
Open MPI State of the Union XI
Community Meeting SC18

Jeff
Squyres

George
Bosilca

Edgar
Gabriel

Josh
Ladd

Interactive / Online / SC thingy
• Online question topic submission: Linklings
• BOF feedback form

https://www.open-mpi.org/sc18/

https://www.open-mpi.org/sc18/

Important dates:
Submission server opens: January 14th, 2019
Full paper submission: April 15th, 2019 (AOE)
Notification: July 1st, 2019
Camera-ready: August 5th, 2019 https://eurompi19.inf.ethz.ch

https://eurompi19.inf.ethz.ch/

Quick review

Open MPI versioning

Open MPI versioning
• Open MPI uses “A.B.C” version number triple
• Each number has a specific meaning:

This number changes when backwards
compatibility breaks
This number changes when new features
are added
This number changes for all other releases

A

B

C

Definition
• Open MPI vY is backwards compatible with

Open MPI vX (where Y>X) if:
§ Users can compile a correct MPI / OSHMEM

program with vX
§ Run it with the same CLI options and MCA

parameters using vX or vY
§ The job executes correctly

What does that encompass?
• “Backwards compatibility” covers several areas:

§ Binary compatibility, specifically the MPI / OSHMEM
API ABI

§ MPI / OSHMEM run time system
§ mpirun / oshrun CLI options
§ MCA parameter names / values / meanings

What does that not encompass?
• Open MPI only supports running exactly the

same version of the runtime and MPI /
OSHMEM libraries in a single job
§ If you mix-n-match vX and vY in a single job…

ERROR

Version Roadmaps

v2.1.x (End of Life)

v3.0.x (Prior stable)
• Release managers

§ Brian Barrett, AWS
§ Howard Pritchard,

Los Alamos National Lab

• Current release: v3.0.3
§ October 29, 2018
§ v3.0.4 expected Q1’19

• Maintenance mode
§ No new features for life of

series
• Major features

§ MPI_THREAD_MULTIPLE
support by default

v3.1.x (Prior stable)
• Release managers

§ Brian Barrett, AWS
§ Jeff Squyres, Cisco

• Current release: v3.1.3
§ October 29, 2018
§ v3.1.4 expected Q1’19

• Maintenance mode
§ No new features for life of

series
• Many usability features

over 3.0.x

v4.0.0 just released!

v4.0.x (Current stable)

• Release managers
§ Howard Pritchard,

Los Alamos National Lab
§ Geoff Paulsen, IBM

• Lots of bug fixes and
performance improvements

• Big changes:
1. Removed MPI-1 APIs not

prototyped in mpi.h by default
2. IB support now via UCX
3. ABI compatible with 3.x
4. MPIR usage deprecated

PSA: Stop using MPI-1 removed APIs!
• MPI_ADDRESS
• MPI_ERRHANDLER_CREATE
• MPI_ERRHANDLER_GET
• MPI_ERRHANDLER_SET
• MPI_TYPE_EXTENT
• MPI_TYPE_HINDEXED
• MPI_TYPE_HVECTOR
• MPI_TYPE_STRUCT
• MPI_TYPE_LB
• MPI_TYPE_UB
• MPI_UB
• MPI_LB
• MPI_COMBINER_HINDEXED_INTEGER
• MPI_COMBINER_HVECTOR_INTEGER
• MPI_COMBINER_STRUCT_INTEGER
• MPI_HANDLER_FUNCTION

• All of these were:
§ Deprecated in MPI-2.0 in 1996
§ Removed in MPI-3.0 in 2012

