2

Open Portability Abstraction
Layer (OPAL)

Brian Barrett

Support Library

Utilities for making your life easier
Utilities for portably interacting with the
Operating System

= Memory management issues on Wednesday
C-based object management system
Rich set of container classes

= Lists

= Free Lists

= Hash Tables

Initialization

opal_init to initialize library

= Few functions can be used before opal_init

= Completely local operation - no
communication required

opal_finalize to free library resources

= Most functionality unavailable after call

Utility Code

Actual, real documentation!
opal/util/*.[h,c]
Lots of compatibility code
= asprintf, gsort, basename, strncpy
Useful “add-on” code
= Get listing of all network devices (if.h)
= Manipulate argv arrays (argv.h)
= printf debugging code (output.h)
= Error reporting (show_help.h)

opal_output Debugging Code

Function to emit debugging / error
messages to stderr, stdout, file, syslog, ...
Versions to simplify debugging output
Printf-like arguments

opal _output (0, “hello, world”);

opal _out put _verbose(0, 10, “debugging..”);
OPAL_QUTPUT(0, “--enabl e-debug only”);
OPAL_QUTPUT_VERBCSE(...) ;

Nice Error Messages

opal/util/opal_show_help.[h,c]
Print detailed error messages for common
user errors

Message in text file rather than in source
code

Could (maybe) one day allow for minimal
internationalization support

Example....

Object System

C-style reference counting object system
Single inheritance
Statically or dynamically allocated objects

Constructors / Destructors associated with
each object instance

Object System Example

Define class in header
typedef struct sally_t sally_t;
struct sally_t {

parent _t parent;

void *first_nenber;

o

OBJ_CLASS DECLARATI O\(sal ly_t);

parent _t must be a object. Root object
is opal _obj ect _t.

Object System Example

Must instantiate class descriptor in .c file
OBJ_CLASS | NSTANCE(sal ly_t,
parent _t, sally_construct,
sal ly_destruct);
Constructor and destructor take one
argument - pointer to the memory for the
object to be created

Constructors and destructors called
recursively up the object stack

Dynamic Objects

Creating dynamically allocated object:
sally_t *sally = OBJ_NEWsally_t);
Initial reference count set to 1
Increasing reference count:

OBJ_RETAI N(sal ly_t);

Decreasing reference count:
OBJ_RELEASE(sally_t);

When reference count hits 0, object
destroyed

Static Objects

Construct object:

sally_t sally;

OBJ CONSTRUCT(&sally, sally_t);
Destruct object:

OBJ_DESTRUCT(&sal ly);

Can use OBJ_RETAI N/ OBJ_RELEASE,
but “badness” if reference count hits 0

No automatic destruction if object goes out
of scope

Object-based Containers

Lists, free lists, hash tables, value array,
atomic LIFO list

ORTE and OMPI provide additional
functionality

= ORTE: bitmap, pointer array

= OMPI: shared memory fifo, red-black tree
Usage similar for ORTE and OMPI, but
contain ORTE or OMPI interfaces...

Linked List

opal _li st _t is a doubly-linked list
Item ownership transferred

= No copies like in STL

= Item only belong to one list

Pointers to items never invalidated by
opal_list functions

O(1) insert, delete, join, get size
Splice and sort routines
Large debugging performance impact

More objects...

Free Lists

= Bulk object allocator
= objects must have parent class
opal _free_list_itemt
= Objects can always be put in linked lists
Hash table

= Keys either 32 or 64 bit integers (pick one at
creation and stick with it)

= WARNING: performance O(N), not O(log(N))

Progress Engine

Progress Engine (continued)

opal _progress() triggers callbacks to

registered functions

Event library for complicated progression

= triggers for file descriptors (like sel ect, but
with callbacks)

= Timer callbacks

= Signal callbacks (not in signal handler
context!)

= Event library can run in own thread

Threads

Generic interface for PTHREADS, Solaris and
Windows native
Support for:
= Thread manipulation
= Mutexes
= Condition variables
Mutexes support either OS locks or atomic locks
= Pick one and stick with it
No static initializers

Condition Variables

Semantics as usual for condition variables
If progress threads enabled:

= Call underlying system condition variable
Otherwise:

= Call opal_progress until signalled

Currently, always use software
implementation for Solaris or Windows
threads

Atomic Operations

Auvailable for number of platforms: x86, x86_64,
1A64, MIPS, PowerPC, Sparc, UltraSparc, win32
See Doxygen - headers nearly unreadable

Rich functionality:

= Memory barriers

= Spinlocks (can be statically initialized)

= Compare and Swap (32bit, 64bit, pointer)

= Add / Subtract (32bit and 64bit)
64 bit not always supported (32 bit PPC)

Inline functions where available

Processor and Memory

Affinit

Affinity support through components
= Memory: first_use, libnuma

= Processor: Linux (modern systems), Solaris,
Windows

Building blocks for more functionality
Processor affinity interface used by ORTE
to assign scheduling points

= Currently mostly manual

= Hope to get better support from schedulers

High Resolution Timers

Strange component interface - all headers

Support for AlX, Altix, Darwin, Linux,
Solaris, Windows

= Linux support requires assembly operations
= Altix actually Intel MM timer interface
Interface: get_cycles, get_usec, get_freq
Defines to hint whether get_cycles or
get_usec implemented natively

Wrapper Compilers

Generic wrapper compilers for OPAL,
ORTE, or OMPI

Read in text file describing parameters to
add

Currently only support one compiler /
library build

= Sun may be working on this...

