producer-consumer, etc
- 10 years ago, locality was mostly an issue for large NUMA SMP machines (SGI, etc)
 - Today it's everywhere
 - Because multicores and NUMA are everywhere


What to do about locality?

- Place processes/tasks according to their affinities
 - If two tasks communicate/synchronize/share a lot, keep them close
- Adapt your algorithms to the locality
 - Adapt communication/synchronization implementations to the topology
 - Ex: hierarchical barriers

Process binding

- Some MPI implementations bind processes by default (Intel MPI)
 - Because it's better for reproducibility
- Some don't (Open MPI, MPICH)
 - Because it may hurt your application
 - Oversubscribing?
- Binding doesn't guarantee that your processes are optimally placed
 - It just means your process won't move
 - No migration, less cache issues, etc

To bind or not to bind?

Where to bind?

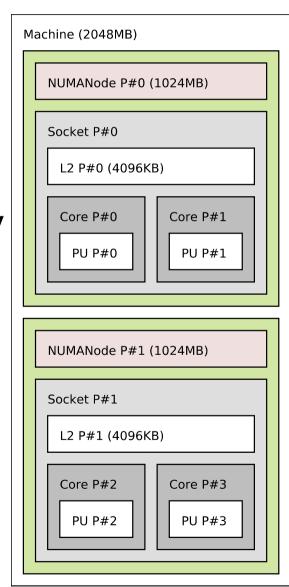
- Default binding strategies ?
 - By core first :
 - One process per core on first node, then one process per on second node, ...
 - By node first :
 - One process on first core of each node, then one process on second core on each node, ...
- Your application likely prefers one to the other
 - Usually the first one
 - Because you often communicate with nearby ranks

Binding strategy impact

Brice Goglin

How to bind in MPI? (more later)

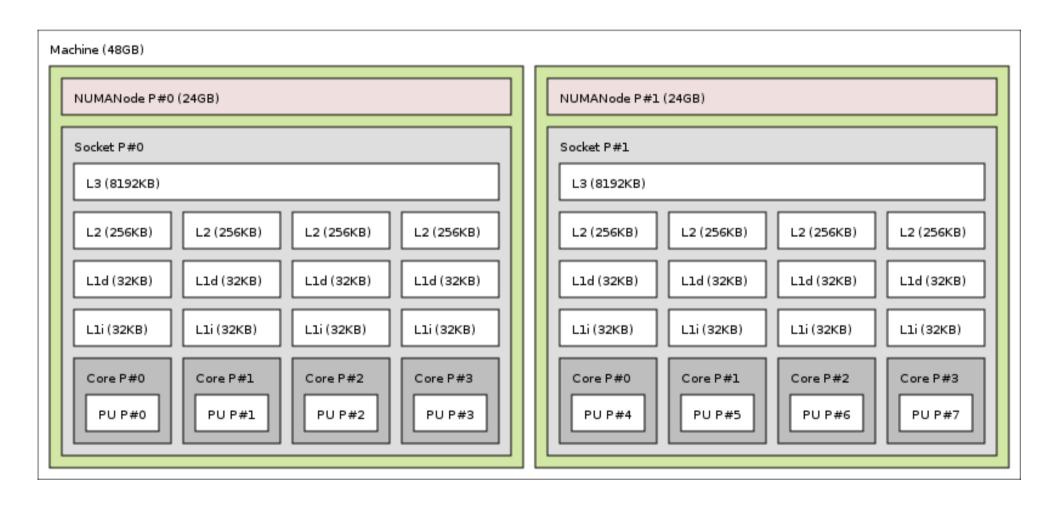
- MPI standard says nothing
- Open MPI
 - mpiexec --bind-to core -np 8 -H node1,node2 ./myprogram
- MPICH
 - mpiexec -bind-to core ...
- Manually
 - mpiexec
 - -np 1 -H node1 numactl --physcpubind 0 ./myprogram :
 - -np 1 -H node1 numactl --physcpubind 1 ./myprogram :
 - -np 1 -H node2 numactl --physcpubind 0 ./myprogram
 - Rank files, etc