• All have easy replacements
§ See “Removed MPI

constructs” FAQ category
• open-mpi.org/faq/

§ Includes code samples
showing how to update your
code

https://open-mpi.org/faq/

PSA: Stop using MPI-1 removed APIs!
• MPI_ADDRESS
• MPI_ERRHANDLER_CREATE
• MPI_ERRHANDLER_GET
• MPI_ERRHANDLER_SET
• MPI_TYPE_EXTENT
• MPI_TYPE_HINDEXED
• MPI_TYPE_HVECTOR
• MPI_TYPE_STRUCT
• MPI_TYPE_LB
• MPI_TYPE_UB
• MPI_UB
• MPI_LB
• MPI_COMBINER_HINDEXED_INTEGER
• MPI_COMBINER_HVECTOR_INTEGER
• MPI_COMBINER_STRUCT_INTEGER
• MPI_HANDLER_FUNCTION

• NOT PROTOYPED IN v4.0.x
mpi.h BY DEFAULT
§ Applications using these removed

symbols will fail to compile
§ The symbols are in libmpi,

however (so ABI is preserved)
• Can use --enable-mpi1-

compatibility to restore the
removed mpi.h prototypes
§ This CLI option, prototypes, and

symbols will exist for all v4.0.x
releases

§ …but may disappear in a future
Open MPI release

InfiniBand support à UCX PML

• OpenUCX (openucx.org) is now
the preferred method for
InfiniBand support
§ You may need to download/install

OpenUCX before installing Open MPI

• By default, the openib BTL will
refuse to run on IB devices
§ Unless manually enabled by

setting the MCA param
btl_openib_allow_ib to 1

v4.0.x: RoCE / iWARP à openib BTL

• RoCE and iWARP devices
still default to the openib BTL
§ Can force the use of the UCX

PML for RoCE/iWARP:
§ mpirun --mca pml ucx --mca
osc ucx …

• RoCE and iWARP will likely
default to UCX in a future
release

Deprecation notice: MPIR
• MPIR interface is used internally to launch /

attach tools and debuggers
• The maintainer for Open MPI’s MPIR is retiring!
• Initially announced at SC’17 BOF:

§ Unless someone else takes over, this is the plan:
• Deprecation notice in NEWS in early CY2018
• User runtime warnings in mid/late CY2018 (v4.0.0)
• Removal in CY2019

REMINDER

George Bosilca
University of Tennessee

Threading, Collectives, Tools, Resilience

Threading support
Rank 0 Rank 1

Rank 2 Rank 3

Rank 4 Rank 5

Rank 6 Rank 7

Rank 8 Rank 9

th 0 th 0

th 1 th 1

th 2 th 2

th 3 th 3

th 4 th 4

Rank 0 Rank 1

40X
differ
ence

Higher better

process

thread

Threading support
th 0 th 0

th 1 th 1

th 2 th 2

th 3 th 3

th 4 th 4

Rank 0 Rank 1

~50%

~300%

~600%

Open MPI 4.0

Open MPI 4.0
(with different
communicators)

Open MPI 4.1
(with different
communicators)

Open MPI 1.10.7
MVAPICH

Intel MPI

Threading support
th 0 th 0

th 1 th 1

th 2 th 2

th 3 th 3

th 4 th 4
Rank 0 Rank 1

~45%

• Improvements:
§ Synchronization primitive
§ Unrestricted progress (protections

done at the lowest level)
§ Credit management
§ Requests memory management
§ Out-of-sequence management

(limited bypass)

~2%

~10%

~20%

~4%

P2P ~60%

MPI
WAITALL

(4)

MPI
WAITALL

(16)

MPI
WAITALL

(100)

MPI
WAITALL

(5)

PROGRESS

NETWORK
LAYER

PROGRESS

NETWORK
LAYER

PROGRESS

NETWORK
LAYER

PROGRESS

NETWORK
LAYER

Open MPI 4.0

Open MPI 4.0
(with different
communicators)

Open MPI 4.1
(with different
communicators)

