2

MPI Collectives

Jeff Squyres

Collective Algorithms

Hot research topic
Problem for 3™ party researchers:

= How to implement new collective algorithms?
Before components:

= MPI Profiling Layer

= Edit existing MPI implementation

= Create new MPI implementation

= Use alternate function names

The “coll” Framework (v1)

Components as the back-end
= Each contains all 15 MPI collectives

User application

(MPI API)
[_col]

Framework Goals

Allow multiple components in application
= Selection scope is per-communicator
Intuitive interface

Minimize overhead

Allow different implementation models
Allow less-than-full components

Typical Implementation Models

Layered over point-to-point

= Use MPI_SEND, MPI_RECV
Alternate communication channels

= Native hardware support for collectives
Hierarchical coll components

= Let one coll componet use another

= ...explained later

Interface

Simple 1-to-1 mapping

= Selected module hangs off communicator
= Module has pointers to back-end functions
Switch to show file ompi/mca/coll/coll.h
= Component interface

= Module interface

Lifecycle

MPI_INIT
MPI_COMM_CREATE
MPI_COMM_DUP
MPI_COMM_SPLIT

MPI_ALLGATHER
MPI_SCATTERV
MPI_COMM_FREE

MPI_COMM_DISCONNECT
MPI_FINALIZE

Selection

For any communicator constructor

= And when MPI_COMM_WORLD and SELF
are created during MPI_INIT

Query all available components

= See if they want to run on this communicator

= Those who do return a module and a priority

= Keep modules in priority order

= Highest priority module is initialized

= All others are “unselected”

Selection Flaw

Initialization

Currently assumes that all processes in a
communicator make identical selections

= No attempt to ensure selections match
Works well in homogeneous environments
= No one has complained... yet
Implementation issue; not design issue

Module with highest priority is initialized
Typically creates / initializes private data
= Pre-computes data for faster invocation

= Allocates resources

= Stored on comm->c_coll_selected_data

If module contains NULL for any function
= Replaced with “basic” version

= Technically, this is an abstraction violation

= Lots of special case code in coll base for this

Normal Usage

Module is cached on the communicator

= Can also have private / opaque data hung off
communicator

Example: MPI_BCAST
= Invokes comm->c_coll.coll_bcast(...)
Module can use cached private data

Sidenote: Temporary Buffers

From mca/coll/basic/coll_basic_reduce
Sometimes you need a temporary buffer
= E.g., tree-based reduce
Need two different values:

= How many bytes to malloc

= Pointer to give to MPI_SEND (etc.)

Sidenote: Temporary Buffers

Sidenote: Temporary Buffers

lloc, LB UB

3 buffer cases "F

= malloc == LB Extent and true extent

= malloc < LB malloc LB us
= malloc > LB

MPI buffer is always o Tueedent

Extent

(malloc — LB) LB malioc us

Extent
True extent

For COUnt > 1 malloc, LB UB

= Need to malloc more Extent and true extent
than (N * true_extent)
Easiest to malloc:
= 1 true_extent + * True extent
Extent
= (N-1) * extent
This is more than
necessary) Extent

True extent

malloc LB UB

LB malloc UB

Temporary Buffers

/* Get extent and true extent */
ompi_ddt_get_extent(dtype, &lb, &extent);

ompi_ddt_get_true_extent(dtype, &true_lb,
&true_extent);

/* Allocate more space than we need */

free_buffer = malloc(true_extent + (count - 1) *
extent);

/* Pointer that we give to MPI_SEND (etc.) */

pml_buffer = free_buffer - Ib;

Existing Components

Basic

= Baseline linear and logarithmic algorithms
= Intra- and intercommunicators

Shmem

= Intracommunicator only

= 4 NUMA-aware shared memory collectives

= Barrier, Broadcast, Reduce (1 flavor),
Allreduce

Existing Components

Existing Components

Tuned

= The new “basic”

= Results from UTK collective research

= Lots of different algorithms for each operation
Hiearch

= Hierarchical collectives, divided by latency

= Make sub-communicators at latency boundaries

= Invoke relevant collectives in sub-comms

Self

= For MPI_COMM_SELF (and clones)

= If one process in communicator, returns
priority of 75 (otherwise, NULL)

= Simple no-op’s or memcpy’s (depending on
operation)

= Intended so that no other coll components

need to handle this case

Show ompi/mpi/coll/self/*.c

Coll v2 Framework

Under active design

= Will likely wholly replace v1

Much more ambitious than v1

Optional session tonight to discuss current
thoughts / designs (not yet complete)

b

__;/é

MPI Topologies

MPI Topology Overview

MPI_CART_* and MPI_GRAPH_*

= N dimensional Cartesian

= Arbitrary graphs
Allow MPI to re-order ranks

= If it has “special’ knowledge

Allow user app to send “up,” “down,” “left,”
“right,” etc.

Framework Overview

Scope is per-communicator

Components lazily loaded
= Decrease memory footprint
= Loaded at first CART/GRAPH invocation

Topo Base

Implements all functions via:

= MPI_CART_MAP

= MPI_GRAPH_MAP

Hence, components only need to provide
these

= Can provide NULL pointers in the module

= Replaced with base functions

Unity Component

Makes a 1-to-1 mapping

= Only provide MPI_*_MAP functions

= Very simplistic

= All other functions are NULL

Interested to have others implement “more
interesting” mappings

= Allow re-ordering to map network layout