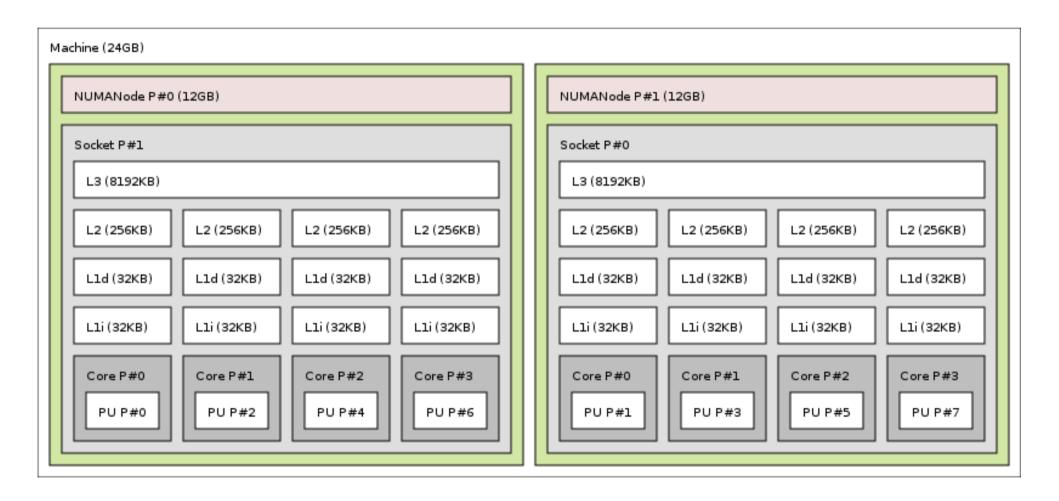


How to bind in OpenMP? (more later)

- Intel Compiler
 - KMP_AFFINITY=scatter or compact
- GCC
 - GOMP_CPU_AFFINITY=1,3,5,2,4,6

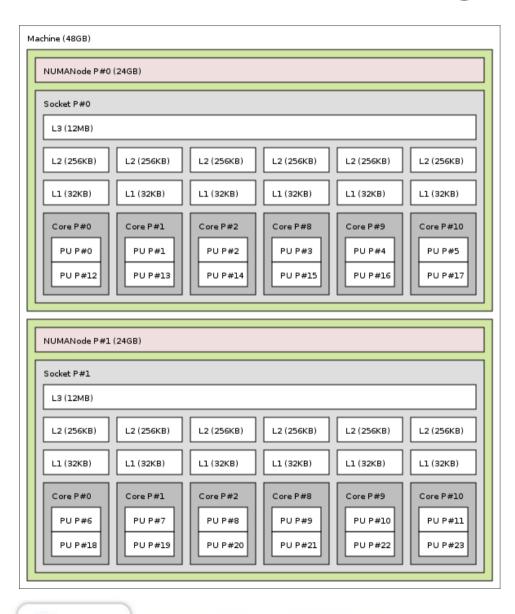
How do I choose?


- Dilemma
 - Use cores 0 & 1 to share cache and improve synchronization cost?
 - Use core 0 & 2 to maximize memory bandwidth?
- Depends on
 - The machine structure
 - The application needs

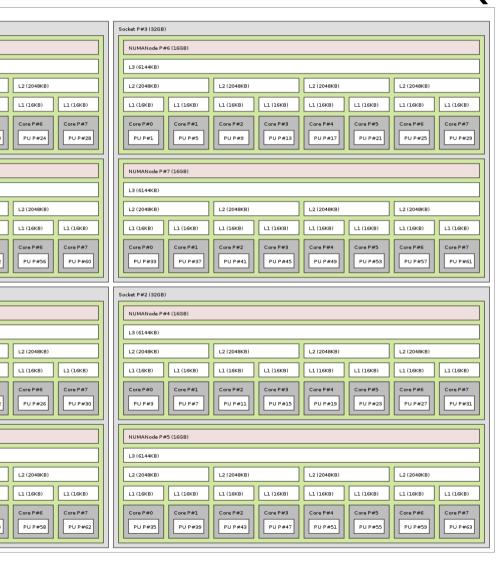

What's the actual problem?

