2

Data-types and conversion

George Bosilca

Point-to-Point Architecture

User application

MPI Data-types

How are they created ?
Where are they used:

= Point-to-point communications

= One sided communications

= MPI'I/O
They have different requirements !

How are they used to convert the data ?
= Efficiently represent and transfer data

= Minimize memory usage

Some of MPI’'s
Pre-Defined Datatypes

MPI_Datatype C datatype Fortran datatype
MPI_CHAR signed char CHARACTER
MPI_SHORT signed short int INTEGER*2
MPI_INT signed int INTEGER
MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float REAL

MPI_DOUBLE double DOUBLE PRECISION
MPI_LONG_DOUBLE long double DOUBLE PRECISION*8

User-Defined Datatypes

Contiguous Blocks

Applications can define unique datatypes
= Composition of other datatypes
= MPI functions provided for common patterns
Contiguous
Vector
Indexed

Always reduces to a type map of pre-
defined datatypes

Replication of a datatype into a contiguous
buffer
MPI_Type_contiguous(3, oldtype, newtype)

F

Vectors

Replication of a datatype into locations that
consist of equally spaced blocks
MPI_Type_vector(7, 2, 3, oldtype, newtype)

S

Indexed Blocks

Replication of an old datatype into a sequence of
blocks

= Each block can contain a different number of copies
and have a different displacement

B[3]

Arbitrary Structures

The most general datatype constructor

Allows each block to consist of replication
of different datatypes
struct {
int i[3]; int int int float float
float f[2];
} array[100]; length[0] length[1]
"™ displs[0] ™ displs[1]

Data Representation

Different across different machines

= Length: 32 vs. 64 bits (vs. ...?)

= Endian: big vs. little

= Architecture description

Problems

= No standard about the data length in the

programming languages (C/C++)

= No standard floating point data representation

IEEE Standard 754 Floating Point Numbers
= Subnormals, infinities, NANs ...

Same representation but different lengths for long
doubles

Datatype Conversion

“Data sent = data received”

2 types of conversions:

= Representation conversion: change the binary
representation (e.g., hex floating point to IEEE
floating point)

= Type
(eg.,

conversion: convert from different types
int to float)

Only representation conversion is allowed

Datatype Conversion

What About Performance?

What About Performance?

Bad (old) way

= User manually copies data to a pre-allocated
buffer, or

= User calls MPI_PACK and MPI_UNPACK
Good (new) way

= Trust the [modern] MPI library

= Uses high performance MPI “datatypes”

Pack / unpack approach

Sender Receiver

i~

3 distinct steps: péck, nétwork xfer, unpack
No computation / communication overlap

How to increase the performance?
—m Time

Improving Performance

Improving Performance

Pipeline
= Create computation / communication overlap
= Split the computations in small slices

- Network transfer
T 71

mprovement

Other questions:
= How to adapt to the network layer?
= How to support RDMA operations?

= How to handle heterogeneous
communications?

= How to split the data pack / unpack?

Who handles all this?
= MPI implementation can solve these problems
= User-level applications cannot

Benefits

Worst case: the most scattered data
representation in memory (ie. one byte per line of
cache) leads to 80-85% of the optimal bandwidth
starting from message of size 256 bytes.

Usualy, for HPL like data-types, Open MPI run at
between 90 and 100% of the maximal bandwidth
(depending on the size of the message)

Up to 3 times faster than other MPI
implementations, depending on the memory
layout.

Internal Representation

All information related to the MPI

description: alignment, lower bound, upper
bound, true lower bound, true upper
bound, flags

MPI args: used for get_content operation

We create the data-type by adding new
information on an already defined data-
type (different than MPI).

MPI Combiner

Describe how the data-type was created

Store all the arguments of the MPI
function, so the data can be recreated.

We store it in a contiguous array.

One sided communication

We need to move the data representation on the
remote node

We parse the combiner struct to create a
contiguous array with all the information down to
the predefined data-types.

This packed array is send on the remote side,
where it will be parsed to recreate the data
description.

For homogeneous architectures we can pass
directly the optimized data description.

Loops and data-types

Predefined data field
[common[count [displ " [EXtEHtN
Loop start

Loop end

Example

Contiguous 10 MPI_INT

Data optimizations

MPI_Commit ...

= Optimize the representation in order to
decrease the number of independent data and

to increase the size of each of them.
= Unroll loops
= Rewrite loops with their prolog and | EEMPIY
epilog [oot |
= Lose the type information if we are
in an homogeneous environment.

Data optimizations

Type collapse:

= 2 similar types with identical
properties will be mixed

[ne T 1 [0o AN
Cnte T 1 [4

0o 4
Cwnte T2 [0 [N

Data optimizations

Loop unrolling / reordering

Data optimizations

How do we move inside this structure ?

How do we know how many items are
inside ?

Conversion

The data representation is not enough in
order to perform representation conversion
= Endianness

= Shrink/Expand the number of bits in the
exponent and mantissa

= Change the size of the data
The conversion is done by a convertor
No XDR

Receiver make right (easy to send)

Convertor

Created based on 2 architectures: local
and remote.

Once the data-type is attached is can
compute the local and remote size

Can convert the data segment by segment:
iovec conversion

= For performance reasons there is no room for
recursivity

Convertor

Convertor: How to

The stack:
[index [GSURENend_loop|GiSpIN
P s o T o |
S - P o |

Creating a convertor is a costly operation

= Should be avoided in the critical path

= Master convertor

= Then clone it or copy it (!)

= Once we have a initialized convertor we can
prepare it by attaching the data and count

Specialized preparation: pack and unpack

Position in the data: another costly

operation

= Problem with the data boundaries ...

Convertor: How to

Once correctly setup

= Pack

= Unpack

Checksum computation

CRC

Predefined data-type boundaries problem
Convertor personalization

= Memory allocation function

= Using NULL pointers

Convertor: How to

Sender Receiver
= Create the convertor = Create the convertor
and set it to position 0 and set it to position 0
= Until the end call = Until the end call
ompi_convertor_pack ompi_convertor_unpack
in a loop in a loop
= Release the convertor = Release the convertor

Convertor: How to

In fact the receive is more difficult

= Additional constraints
Fragments not received in the expected order
Fragments not received (dropped packets)
Fragments corrupted
Fragments stop in the middle of a predefined data-
type ...

= Do we look for performance ?

