Modular Component
Architecture

Jeff Squyres

Why Components?

Core set included in Open MPI distribution
3" parties can develop / distribute

= Open MPI development to the community

= As source or binary (open vs. closed source)
Can be added to existing Open MPI install
= Reduce the need for multiple MPI installations
= Can even be added on a per-user basis
Run-time decisions (vs. compile-time)

Why Components?

Better software engineering
= Enforce strict abstraction barriers
Small, discrete chunks of code
= Good for learning / new developers
= Easier to maintain and extend
Separate user apps from back-end libraries

= E.g., user MPI apps not compiled against
libibverbs.so / libgm.so / libpbs.a

MCA

MCA

= Top-level architecture for component services
= Find, load, unload components
Frameworks

= Targeted set of functionality

= Defined interfaces

= E.g., MPI point-to-point, high-resolution timers

MCA

Components

= Think “plugins”

= Code that exports a specific interface
= Loaded / unloaded at run-time
Modules

= A component paired with resources

= E.g., “TCP” component loaded, finds 2 TCP
NICs, makes 2 TCP modules

Component:C++ class :: Module:C++ object

MCA Top-Level View

User application

MPI API

N

Modular Component Architecture (MCA)

EE
5 8
g d

MCA Organization

Three entities:
= MCA base architecture
= Frameworks
= Components
(modules are run-time “instances” of
components)
Everything is versioned
= (Major, minor, release) triple
= Allows for backwards compatibility
= Nothing currently has multiple versions

MCA Organization

Frameworks

= Have unique string names

= One namespace, despite three sections
Components

= Belong to exactly one framework

= Have unique string names

= Namespace is per framework

All names must be valid C variable names

Organized by Directory

<section>/mca/<framework>/<component>
= Section = opal, orte, ompi

= Framework = framework name, or “base”

= Component = component name, or “base”
Directory names must match

= Framework name

= Component name

Examples

= ompi/mcal/btl/tcp, ompi/mca/btl/openib

“Base”

Reserved name: “base”

= opal/mca/base: the MCA itself

= orte/mcal/pls/base: the PLS framework

= ompi/mca/btl/base: the BTL framework
Helper functions / header files

= Common to all components in that framework

= Public data / methods to be invoked from
outside the framework

Header File Conventions

Framework interface defined in

= <section>/mca/<framework>/<framework>.h
= This is mandatory

Public base functions declared in

= <section>/mca/<framework>/base/base.h

= This is not mandatory, but common

OPAL Framework Types

opal/mca/*

= maffinity: Memory affinity

= memory: Memory hooks

= paffinity: Processor affinity

= timer: High-resolution timers

ORTE Framework Types

orte/mca/*

errmgr: Error manager

iof: 1/0 forwarding

gpr: General purpose registry
ns: Name server

oob, rml: Communication

pls: Process launch / control
rmgr, rds, ras, rmaps: Resource manager, discovery,
allocation, mapping

sds: Startup discovery service
soh: State of health monitor

OMPI Framework Types

ompi/mca/*

= allocator: Memory allocation
coll: Collective operations

= jo: Parallel I/0

= mpool: Memory pooling

= osc: One-sided operations
pml, bml, btl: Point-to-point

= rcache: Registration cache

= topo: Topology management

Components

Back-end technologies

= Function pointers

= Usually compiled as dynamic shared objects
(DSO’s) in .so files (“plugins”)

= But can be included in libmpi (etc.)

Use GNU Libtool “ItdI” library

= Portable dlopen(), disym()

= Even works on Windows

= Not GPL (!)