Example of dual Nehalem Xeon machine

Another example of dual Nehalem Xeon machine


Processor and core numbers are crazy

- Resources ordering is unpredictable
 - Ordered by any combination of NUMA/socket/core/hyperthread
 - Can change with the vendor, the BIOS version, etc
- Some resources may be unavailable
 - Batch schedulers can give only parts of machines
 - Core numbers may be non-consecutive, non starting at 0, etc
- Don't assume anything about indexes
 - Don't use these indexes
 - Or you won't be portable


Level ordering isn't much better

Brice Goglin

- Intel is usually
 - Machine
 - Socket = NUMA = L3
 - Core = L1 = L2
 - Hyperthread (PU)

Level ordering isn't much better (2/3)

- AMD is different
 - Machine
 - Socket
 - NUMA = L3
 - L2 = L1i
 - Core = L1d

Level ordering isn't much better (3/3)

- Sometimes there are multiple sockets per NUMA nodes
 - And different levels of caches
- Don't assume anything about level ordering
 - Or (again) you won't be portable
 - e.g.: Intel Compiler OpenMP binding may be wrong on AMD machines

Gathering topology information is difficult

- Lack of generic, uniform interface
 - Operating system specific
 - /proc and /sys on Linux
 - rset, sysctl, lgrp, kstat on others
 - Hardware specific
 - x86 cpuid instruction, device-tree, PCI config space, ...
- Evolving technology
 - AMD Bulldozer dual-core compute units
 - It's not two real cores, neither a dual-threaded core
 - New levels? New ordering?

Binding is difficult too

- Lack of generic, uniform interface, again
 - Process/thread binding
 - sched_setaffinity API changed twice on Linux
 - rset, Idom_bind, radset, affinity_set on others
 - Memory binding
 - mbind, migrate_pages, move_pages on Linux
 - rset, mmap, radset, nmadvise, affinity_set on others
 - Different constraints
 - Bind on single core only, on contiguous set of cores, on random sets?
 - Many different policies

Introducing hwloc (Hardware Locality)

What hwloc is

- Detection of hardware resources
 - Processing units (PU), logical processors, hardware threads
 - Everything that can run a task
 - Memory nodes, shared caches
 - Cores, Sockets, ... (things that contain multiple PUs)
 - I/O devices
 - PCI devices and corresponding software handles
- Described as a tree
 - Logical resource identification and organization
 - Based on locality

What hwloc is (2/2)

- API and tools to consult the topology
 - Which cores are near this memory node?
 - Give me a single thread in this socket
 - Which memory node is near this GPU?
 - What shared cache size between these cores ?
- Without caring about hardware strangeness
 - Non portable and crazy numbers, names, ...
- A portable binding API
 - No more Linux sched_setaffinity API breakage
 - No more tens of different binding API with different types

What hwloc is not

- A placement algorithm
 - hwloc gives hardware information
 - You're the one that knows what your software does/needs
 - You're the one that must match software affinities to hardware localities
 - We give you the hardware information you need
- A profiling tool
 - Other tools (e.g. likwid) give you hardware performance counters
 - hwloc can match them with the actual resource organization

