2

Frameworks and Components

Brian Barrett

Overview

Already seen the MCA overview

Time to put it to use

= Adding a new framework

= Adding a new component

Covers build system, naming conventions,
and required source code

Creating a Framework

Choose a name
Create <pr oj ect >/ ntal/ <nane>/
Create <pr oj ect >/ nta/ <nanme>/ base/

Define interface in
<pr oj ect >/ ncal/ <nane>/ <nane>. h

Create functions for framework to
open/initialize/close components

Re-run autogen.sh

Create Some Directories

Create basic directory structure under
<pr oj ect >/ ncal

= <nane>

= <nane>/ base/

Add Makef i | e. amfile in <nanme>/
probably copying from another framework
Library name must be specified as

I'i brca_<franewor k_name>. | a

Framework Header

Framework header:

= <pr oj ect >/ ntal/ <name>/ <name>. h
Need to define two structures

= nta_<nane>_base_nodul e_t

* nca_<name>_base_conponent _t

Quick example...

Autogen, autogen, autogen

After adding a framework (or component),
run autogen.sh
= Adds the framework to the list of frameworks
to be configured
= Adds all the Makefiles to the list that need to
be created by configure
Failure to run autogen.sh will result in
framework being (silently) ignored

Creating a Component

Component Build System

Choose a name

Create directory:
<proj ect >/ ntal <f r amewor k>/ <conponent >

Provide build system information

Provide component structure of known
name

Run autogen.sh

Three choices for how to configure

component

= no-configure: component always built

= configure.m4: component provides macro run
in main configure script

= configure.stub: component will have its own
configure script, run from main configure

First two preferred -- depends on what you

are building

Configure.params

Build system information for component

Provides options on component building

PARAM | NI T_FI LE: A file (relative to top of

component directory) that should always exit. A sanity

check for the build system.

= PARAM CONFI G_FI LES: Space delimitated list of files
that should be added to AC_CONFIG_FILES.

= PARAM CONFI G_HEADER _FI LE: Configuration

header file (configure.stub only)

PARAM AUX_DI R Where to store configure-related

files (configure.stub only)

= PARAM WANT_COWPI LE_EXTERNAL: unused

No-configure Components

Easiest way to add a component
Component must be applicable
everywhere

Must provide PARAM_INIT_FILE and
PARAM_CONFIG_FILES options in
configure.params

Configure.m4 Components

Most complex way to add components
Recommended when no-configure not
appropriate (due to configure speed)
Provide configure.m4 file that contains
macro to configure component
Provide configure.params giving
PARAM_INIT_FILE and
PARAM_CONFIG_FILE

Simple Example

MCA_btl _tcp_CONFI G [action-if-found],
[action-if-not-found])

AC_DEFUN([MCA bt | _tcp_CONFI G, [
check for sockaddr_in (a good sign we have TCP)
AC_CHECK_TYPES([struct sockaddr_in],
[$1],
[$2],
[AC_I NCLUDES_DEFAULT
#i fdef HAVE_NETI NET_IN_H
#i ncl ude <netinet/in.h>
#endi f])
]1)dnl

Macro Restrictions

Evaluate $1 if component can build, $2
otherwise

Only call AC_MSG_ERROR if user
requested something not available

Macro evaluated in context of top-level
configure -- take care with variables

Use AC_SUBST and AM_flags options to
set compiler / linker options

More Complex Example

AC_DEFUN([MCA bt | _portal s_CONFI G, [
save conpiler flags so that we don't alter
themfor |ater conponents.
bt| _portal s_save_CPPFLAGS="$CPPFLAGS"

check for Portals libraries, setting
btl_portal s_CPPFLAGS

substitute in the things needed to build Portals
AC_SUBST([bt _portal s_CPPFLAGS])

reset the flags for the next test
CPPFLAGS="$bt | _portal s_save_CPPFLAGS’])dnl

More Complex Example

AM _CPPFLAGS = $(bt | _portal s_CPPFLAGS)

portal s_SOURCES = bl ah

noi nst _LTLI BRARI ES = $(conponent _noi nst)
librca_btl _portals_| a_SOURCES = $(portal s_SOURCES)
nodi st _| i bnta_bt| _portal s_| a_SOURCES = \
$(portal s_nodi st _SOURCES)
libreca_btl _portals_|la_LIBADD = $(btl_portal s_LIBS)
librca_btl _portals_|la_LDFLAGS = -nodul e -avoi d-version \
$(btl _portal s_LDFLAGS)

Configure.stub components

Rarely used anymore

Slightly less complexity than configure.m4
= Less care with variables

= Can more easily modify CFLAGS, LIBS, etc
Much slower to configure

= Must re-check C compiler (and all other tests
already run)

More care required for “make dist”

OVPl _CHECK_PACKAGE

Are We Done Yet?

Helper Macro

Reduce burden of checking package
headers and libraries

Deals with <prefix>/lib and <prefix>/lib64
issue “almost rationally”

Will not add -I or -L arguments if not
needed (Deal with / usr/i ncl ude
breaking compilers issue)

When things break, one place to fix

Sounds pretty complicated (and it is)

However, copying from another component

is recommended path

= Just make sure to change all the variable
names...

When in doubt, Brian and Jeff can usually

help out