Open MPI 1.10.7
MVAPICH

Intel MPI

SPC: Software Performance Counters
• Similar to PAPI counters but

exposing internal information
not available through other
means
§ Out-of-sequence messages, time

to match, number of unexpected,
instant bandwidth, collective bins

• Can be accessed via MPI_T,
PAPI SDE, or shared file via
PMIx plugins

Collective Communication
Non-root

Processes

Irecv(0) Irecv(1) Irecv(M-1)

set_Irecv_cb(0) set_Irecv_cb(1) set_Irecv_cb
 (M-1)

Irecv_cb(seg_id)

Irecv
(next_avail_seg) Done

set_Irecv_cb
(next_avail_seg)

Isend(seg_id, 1)Isend(seg_id, 0) Isend
(seg_id, child_num-1)

if has segs to
be received else

intermediate

leaf

a

b c

d e f

g

Synchronization Dependency:
• Segment independence

• Rebalance
• Decouple receiving of next

segment and sending of current
segment

• Child independence
• Decouple the data transfer

from different children

Data Dependency:
• same as previous

implementation.

Collective communications
• Dataflow collective: different algorithms

compose naturally (using a dynamic
granularity for the pipelining fragments)

• Architecture aware: Each level reshape
tuned collective to account for
architecture capabilities

• The algorithm automatically adapts to
network conditions

• Resistant to system noise

Collective Op

Collective Op

Collective Op

Collective Communication
Synchronization Dependency:
• Segment independence

• Rebalance
• Decouple receiving of next

segment and sending of current
segment

• Child independence
• Decouple the data transfer

from different children

Process location
Noise Reduction
Shared Memory
Hybrid Architecture

Collective Communication
Synchronization Dependency:
• Segment independence

• Rebalance
• Decouple receiving of next

segment and sending of current
segment

• Child independence
• Decouple the data transfer

from different children

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(m

s)
Intel MPI Cray MPI OMPI-default OMPI-adapt

0

5

10

15

20

25

30

35

40
30%

116%

41%

11%

33%

149%

59%

24%

Performance of Broadcast with CPU data varies by noise injection, MSG=4MB(Cori)

Intel MPI Cray MPI OMPI-default OMPI-adapt
0

5

10

15

20

25

30

35

16%
48%

25%

13%

24%
61%

35%

16%

Performance of Reduce with CPU data varies by noise injection, MSG=4MB(Cori)

no noise 5% noise 10% noise

Process location
Noise Reduction
Shared Memory
Hybrid Architecture

Collective Communication
Synchronization Dependency:
• Segment independence

• Rebalance
• Decouple receiving of next

segment and sending of current
segment

• Child independence
• Decouple the data transfer

from different children

Data Dependency:
• same as previous

implementation.
Process location
Noise Reduction
Shared Memory
Hybrid Architecture

Collective Communication
Synchronization Dependency:
• Segment independence

• Rebalance
• Decouple receiving of next

segment and sending of current
segment

• Child independence
• Decouple the data transfer

from different children

Data Dependency:
• same as previous

implementation.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(m

s) 0

5

10

15

20

25
Performance of Broadcast varies by MSG size on 8 nodes(32 GPUs)

1 2 4 8 16 32

Message Size (MB)

0

20

40

60

80

100

120

140

160

180
Performance of Reduce varies by MSG size on 8 nodes(32 GPUs)

MVAPICH OMPI-default OMPI-adapt

Process location
Noise Reduction
Shared Memory
Hybrid Architecture

PSG Cluster:
4*K40/node

FDR IB

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Tim
e(

ms
)

0

5

10

15

20

25

30
Performance of Broadcast varies by MSG size on 1K cores on Cori

64K 128K 256K 512K 1M 2M 4M
Message Size

0

5

10

15

20

25
Performance of Reduce varies by MSG size on 1K cores on Cori

Cray MPI
Intel MPI
OMPI-default
OMPI-adapt

Collective Communication

Resilience - User Level Failure
Mitigation (ULFM)
§ Move the underlying resilient mechanisms

outside ULFM/OMPI
• Failure detector and reliable broadcast in PMIx
• Used in OMPI ULFM and SUNY OpenSHMEM