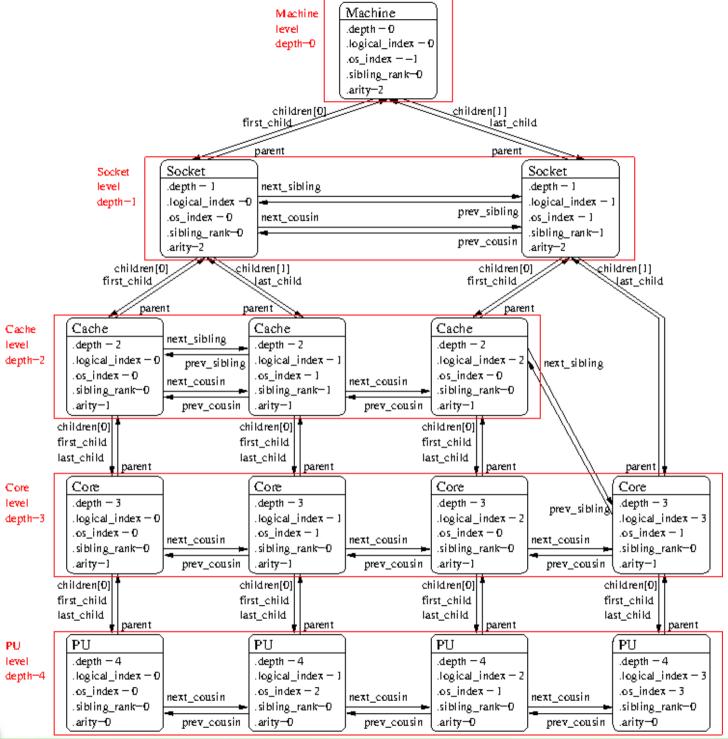
History

- Runtime Inria project in Bordeaux, France
 - Thread scheduling over NUMA machines (2003...)
 - Marcel threads, ForestGOMP OpenMP runtime
 - Portable detection of NUMA nodes, cores and threads
 - Linux wasn't that popular on NUMA platforms 10 years ago
 - Other Unixes have good NUMA support
 - Extended to caches, sockets, ... (2007)
 - Raised questions for new topology users
 - MPI process placement (2008)

History

- Marcel's topology detection extracted as standalone library (2009)
- Noticed by the Open MPI community
 - They knew their PLPA library wasn't that good
- Merged both libraries as hwloc (2009)
- BSD-3
- Still mainly developed by Inria Bordeaux
 - Collaboration with Open MPI community
 - Contributions from MPICH, Redhat, IBM, Oracle, ...

Alternative software with advanced topology knowledge


- PLPA (old Open MPI library)
 - Linux specific, no NUMA support, obsolete, dead
- libtopology (IBM)
 - Dead
- Likwid
 - x86 only, needs update for each new processor generation, no extensive C API
 - It's more kind of a performance optimization tool
- Intel Compiler (icc)
 - x86 specific, no API

Programming API

- Many hwloc command-line tools
- ... but the actual hwloc power is in the C API
- Perl and Python bindings

hwloc's view of the hardware

- Tree of objects
 - Machines, NUMA memory nodes, sockets, caches, cores, threads
 - Logically ordered
 - Grouping similar objects using distances between them
 - Avoids enormous flat topologies
 - Many attributes
 - Memory node size
 - Cache type, size, line size, associativity
 - Physical ordering
 - Miscellaneous info, customizable

Object information

- Type
- Optional name string
- Indexes (see later)
- Cpusets and Nodesets (see later)
- Tree pointers (*cousin, *sibling, arity, *child*, parent)
- Type-specific attribute union
 - obj->attr->cache.size
 - obj->attr->pcidev.linkspeed
- String info pairs