Function Pointers

Most common criticism

= “Using pointers to invoke functions are slow!”
Not so, Grasshopper

= Euro PVM/MPI 2004 paper proved otherwise
= Always faster than a shared library call

Indirect Function Call Overhead

@.018

a.008

8,008

2]

hataerred|
e

fiint

FAVATAYTaN

a.804

e

Call Overhead (nicrosec
eatetet

RS

ol

Savas

a. 002

K
Srintelelels

ata

fesies
e

.00

Base Component Interface

Common structure for all components
= “Parent” class
Switch to show opal/mca/mca.h

Base Component Fields

MCA version (triple)

Framework name / version (triple)
Component name / version (triple)

= Simplifying convention: included component
versions = Open MPI version

= Unless difference is meaningful (e.g., bug fix
release)

Open and close methods

= Open can return failure

Definition: Availability

Components are “available” if:

= Can be found at run-time (e.g., they were
compiled)

= Can be opened at run-time (e.g., they can find
all the shared libraries that they need)

= The “open” function returns SUCCESS

Definition: Selection

Act of picking which components to use

= Typically involves querying each available

= Strongly discourage having framework know
specifics about any individual component

Each framework has different selection

rules and criteria

= Must select >= 0 components

= Must select >= 1 components

= Must select exactly 1 component

Definition: Scope

Applicability of component selection
Example: per-process

= Open: MPL_INIT

= Selection: MPL_INIT

= Finalize: MPI_FINALIZE

= Close: MPI_FINALIZE

Definition: Scope

Example: per-communicator

= Open: MPI_INIT (or lazy)

= Selection: Communicator constructors
= Finalize: Communicator destructors

= Close: MPI_FINALIZE

...defined by framework, so other
scenarios possible

Amorphousness

MCA base is strictly defined

Each framework builds upon the base

= But definitions are framework-specific

= Every framework is different

= Depends on what the framework is for
Therefore somewhat difficult to describe
But most follow common conventions

Component Interface

Defined by the framework

= But guaranteed to have the base component
as the first member

Typically has some kind of selection
function

= “Do you want to be used with X?”

= Where “X” is relevant to the framework

= E.g.: Coll components — “Do you want to be
used with communicator X?”

Component

Module

Comp.

Component / Module Lifecycle

Component

= Open: per-process
initialization

Selection Selection: per-scope
determine if want to use
Close: per-process
finalization

Module

= |nitialization: if component
selected
Normal usage / checkpoint
Finalization: per-scope
cleanup

Initialization

Normal usage

Finalization

I

2

Run-Time Tunable Parameters

Tunable Parameters

Philosophy: do not use constants

= Use run-time parameters instead

Referred to as “MCA parameters”

= Somewhat misleading name

= Means: service provided by the MCA base

= Does not mean that they are restricted to MCA
components or frameworks

= OPAL, ORTE, and OMPI layers have
parameters

Rationale

Make everything a run-time decision

= Give every param a “sensible” default

= Open question what to do about params that
cannot have globally sensible defaults

Parameters usually indicate:

= Values (e.g., short/long message size)

= Behavior (e.g., selection of algorithm)

Much easier than recompiling

Intrinsic MCA Params

Each framework name is an MCA param
= Specifies which components to open
MCA base automatically registers it

= Value is a comma-delimited list of component
names

= Default value is empty (meaning “all”)
Inclusionary or exclusionary behavior
= btl=tcp,self,sm

= btl="tcp

MCA Param Lookup Order

“Override” value
mpirun command line
= mpirun —-mca <name> <value>
Environment variable
= setenv OMPI_MCA_<name> <value>
File
= $HOME/.openmpi/mca-params.conf
= $prefix/etc/openmpi-mca-params.conf
(these locations are themselves tunable)
Default value

Using MCA Parameters

Characteristics

= Strings and integers

= Read-only (information) and read-write

= Private and public

Components must register params during
component open

WARNING: Lookup is slow!

= Do not put it in critical performance path

= |nitialize at beginning of scope

MCA Param Examples

btl_gm_version

= Read-only, string version of the GM library that
the BTL gm component was compiled against

btl_tcp_if_include

= Read-write, string list of TCP interfaces to use
btl

= Read-write, list of BTL components to use
orte_base_singleton

= Private, whether this process is a singleton

Sidenote: ompi_info Command

Tells everything about OMPI installation

= Finds all components and all params

= Great for debugging
Can look up specific component

= ompi_info --param <framework> <component>
= Shows params and current values

= Can also use keyword “all’
“--parsable” option

Run ompi_info command

MCA Param API

Show opal/mca/base/mca_base_param.h
Register and lookup

= Several variations of each
Components must register during open

= ompi_info calls open/close on every
component that it finds (to find parameters)