§ ULFM 2.1 released
• Based on OMPI master (will remain in sync)
• Transition to integrate ULFM in OMPI master

§ Scalable fault tolerant algorithms demonstrated in
practice for revoke, agreement, and failure
detection (SC’14, EuroMPI’15, SC’15, SC’16)

B
a

n
d

w
id

th
 (

G
b

it
/s

)

Message Size (Bytes)

Shared Memory Ping-pong Performance

Open MPI
FT Open MPI

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M

L
a

te
n

c
y

 (
u

s
)

 0.5

 1

 1.5

 2

 2.5

 3

1 4 16 64 256 1K

Point to point performance
unchanged with FT enabled

Failure detector
(under 1/10 sec
heartbeat)

Edgar Gabriel
University of Houston

OMPIO

OMPIO
• Highly modular architecture for parallel I/O
• Key features:

§ Tightly integrated with the Open MPI architecture
(frameworks/modules, derived datatype handling,
progress engine, etc.)

§ Support for multiple collective I/O algorithms
§ Automatic adjustments of number of aggregators
§ Multiple mechanisms available for shared file pointer

operations
This work is funded in part by NSF grant SI2-SSI 1663887.

OMPIO
• New features:

§ Multi-threading support (Open MPI 3.1.0)
§ Better support for NFS file systems (Open MPI 3.1.1)

§ Support for CUDA GPU buffers (Open MPI 4.0.0)
§ New collective I/O component: vulcan (Open MPI 4.0.0)
§ Revamp of shared file pointer operations (Open MPI 4.0.0)
§ Support for more MPI I/O hints (Open MPI 4.0.0)

OMPIO file systems
§ Generic Unix FS (XFS, EXT4)
§ BeeGFS
§ Lustre

§ PVFS2/OrangeFS
§ NFS

vulcan collective I/O component
• Features:

§ Overlaps two internal iterations
of the algorithm

§ Uses asynchronous I/O (if
available)

§ Communication based on two-
sided (current release) and
one-sided operations
(upcoming release)

§ No data sieving

Joshua Ladd

Mellanox Update

UCX in Open MPI
• UCX PML replaces OpenIB BTL as the out-of-the-box network substrate for Infiniband fabrics in v4.x.

§ UCX GitHub – https://github.com/openucx/ucx
§ UCX now available in most Linux distros, will be in-box in the near future

• UCX transparently supports high-performance RDMA offloads:
§ Scalable reliable connections with DC transport (ConnectIB and higher)
§ MPI hardware tag matching offload (ConnectX-5 and higher)
§ Adaptive routing and out-of-order data placement (ConnectX-5 and higher)
§ GPU direct RDMA

• New in 2018:
§ Full GPU support on Nvidia (CUDA TL), and AMD (ROCM TL) GPUs.
§ Hardware-offloaded bitwise atomics, for OpenSHMEM v1.4.
§ Support for non-blocking memory registration.
§ Emulation layer for RMA/atomics over older hardware, shared memory, and TCP.
§ UCX OSC with multithreaded optimizations.
§ Multi-rail and HDR support.
§ Small message optimization with ConnectX-5 MEMIC.
§ Malloc hooks using binary instrumentation (BISTRO.)

https://github.com/openucx/ucx

HCOLL in Open MPI
• Designed for exascale systems, now targeting Machine Learning frameworks.
• Deployed in production on Summit and Sierra

§ SHARP based allreduce, barrier
§ Multicast based broadcast
§ Highly optimized shared memory collectives
§ Optimized multithreaded

• Features targeting Machine Learning Workloads
§ Collectives over GPU Memory

• SHARP small data reductions.
• SHARP large data reduction(HDR ConnectX-6 / Quantum switch.)
• Streaming reliable multicast for large data broadcast over GPU buffers.
• UCX/GPU memory scatter-reduce-allgather algorithm for large data reductions.
• Hierarchical GPU collectives.