Physical or OS indexes

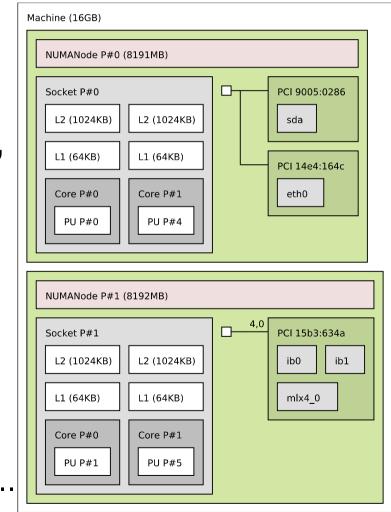
- obj->os_index
 - The ID given by the OS/hardware
- P#3
 - Default in Istopo graphic mode
 - Istopo -p
- NON PORTABLE
 - Depend on motherboards, BIOS, version, ...
- DON'T USE THEM

Logical indexes

- obj->logical_index
 - The index among an entire level
- L#2
 - Default in Istopo except in graphic mode
 - Istopo -l
- Always represent proximity (depth-first walk)
- PORTABLE
 - Does not depend on OS/BIOS/weather
- That's what you want to use

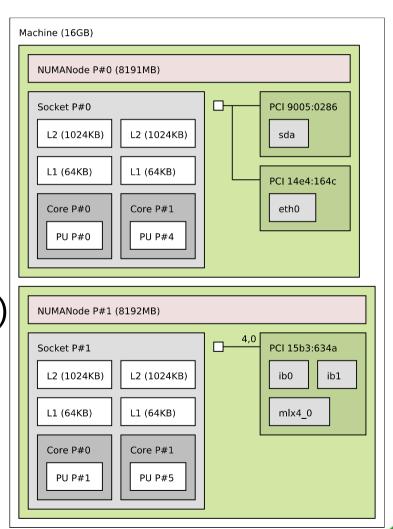
But I still need OS indexes when binding ?!

- NO!
- Just use hwloc for binding, you won't need physical/OS indexes ever again


- If you want to bind the execution to a core
 - hwloc_set_cpubind(core->cpuset)
 - Other API functions for binding entire processes, single thread, memory, for allocating bound memory, etc.

Bitmap, CPU sets, Node sets

- Generic mask of bits : hwloc_bitmap_t
 - Possibly infinite
 - Opaque, used to describe object contents
 - Which PU are inside this object (obj->cpuset)
 - Which NUMA nodes are close to this object (obj->nodeset)
 - Can be combined to bind to multiple cores, etc.
 - and, or, xor, not, ...


I/O devices

- Binding tasks near the devices they use improves their data transfer time
 - GPUs, high-performance NICs, InfiniBand, ...
- You cannot bind tasks or memory on these devices
 - But these devices may have interesting attributes
 - Device type, GPU capabilities, embedded memory, link speed, ...

I/O objects

- Some I/O trees are attached to the object they are close to
- PCI device objects
 - Optional I/O bridge objects
- How to match your software handle with a PCI device ?
 - OS/Software devices (when known)
 - sda, eth0, ib0, mlx4_0
- Disabled by default
 - Except in Istopo

Extended attributes

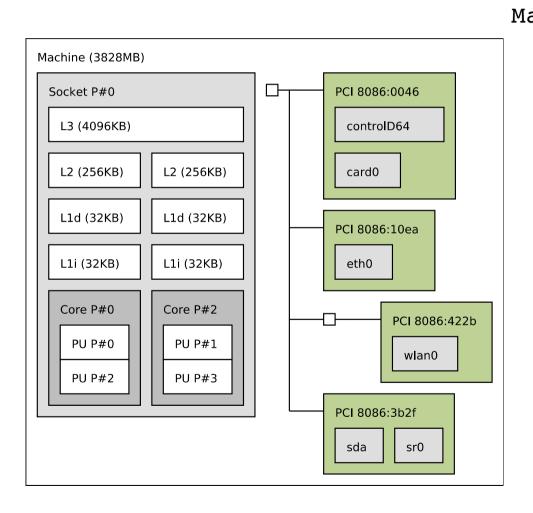
- obj->userdata pointer
 - Your application may store whatever it needs there
 - hwloc won't look at it, it doesn't know what's it contains

