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Interactive / Online / SC thingy
• Online question topic submission: Linklings
• BOF feedback form

https://www.open-mpi.org/sc18/

https://www.open-mpi.org/sc18/


Important dates:
Submission server opens: January 14th, 2019 
Full paper submission: April 15th, 2019 (AOE) 
Notification: July 1st, 2019 
Camera-ready: August 5th, 2019 https://eurompi19.inf.ethz.ch

https://eurompi19.inf.ethz.ch/


Quick review

Open MPI versioning



Open MPI versioning
• Open MPI uses “A.B.C” version number triple
• Each number has a specific meaning:

This number changes when backwards 
compatibility breaks
This number changes when new features 
are added
This number changes for all other releases

A

B

C



Definition
• Open MPI vY is backwards compatible with 

Open MPI vX (where Y>X) if:
§ Users can compile a correct MPI / OSHMEM 

program with vX
§ Run it with the same CLI options and MCA 

parameters using vX or vY
§ The job executes correctly



What does that encompass?
• “Backwards compatibility” covers several areas:

§ Binary compatibility, specifically the MPI / OSHMEM 
API ABI

§ MPI / OSHMEM run time system
§ mpirun / oshrun CLI options
§ MCA parameter names / values / meanings



What does that not encompass?
• Open MPI only supports running exactly the 

same version of the runtime and MPI / 
OSHMEM libraries in a single job
§ If you mix-n-match vX and vY in a single job…

ERROR



Version Roadmaps



v2.1.x (End of Life)



v3.0.x (Prior stable)
• Release managers

§ Brian Barrett, AWS
§ Howard Pritchard, 

Los Alamos National Lab

• Current release: v3.0.3
§ October 29, 2018
§ v3.0.4 expected Q1’19

• Maintenance mode
§ No new features for life of 

series
• Major features

§ MPI_THREAD_MULTIPLE 
support by default



v3.1.x (Prior stable)
• Release managers

§ Brian Barrett, AWS
§ Jeff Squyres, Cisco

• Current release: v3.1.3
§ October 29, 2018
§ v3.1.4 expected Q1’19

• Maintenance mode
§ No new features for life of 

series
• Many usability features 

over 3.0.x



v4.0.0 just released!



v4.0.x (Current stable)

• Release managers
§ Howard Pritchard, 

Los Alamos National Lab
§ Geoff Paulsen, IBM

• Lots of bug fixes and 
performance improvements

• Big changes:
1. Removed MPI-1 APIs not 

prototyped in mpi.h by default
2. IB support now via UCX
3. ABI compatible with 3.x
4. MPIR usage deprecated



PSA: Stop using MPI-1 removed APIs!
• MPI_ADDRESS
• MPI_ERRHANDLER_CREATE
• MPI_ERRHANDLER_GET
• MPI_ERRHANDLER_SET
• MPI_TYPE_EXTENT
• MPI_TYPE_HINDEXED
• MPI_TYPE_HVECTOR
• MPI_TYPE_STRUCT
• MPI_TYPE_LB
• MPI_TYPE_UB
• MPI_UB
• MPI_LB
• MPI_COMBINER_HINDEXED_INTEGER
• MPI_COMBINER_HVECTOR_INTEGER
• MPI_COMBINER_STRUCT_INTEGER
• MPI_HANDLER_FUNCTION

• All of these were:
§ Deprecated in MPI-2.0 in 1996
§ Removed in MPI-3.0 in 2012

• All have easy replacements
§ See “Removed MPI 

constructs” FAQ category
• open-mpi.org/faq/

§ Includes code samples 
showing how to update your 
code

https://open-mpi.org/faq/


PSA: Stop using MPI-1 removed APIs!
• MPI_ADDRESS
• MPI_ERRHANDLER_CREATE
• MPI_ERRHANDLER_GET
• MPI_ERRHANDLER_SET
• MPI_TYPE_EXTENT
• MPI_TYPE_HINDEXED
• MPI_TYPE_HVECTOR
• MPI_TYPE_STRUCT
• MPI_TYPE_LB
• MPI_TYPE_UB
• MPI_UB
• MPI_LB
• MPI_COMBINER_HINDEXED_INTEGER
• MPI_COMBINER_HVECTOR_INTEGER
• MPI_COMBINER_STRUCT_INTEGER
• MPI_HANDLER_FUNCTION

