>

Documentation, Standards, and
other Miscellaneous Stuff

Jeff Squyres

Design Documentation

Started at beginning of project

= Effort fell off

= What currently exists is totally outdated
Starting a new SVN repository

= “ompi-design”

= Fill it up over time

Code Documentation

Using Doxygen (www.doxygen.org)
= Formatted comments

OPAL layer is best documented
ORTE and OMPI layers “loosely”
documented

Strongly encourage all new functionality to
have doxygen comments

User Documentation

User Guide and Installation Guide

= Skeletons right now (stolen from LAM/MPI)
= Need to be filled in

Man pages

= mpirun.1

= _..but otherwise non-existent

= Could certainly use some help here

Hint hint ©

User Documentation

Current main source: web FAQ
= Easily extensible PHP code

= Every time we see a question twice, put it on
the FAQ

= Google-able
Heavily use of mailing lists
= Web-archives, so also Google-able

7

’-—"&




Public Mailing Lists

announce@open-mpi.org

= Broadcast only
users@open-mpi.org

= User-level questions
devel@open-mpi.org

= Developer-level questions
svn[-fulll@open-mpi.org
= SVN activity

Private Mailing Lists

admin@open-mpi.org

= Administrative group
devel-core@open-mpi.org
= Private developer list

Developer Communication

Weekly teleconference

= Tuesdays, 11am US Eastern
Telephone

= Lots and lots of telephone calls
Instant messenger

= AOL is IM of choice

= Lots and lots of IM

Developer Communication

Quarterly face-to-face meetings

= Location rotates

= Sometimes entire group

= Sometime smaller, targeted meetings
Virtual is only so good

= Need real meetings to supplement

= White boards, etc.

O

Sub-Projects

Portable Linux Processor Affinity

Linux processor affinity has changed 3x

= Same function name; different parameters (!)
= Depends on glibc, kernel, distro

Can fix it with “./configure”

= Does not fix binary compatibility (ISV’s care)
PLPA uses syscall()

= Probe the running kernel

= Dispatch to the Right variant




PLPA

Released v1.0.3

Trivially small interface

Will eventually add abstraction layer
= Map to specific core / socket
Completely unrelated to Open MPI
Will be integrated into Open MPI v1.2

MPI Testing Tool

Test any N MPI implementations
= Each installed VI different ways

Against T different test suites
= Run each R different ways

Multiplicative effect: Nx M x T xR
Fully automated (run via cron)

Results go into a centralized database
= Correctness and performance results

= Available for historical data mining

MTT

Supports “disconnected” scenarios
= Download on one node

= Compile / install on another

= Run tests on another [cluster]

Not yet released

= Hope to be usable in near future

= Will first make available to Open MPI
members for distributed testing

= Then open to community

>

Standards and Conventions

“Minimal” Standards

None of us could agree on a full set

= ...and even if we did, people would ignore it
So we created a minimum set

= Some style

= Some correctness

Style

4 space tabs

= Spaces, not tabs

Curly braces on first line of the block
if(3<4){...

Preprocessor macros in all upper case

That’s it (for style)




Correctness

All blocks use curly braces

= Even one-line blocks
Constants on the left side of ==

= if (NULL == foo0) { ...

Functions with no arguments are (void)
No C++-style comments in C code

= No GCC extensions except in GCC-only code
No C++ code in libraries

= Discouraged in components

Correctness

Always define preprocessor macros
= Define logicals to 0 or 1 (vs. define or not
define)
= Use “#if FOO”, not “#ifdef FOO”
= Gives compiler assistance for mistakes
Not possible for some generated macros
= Autoconf and friends

#include Statements

System files are in <>

= Most should be protected with macros
#if HAVE_UNISTD_H
#include <unistd.h>
#endif

OMPI files in *”

= Always use full pathname

#include “opal/mca/base.h”
#include “ompi/group/group.h”

Header Files

Always protect with preprocessor macros
#ifndef _THIS_HEADER_FILE_NAME_H
#define THIS_HEADER_FILE_NAME_H

/* ...contents of header file... */

#endif

Only access external symbols through their

header files
= Do not “extern” external variables in .c files
= Do not prototype external functions in .c files

Windows Compatibility

Compiler Warnings

OMPI_DECLSPEC
= Used in header files
= Before any public symbols
= Adds in Right keywords for MS C compiler
= Resolves to blank on POSIX systems
OMPI_DECLSPEC extern int ompi_op_foo;
OMPI_DECLSPEC int mca_base_open(void);

Must compile without warnings on all
platforms, compilers

Default GCC developer build

= Maximum pickyness

Exceptions granted where warnings cannot
be avoided

= VAPI header files have GCC extensions

= Flex-generated code




Symbols

Cannot conflict with user code
Public files and symbols must be prefixed
= Library symbols use opal_, orte_, or ompi_
= Components must adhere to the Prefix Rule
= One exception: MCA component struct
(both covered later)
All private symbols must be “static”

Prefix Rule

Files and symbols must be unique
= Cannot conflict with rest of OMPI/ORTE/OPAL
(even file names within a single library)
Frameworks/components prefix all names
= <section>_<framework>_<component>_*
= int ompi_btl_mvapi_foo = 3;
= int ompi_btl_mvapi_bar(void) { return 2; }
= [ompi_]btl_mvapi_yow.c
(ompi_ optional here)

Note: Section Splits

OPAL, ORTE, and OMPI split into multiple
separate source trees somewhat recent

Most symbols are “correct”
= ompi_*(), orte_*(), opal_*()
But some code has not yet been updated

= Many frameworks and components are still
prefixed with “mca_*" instead of ompi_*,
orte_*, opal_*

MPI API

Invoking MPI APl is disallowed
= Required for fault tolerance

= |f need to MPI_SEND, use back-end PML
function

MPI API is usually:

= Error checking

= Back-end invocation

Show ompi/mpi/c/send.c, bcast.c

Repository
[trunk is free-for-all Trunk
= Head of development
= People will yell if you v1.0 series
break the trunk v1.0
Release series 2 V183
= /branches/v1.0, =
/branches/v1.1, ... v1.1 series

Stable releases
= /tags/v1.0, /tags/v1.0.1,

Repository

ftmp
= Free-for-all developer branches

= Good for short or long-term development that
requires breaking things

= Not open to the public

= Developers can create / delete whatever they
want




Nightly Tests

Currently testing all 3 active branches:

= /trunk, /branches/v1.0, /branches/v1.1

Test what you ship, ship what you test

= Distribution tarballs made at midnight, US IN
= Testers download snapshots

= Do various compile and run tests

= Send e-mail results

MTT will be most useful when ready

Version Numbers

Major.Minor.Release[Qualfier]
Qualifier

= aX: alpha

= bX: beta

= rcX: release candidate

= r\VV: Subversion r number
Examples

= 1.2.324

= 4.5.6rc2r9849