- (name, value) info attributes
 - Basic string annotations, hwloc adds some
 - HostName, Kernel Release, CPU Model, PCI Vendor, ...
 - You may add more

Configuring the topology

- Between hwloc_topology_init() and load()
 - hwloc_topology_set_xml(), set_synthetic()
 - hwloc_topology_set_flags(), set_pid()
 - hwloc_topology_ignore_type()

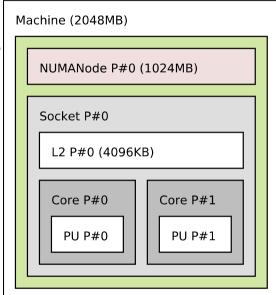
- After hwloc_topology_load()
 - hwloc_topology_restrict()
 - hwloc_topology_insert_misc_object...

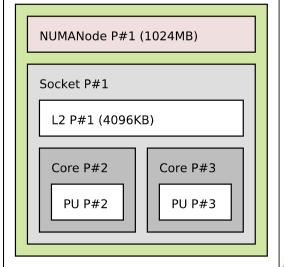

Helpers

- hwloc/helpers.h contains a lot of helper functions
 - Iterators on levels, children, restricted levels
 - Finding caches
 - Converting between cpusets and nodesets
 - Finding I/O objects
 - And much more
- Use them to avoid rewriting basic functions
- Use them to understand how things work and write what you need

Command-line Tools

Istopo (displaying topologies)


```
Machine (3828MB)
  Socket L#0 + L3 L#0 (4096KB)
    L2 L\#0 (256KB) + Core L\#0
      PU L#0 (P#0)
      PU L#1 (P#2)
    L2 L#1 (256KB) + Core L#1
      PU L#2 (P#1)
      PU L#3 (P#3)
  HostBridge L#0
    PCI 8086:0046
      GPU L#0 "controlD64"
    PCI 8086:10ea
      Net L#2 "eth0"
    PCIBridge
      PCI 8086:422b
        Net L#3 "wlan0"
    PCI 8086:3b2f
      Block L#4 "sda"
      Block L#5 "sr0"
```


Istopo (2/2)

- Many output formats
 - Text, Cairo (PDF, PNG, SVG, PS), Xfig, Textual graphics (ncurses)
- XML dump
 - Save and quickly reload in another process
 - Instead of rediscovering everything again
 - Save for offline consultation
 - Batch schedulers placing processes on compute nodes
 - Remote debugging without access to the machine
- The output can be heavily tweaked
 - Useful for figures in your papers

hwloc-calc (calculating with objects)

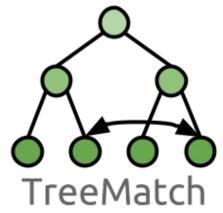
- Convert between ways to designate sets of CPUs, objects... and combine them
 - \$ hwloc-calc socket:1.core:1 ~pu:even 0x00000008
 - \$ hwloc-calc --number-of core node:0
 - \$ hwloc-calc --intersect pu socket:1 2,3
- The result may be passed to other tools
- Multiple invocations may be combined
- I/O devices also supported
 \$ hwloc-calc os=eth0

hwloc-bind (binding processes, threads and memory)

- Bind a process to a given set of CPUs
 \$ hwloc-bind socket:1 -- mycommand myargs...
 \$ hwloc-bind os=mlx4 0 -- mympiprogram ...
- Bind an existing process
 \$ hwloc-bind --pid 1234 node:0
- Bind memory
 - \$ hwloc-bind --membind node:1 --cpubind node:0 ...
- Find out if a process is already bound
 - \$ hwloc-bind --get --pid 1234
 - \$ hwloc-ps