• NOT PROTOYPED IN v4.0.x 
mpi.h BY DEFAULT
§ Applications using these removed 

symbols will fail to compile
§ The symbols are in libmpi, 

however (so ABI is preserved)
• Can use --enable-mpi1-

compatibility to restore the 
removed mpi.h prototypes
§ This CLI option, prototypes, and 

symbols will exist for all v4.0.x 
releases

§ …but may disappear in a future 
Open MPI release



InfiniBand support à UCX PML

• OpenUCX (openucx.org) is now 
the preferred method for 
InfiniBand support
§ You may need to download/install 

OpenUCX before installing Open MPI

• By default, the openib BTL will 
refuse to run on IB devices
§ Unless manually enabled by 

setting the MCA param
btl_openib_allow_ib to 1



v4.0.x: RoCE / iWARP à openib BTL

• RoCE and iWARP devices 
still default to the openib BTL
§ Can force the use of the UCX 

PML for RoCE/iWARP:
§ mpirun --mca pml ucx --mca
osc ucx …

• RoCE and iWARP will likely 
default to UCX in a future 
release



Deprecation notice: MPIR
• MPIR interface is used internally to launch / 

attach tools and debuggers
• The maintainer for Open MPI’s MPIR is retiring!
• Initially announced at SC’17 BOF:

§ Unless someone else takes over, this is the plan:
• Deprecation notice in NEWS in early CY2018
• User runtime warnings in mid/late CY2018 (v4.0.0)
• Removal in CY2019

REMINDER



George Bosilca
University of Tennessee

Threading, Collectives, Tools, Resilience



Threading support
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Threading support
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Threading support
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• Improvements:
§ Synchronization primitive
§ Unrestricted progress (protections 

done at the lowest level)
§ Credit management
§ Requests memory management
§ Out-of-sequence management 
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SPC: Software Performance Counters
• Similar to PAPI counters but 

exposing internal information 
not available through other 
means
§ Out-of-sequence messages, time 

to match, number of unexpected, 
instant bandwidth, collective bins

• Can be accessed via MPI_T, 
PAPI SDE, or shared file via 
PMIx plugins



Collective Communication
Non-root

Processes

Irecv(0) Irecv(1) Irecv(M-1)

set_Irecv_cb(0) set_Irecv_cb(1) set_Irecv_cb 
 (M-1)

Irecv_cb(seg_id)

Irecv
(next_avail_seg) Done

set_Irecv_cb
(next_avail_seg)

Isend(seg_id, 1)Isend(seg_id, 0) Isend
(seg_id, child_num-1)

if has segs to
be received else

intermediate

leaf

a

b c

d e f

g

Synchronization Dependency:
• Segment independence

• Rebalance
• Decouple receiving of next 

segment and sending of current 
segment

• Child independence
• Decouple the data transfer 

from different children

Data Dependency: 
• same as previous 

implementation. 



Collective communications
• Dataflow collective: different algorithms 

compose naturally (using a dynamic 
granularity for the pipelining fragments)

• Architecture aware: Each level reshape 
tuned collective to account for 
architecture capabilities

• The algorithm automatically adapts to 
network conditions

• Resistant to system noise

Collective Op

Collective Op

Collective Op



Collective Communication
Synchronization Dependency:
• Segment independence

• Rebalance
• Decouple receiving of next 

segment and sending of current 
segment

• Child independence
• Decouple the data transfer 

from different children

Process location
Noise Reduction
Shared Memory
Hybrid Architecture



Collective Communication
Synchronization Dependency:
• Segment independence

• Rebalance
• Decouple receiving of next 

segment and sending of current 
segment

• Child independence
• Decouple the data transfer 

from different children
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Collective Communication
Synchronization Dependency:
• Segment independence