§ Support for FP16 on Nvidia GPUs
• Reductions on the GPU device
• Reductions in the Switch.

OpenSHMEM v1.4 in Open MPI
• Available starting in Open MPI v4.0.0
• Contains many new features, allowing users to

manage much more flexibility in communication and
computation of OpenSHMEM programs
§ New feature list (specification 1.4, Annex G)

• Communication management routines (context object)
• Thread safety support
• Sync routines
• Test routines
• Calloc routine for symmetric objects
• Bitwise atomic operations

SHARP AllReduce Performance Advantages
1500 Nodes, 60K MPI Ranks, Dragonfly+ Topology

SHARP Enables Highest Performance

SHARP Performance Advantage for AI
• SHARP provides 16% Performance Increase for deep learning, initial results
• TensorFlow with Horovod running ResNet50 benchmark, HDR InfiniBand (ConnectX-6, Quantum)

16%

IBM Spectrum MPI

IBM Spectrum MPI
• IBM Spectrum MPI is a pre-built, pre-packaged version of community Open

MPI plus IBM value add components.
• Spectrum MPI is based on Open MPI release branches

§ SMPI 10.1.0 based on OMPI v2.0.x branch
§ SMPI 10.2.0 based on OMPI v3.0.x branch

• Supporting scalable application performance on a variety of HPC systems
including ORNL’s Summit and LLNL’s Sierra systems.
§ Improvements in MPI point-to-point, collective, and one-sided performance at all scales

IBM Spectrum MPI based on Open MPI

Open MPI

IBM Contributions

IBM Value Add
Collective Library, P2P/OSC Optimizations, Power Arch. Optimizations, Cluster Test

Tools, ISV/OEM models, CORAL JSM startup, enhanced LSF support, and more...

Community Contributions

Summary of Key Features
• Improved usability via command line options and packaging of tools

§ Interconnect selection (-tcp, -ibv, -pami), network selection (-netaddr rank:10.10.1.0/24)
§ Display table of interconnects used by your application
§ Supports multiple PMPI based tools both pre-packaged (e.g., Jumpshot by

using -entry mpe) & user defined libraries (-entry mpe,mylib)
§ $MPI_ROOT mechanism to quickly switch between different SMPI versions
§ Single install for multiple compilers (GNU, XL, PGI)

• Performance optimizations
§ Shared memory optimizations for POWER9 and PAMI cross memory attach
§ PAMI point-to-point and one-sided components support async. progress,

hardware tag matching, on-demand paging, hardware data gather/scatter,
dynamic tasking, POWER9 tunneled atomics, IB hardware atomics

§ CUDA IPC and GPU Direct support for Power Systems
§ libcollectives library of IBM tuned collective operations with the ability to

automatically chooses ‘best’ algorithm at runtime based on a variety of criteria.

$ mpirun -np 4 -prot –TCP ./hello
Host 0 [node01] ranks 0 - 1
Host 1 [node02] ranks 2 - 3

host | 0 1
======|===========

0 : shm tcp
1 : tcp shm

Connection summary:
on-host: all connections are shm
off-host: all connections are tcp

0/ 4) [node01] 61808 Hello, world!
1/ 4) [node01] 61809 Hello, world!
2/ 4) [node02] 10697 Hello, world!
3/ 4) [node02] 10698 Hello, world!

ARM Update

Arm Update
• Open MPI works on Arm!