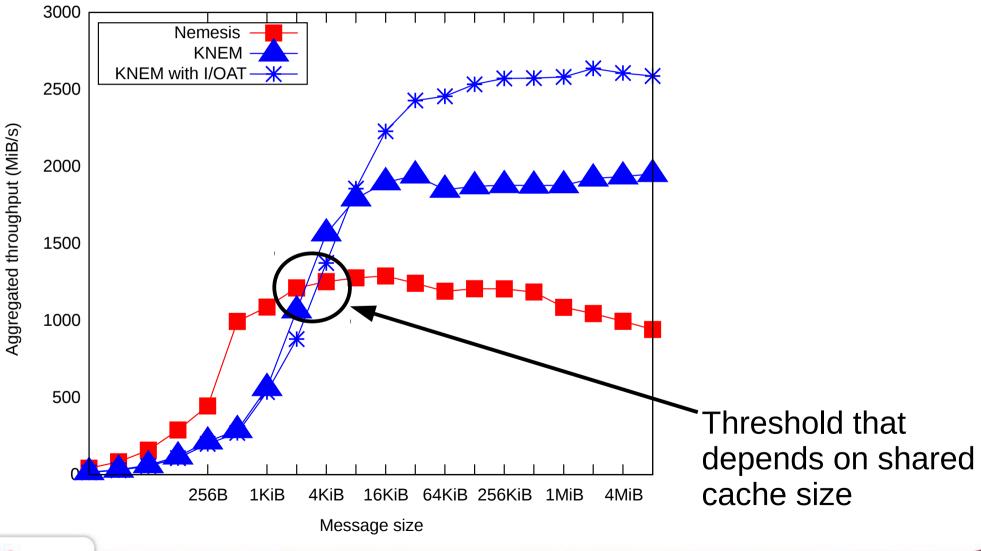
Other tools

- Get some object information
 - hwloc-info (starting in hwloc v1.7)
- Generate bitmaps for distributing multiple processes on a topology
 - hwloc-distrib
- Save a Linux node topology info for debugging
 - hwloc-gather-topology
- More


Use cases

MPI process placement

- Given a matrix describing the communication pattern of an application
- How to place processes communicating intensively on nearby cores?


- This becomes a mapping of a tree of processes
 - Ordered by communication intensiveness
- ... onto a tree of hardware resources
 - Given by hwloc

OpenMP thread scheduling with ForestGOMP

- OpenMP threads of the same parallel section often needs fast synchronization
 - Must stay together on the machine
 - Shared caches improve synchronization
- Build a tree of OpenMP teams and threads
 - Grouped by software affinities
- ... and map it onto a tree of hardware caches, cores, NUMA nodes, ...
 - Grouped by hardware locality

Topology-aware thresholds for MPI intra-node communication

Brice Goglin

Advanced binding strategies in MPI

Open MPI

- mpiexec --bind-to core --map-by core ...
 - Map by node
- mpiexec --bind-to core --mca rmaps_lama_map nsc
 - Map by node, then by socket, then by core
- See mpiexec --help

MPICH

- mpiexec -bind-to core -map-by BSC ...
 - Map by node (board), then by socket, then by core
- See mpiexec -bind-to -help

What about OpenMP?

- Still far from MPI
 - Both for features and for portability of options
- Maybe more in OpenMP 4.0
 - We will see

Conclusion

More information

- The documentation
 - http://www.open-mpi.org/projects/hwloc/doc/
 - Related pages
 - http://www.open-mpi.org/projects/hwloc/doc/v1.6/pages.php
 - FAQ
 - http://www.open-mpi.org/projects/hwloc/doc/v1.6/a00014.php
- 3-4 hours tutorials with exercises on the webpage
- README and HACKING in the source
- hwloc-users@open-mpi.org for questions
- hwloc-devel@open-mpi.org for contributing
- hwloc-announce@open-mpi.org for new releases
- https://svn.open-mpi.org/trac/hwloc/report for reporting bugs

Thanks!

Questions?

Brice.Goglin@inria.fr