• Rebalance
• Decouple receiving of next 

segment and sending of current 
segment

• Child independence
• Decouple the data transfer 

from different children

Data Dependency: 
• same as previous 

implementation. 
Process location
Noise Reduction
Shared Memory
Hybrid Architecture



Collective Communication
Synchronization Dependency:
• Segment independence

• Rebalance
• Decouple receiving of next 

segment and sending of current 
segment

• Child independence
• Decouple the data transfer 

from different children

Data Dependency: 
• same as previous 

implementation. 
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Resilience - User Level Failure 
Mitigation (ULFM)
§ Move the underlying resilient mechanisms 

outside ULFM/OMPI
• Failure detector and reliable broadcast in PMIx
• Used in OMPI ULFM and SUNY OpenSHMEM

§ ULFM 2.1 released
• Based on OMPI master (will remain in sync)
• Transition to integrate ULFM in OMPI master

§ Scalable fault tolerant algorithms demonstrated in 
practice for revoke, agreement, and failure 
detection (SC’14, EuroMPI’15, SC’15, SC’16)
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Edgar Gabriel
University of Houston

OMPIO



OMPIO
• Highly modular architecture for parallel I/O
• Key features:

§ Tightly integrated with the Open MPI architecture 
(frameworks/modules, derived datatype handling, 
progress engine, etc.)

§ Support for multiple collective I/O algorithms 
§ Automatic adjustments of number of aggregators
§ Multiple mechanisms available for shared file pointer 

operations
This work is funded in part by NSF grant SI2-SSI 1663887.



OMPIO
• New features:

§ Multi-threading support (Open MPI 3.1.0)
§ Better support for NFS file systems (Open MPI 3.1.1)

§ Support for CUDA GPU buffers (Open MPI 4.0.0)
§ New collective I/O component: vulcan (Open MPI 4.0.0)
§ Revamp of shared file pointer operations (Open MPI 4.0.0)
§ Support for more MPI I/O hints (Open MPI 4.0.0)



OMPIO file systems
§ Generic Unix FS (XFS, EXT4)
§ BeeGFS
§ Lustre

§ PVFS2/OrangeFS
§ NFS



vulcan collective I/O component
• Features:

§ Overlaps two internal iterations 
of the algorithm

§ Uses asynchronous I/O (if 
available)

§ Communication based on two-
sided (current release) and 
one-sided operations 
(upcoming release)

§ No data sieving



Joshua Ladd

Mellanox Update



UCX in Open MPI
• UCX PML replaces OpenIB BTL as the out-of-the-box network substrate for Infiniband fabrics in v4.x.

§ UCX GitHub – https://github.com/openucx/ucx
§ UCX now available in most Linux distros, will be in-box in the near future

• UCX transparently supports high-performance RDMA offloads: 
§ Scalable reliable connections with DC transport (ConnectIB and higher)
§ MPI hardware tag matching offload (ConnectX-5 and higher)
§ Adaptive routing and out-of-order data placement (ConnectX-5 and higher)
§ GPU direct RDMA

• New in 2018:
§ Full GPU support on Nvidia (CUDA TL), and AMD (ROCM TL) GPUs.
§ Hardware-offloaded bitwise atomics, for OpenSHMEM v1.4.
§ Support for non-blocking memory registration. 
§ Emulation layer for RMA/atomics over older hardware, shared memory, and TCP.
§ UCX OSC with multithreaded optimizations.
§ Multi-rail and HDR support.
§ Small message optimization with ConnectX-5 MEMIC.
§ Malloc hooks using binary instrumentation (BISTRO.)

https://github.com/openucx/ucx


HCOLL in Open MPI
• Designed for exascale systems, now targeting Machine Learning frameworks. 
• Deployed in production on Summit and Sierra

§ SHARP based allreduce, barrier
§ Multicast based broadcast
§ Highly optimized shared memory collectives 
§ Optimized multithreaded 

• Features targeting Machine Learning Workloads 
§ Collectives over GPU Memory  

• SHARP small data reductions.
• SHARP large data reduction(HDR ConnectX-6 / Quantum switch.)
• Streaming reliable multicast for large data broadcast over GPU buffers.
• UCX/GPU memory scatter-reduce-allgather algorithm for large data reductions.
• Hierarchical GPU collectives.