§ https://developer.arm.com/products/software-development-
tools/hpc/resources/porting-and-tuning/building-openmpi-with-arm-compiler

§ https://developer.arm.com/products/software-development-
tools/hpc/resources/porting-and-tuning/building-openmpi-with-openucx

https://developer.arm.com/products/software-development-tools/hpc/resources/porting-and-tuning/building-openmpi-with-arm-compiler
https://developer.arm.com/products/software-development-tools/hpc/resources/porting-and-tuning/building-openmpi-with-openucx

Arm Update
• Active collaboration between LANL and Arm to

enable CI and MTT testing on Arm
§ Arm CI machines with InfiniBand hosted at HPCAC
§ Arm CI/MTT machines hosted at LANL

Brian Barrett & Raghu Raja

AWS & Open MPI

TCP Transport
• Improving network configuration support

§ Multiple IPs per network device (in master)
§ Differing number of interfaces
§ Complex routing configurations

• Multiple TCP connections between ranks
§ The btl_tcp_links MCA parameter had been

around for many releases, but had bit-rotted
§ Works for simple cases, expanding in future

CI Testing
• “Pull Request Build Checker” running in AWS
• 23 test builds for every PR, all but 3 run in AWS
• Working on accelerating test execution time

Ralph H. Castain
Joshua Hursey

PMIx in OMPI

Current State
• PMIx plays integral role today

§ Embedded for “simple install”
• OMPI 4.x à PMIx 3.x
• OMPI 3.x à PMIx 2.x

§ Symbol-shifted to avoid conflicts with application-
level bindings

• ORTE
§ Primary RTE for unmanaged environments

Future Directions
• PMIx as “First Class Citizen”

§ Direct use of PMIx functions
§ No more symbol shifting

• ORTE à PRRTE (pronounced: purr-tay)
§ Reduce RTE “cost” by sharing it with PMIx
§ PMIx-based tools PMIx BoF: Wed, 5:45-6:15pm

Focus: Application-level examples!
(https://pmix.org)

https://pmix.org/

Fujitsu Limited

MPI for the Post-K Computer
• Post-K MPI based on Open MPI

§ Work on A64FX (Armv8.2-A + SVE) and TofuD
§ Plan to use Open MPI v4.0 and PMIx v2.1

• Contribution to Open MPI from post-K MPI
§ Persistent collectives [see next page]

§ Datatype for half-precision floating point [early 2019]

§ Thread parallelization of pack/unpack [early 2019]
The post-K computer is underdevelopment by RIKEN and Fujitsu

Persistent Collectives in MPI-4.0
• Persistent collectives are in Open MPI 4.0.x
• Overlap computation & communication and

reduce communication initialization cost
• Use MPIX_ prefix because

standardization is not complete
• Performance is similar to

nonblocking collectives

MPIX_Bcast_init(
buf, count, ..., &req);

for (...) {
MPI_Start(&req);
// ... your computation
MPI_Wait(&req, &stat);

}
MPI_Request_free(&req);

(or MPI-3.2)

See man MPIX_Barrier_init for details

Guillaume Papauré

Atos | montblanc-project.eu | @MontBlanc_EU

Bull Open MPI

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement n� 671697

Performance oriented MPI
• Application performance

§ Hierarchical collectives optimizations (work done with University
Tennessee Knoxville [UTK])

§ Tuned for Bull eXascale Interconnect (BXI)
• portals4 offload: tag matching, rendezvous, non blocking collectives
• Tera-1000: 8256 nodes, 11.9 Pflops, 14th TOP500 (June 2018)

• MPI+X
§ Bull Hybrid Communication Optimizer

(currently Open MPI+OpenMP; other runtimes planned)
§ One sided notifications support in Open MPI OSC

User oriented MPI
• Ease of use

§ Hybrid MPI+OpenMP mpirun options
§ User parameters profiles
§ Collectives numerical reproducibility (work done with UTK)

• Fits with increasing HPC heterogeneity
§ ARM, x86_64, GPU+affinity
§ gcc, Intel compiler, ARM compiler
§ Supports all the way up through MPI_THREAD_MULTIPLE

Wrap up

Where do we need help?
• Code

§ Any bug that bothers you
§ Any feature that you can add

• User documentation
• Testing (CI, nightly)
• Usability
• Release engineering

We

Come join us!

