2

One-sided Communication

Brian Barrett

MPI One-sided

Talk about implementing the spec
Shortcomings of the spec another topic
Goals:

= Expected performance

= Framework for further research

Pedigree

= Synchronization ideas borrowed from MPICH-
2 papers on one-sided implementation

= Communication framework radically different

Synchronization

Fence:

= Global across window

= Like a giant memory barrier
Post/Wait/Start/Complete

= Localized active synchronization

= Uses MPI Groups (ugh)

Lock/Unlock

= Totally passive synchronization
Goal: avoid explicit barriers everywhere

Epochs

Access Epoch

= Local window can be used as communication
origin

= Fence(), Start(), and Lock() start access
epochs

Exposure Epoch

= Local window can be used as communication
target

= Fence(), Post(), and target of Lock() start
exposure epochs

Communication

To review: put, get, accumulate

Put / Get

= Fence: request started immediately

= Others: request queued until synchronization
Accumulate

= Always queued until synchronization
Communication over BTL (short) or PML
(long)

Fence

All-to-all or reduce - scatter at start to
determine number incoming messages

Start all outgoing requests

Poll until number outgoing and incoming
messages are zero

Get ready for the next epoch




Post/Wait/Start/Complete

Post() sends “epoch start” message to
group

Wait() waits for number of incoming
messages, then incoming messages
Start() is a no-op (just error checking)
Complete() waits for post() messages, then
sends group number outgoing messages,
completes messages

Lock/Unlock

Lock() sends “lock request” to target
Target sends lock reply when available
Unlock() waits for lock reply, then sends
number of expected messages, then starts
messages and polls for completion

Target receives completion count and tries
to complete messages. Releases lock at
completion