§ Support for FP16 on Nvidia GPUs
• Reductions on the GPU device 
• Reductions in the Switch. 



OpenSHMEM v1.4 in Open MPI
• Available starting in Open MPI v4.0.0
• Contains many new features, allowing users to 

manage much more flexibility in communication and 
computation of OpenSHMEM programs
§ New feature list (specification 1.4, Annex G)

• Communication management routines (context object)
• Thread safety support
• Sync routines
• Test routines
• Calloc routine for symmetric objects
• Bitwise atomic operations



SHARP AllReduce Performance Advantages 
1500 Nodes, 60K MPI Ranks, Dragonfly+ Topology 

SHARP Enables Highest Performance



SHARP Performance Advantage for AI
• SHARP provides 16% Performance Increase for deep learning, initial results
• TensorFlow with Horovod running ResNet50 benchmark, HDR InfiniBand (ConnectX-6, Quantum)

16%



IBM Spectrum MPI



IBM Spectrum MPI
• IBM Spectrum MPI is a pre-built, pre-packaged version of community Open 

MPI plus IBM value add components.
• Spectrum MPI is based on Open MPI release branches

§ SMPI 10.1.0 based on OMPI v2.0.x branch
§ SMPI 10.2.0 based on OMPI v3.0.x branch

• Supporting scalable application performance on a variety of HPC systems 
including ORNL’s Summit and LLNL’s Sierra systems.
§ Improvements in MPI point-to-point, collective, and one-sided performance at all scales

IBM Spectrum MPI based on Open MPI

Open MPI

IBM Contributions

IBM  Value Add
Collective Library, P2P/OSC Optimizations, Power Arch. Optimizations, Cluster Test 

Tools, ISV/OEM models, CORAL JSM startup, enhanced LSF support, and more...

Community Contributions



Summary of Key Features
• Improved usability via command line options and packaging of tools

§ Interconnect selection (-tcp, -ibv, -pami), network selection (-netaddr rank:10.10.1.0/24)
§ Display table of interconnects used by your application
§ Supports multiple PMPI based tools both pre-packaged (e.g., Jumpshot by

using -entry mpe) & user defined libraries (-entry mpe,mylib)
§ $MPI_ROOT mechanism to quickly switch between different SMPI versions
§ Single install for multiple compilers (GNU, XL, PGI)

• Performance optimizations
§ Shared memory optimizations for POWER9 and PAMI cross memory attach
§ PAMI point-to-point and one-sided components support async. progress,

hardware tag matching, on-demand paging, hardware data gather/scatter,
dynamic tasking, POWER9 tunneled atomics, IB hardware atomics

§ CUDA IPC and GPU Direct support for Power Systems
§ libcollectives library of IBM tuned collective operations with the ability to

automatically chooses ‘best’ algorithm at runtime based on a variety of criteria.

$ mpirun -np 4 -prot –TCP ./hello
Host 0 [node01] ranks 0 - 1
Host 1 [node02] ranks 2 - 3

host | 0 1
======|===========

0 : shm tcp
1 : tcp shm

Connection summary:
on-host: all connections are shm
off-host: all connections are tcp

0/ 4) [node01] 61808 Hello, world!
1/ 4) [node01] 61809 Hello, world!
2/ 4) [node02] 10697 Hello, world!
3/ 4) [node02] 10698 Hello, world!



ARM Update



Arm Update
• Open MPI works on Arm!

§ https://developer.arm.com/products/software-development-
tools/hpc/resources/porting-and-tuning/building-openmpi-with-arm-compiler

§ https://developer.arm.com/products/software-development-
tools/hpc/resources/porting-and-tuning/building-openmpi-with-openucx

https://developer.arm.com/products/software-development-tools/hpc/resources/porting-and-tuning/building-openmpi-with-arm-compiler
https://developer.arm.com/products/software-development-tools/hpc/resources/porting-and-tuning/building-openmpi-with-openucx


Arm Update
• Active collaboration between LANL and Arm to 

enable CI and MTT testing on Arm
§ Arm CI machines with InfiniBand hosted at HPCAC
§ Arm CI/MTT machines hosted at LANL



Brian Barrett & Raghu Raja

AWS & Open MPI



TCP Transport
• Improving network configuration support

§ Multiple IPs per network device (in master)
§ Differing number of interfaces 
§ Complex routing configurations

• Multiple TCP connections between ranks
§ The btl_tcp_links MCA parameter had been  

around for many releases, but had bit-rotted
§ Works for simple cases, expanding in future



CI Testing
• “Pull Request Build Checker” running in AWS
• 23 test builds for every PR, all but 3 run in AWS
• Working on accelerating test execution time



Ralph H. Castain
Joshua Hursey

PMIx in OMPI



Current State
• PMIx plays integral role today

§ Embedded for “simple install”
• OMPI 4.x  à PMIx 3.x
• OMPI 3.x  à PMIx 2.x

§ Symbol-shifted to avoid conflicts with application-
level bindings

• ORTE
§ Primary RTE for unmanaged environments



Future Directions
• PMIx as “First Class Citizen”

§ Direct use of PMIx functions
§ No more symbol shifting

• ORTE  à PRRTE (pronounced: purr-tay)
§ Reduce RTE “cost” by sharing it with PMIx
§ PMIx-based tools PMIx BoF: Wed, 5:45-6:15pm

Focus: Application-level examples!
(https://pmix.org)

https://pmix.org/


Fujitsu Limited



MPI for the Post-K Computer
• Post-K MPI based on Open MPI

§ Work on A64FX (Armv8.2-A + SVE) and TofuD
§ Plan to use Open MPI v4.0 and PMIx v2.1

• Contribution to Open MPI from post-K MPI
§ Persistent collectives [see next page]

§ Datatype for half-precision floating point [early 2019]

§ Thread parallelization of pack/unpack [early 2019]
The post-K computer is underdevelopment by RIKEN and Fujitsu



Persistent Collectives in MPI-4.0
• Persistent collectives are in Open MPI 4.0.x
• Overlap computation & communication and 

reduce communication initialization cost
• Use MPIX_ prefix because

standardization is not complete
• Performance is similar to

nonblocking collectives

MPIX_Bcast_init(
buf, count, ..., &req);

for (...) {
MPI_Start(&req);
// ... your computation
MPI_Wait(&req, &stat);

}
MPI_Request_free(&req);

(or MPI-3.2)

See man MPIX_Barrier_init for details



Guillaume Papauré

Atos | montblanc-project.eu | @MontBlanc_EU

Bull Open MPI

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement n� 671697



Performance oriented MPI
• Application performance

§ Hierarchical collectives optimizations (work done with University 
Tennessee Knoxville [UTK])

§ Tuned for Bull eXascale Interconnect (BXI)
• portals4 offload: tag matching, rendezvous, non blocking collectives
• Tera-1000: 8256 nodes, 11.9 Pflops, 14th TOP500 (June 2018)

• MPI+X
§ Bull Hybrid Communication Optimizer

(currently Open MPI+OpenMP; other runtimes planned)
§ One sided notifications support in Open MPI OSC



User oriented MPI
• Ease of use

§ Hybrid MPI+OpenMP mpirun options
§ User parameters profiles
§ Collectives numerical reproducibility (work done with UTK)

• Fits with increasing HPC heterogeneity
§ ARM, x86_64, GPU+affinity
§ gcc, Intel compiler, ARM compiler
§ Supports all the way up through MPI_THREAD_MULTIPLE



Wrap up



Where do we need help?
• Code

§ Any bug that bothers you
§ Any feature that you can add

• User documentation
• Testing (CI, nightly)
• Usability
• Release engineering

We



Come join us!


