
Open MPI State of the Union
Community Meeting SC‘14

Jeff Squyres

November 19, 2014

Nathan Hjelm Laust Brock-Nannestad George Bosilca

Open_MPI_Init()

shell$ git log --reverse | head -n 5
commit 350564b9f381dfbdbe119f26585f07da6f4b9e8a
Author: Jeff Squyres <jsquyres@cisco.com>
Date: Sat Nov 22 16:36:58 2003 +0000

 First commit

Open_MPI_Current_status()

shell$ git log HEAD~1..HEAD
commit 34c156759ecde11c3bf6252050a14a9432c91405
Author: Howard Pritchard <hppritcha@gmail.com>
Date: Tue Nov 18 11:32:37 2014 -0700

 fix some compiler warnings in ras/alps

Open MPI 2014 membership

12 members, 34 contributors, 2 partners

We migrated (!)

•  The move was disruptive, but successful
§  We kept the entire history
§  All tickets
§  Kudos to Jeff and Dave

•  But hopefully worth it

Moved hosting to GitHub

•  Git
§  Encourage forks

•  Github
§  Social coding
§  Better collaboration tools

(discussion /
 code comment)

§  Easier to work with
individual patches /
contributions

Moved hosting to GitHub

•  SVN and Trac now in
read-only mode

•  Please file new bugs and
pull requests on GitHub

https://github.com/open-mpi/ompi/issues

Versioning scheme

•  Open MPI has 2 concurrent release series
§  “Tick / tock” versioning scheme
§  “Feature series” à v1.<odd>
§  “Super stable series” à v1.<even>

•  Both are tested and QA’ed
§ Main difference between the two is time

Development
master

Transition to super stable

v1.7
v1.7.1
v1.7.2

New features,
enhancements Ti

m
e

v1.8
v1.8.1 Bug fixes only

v1.8.4

…

Branch to create
Feature series

v1.9.0 …

v1.9 / v2.0
branch

Feature / stable series

v1.8 roadmap

•  1.8.4
§  …to be released very soon (hopefully) December 2014

•  v1.8.5
§  Likely to be another 1.8.x release containing minor bug fixes and

cleanup

What’s new in 1.8

•  OpenSHMEM is now part of Open MPI
•  Improve support for the MPI Fortran bindings
•  Improved CUDA support (non-blocking and

async)
•  Performance improvement for small messages

over blocking communications
•  Full MPI coverage in Java
•  Valgrind-friendly (!)
•  Added the new MPI 3.1 tool interface
•  Better startup and shutdown (PMIx)

v1.8 MPI conformance

•  Rock solid MPI 3.0 1.8

NB collectives ✔

Neighborhood collectives ✔

RMA ✔

Shared memory ✔

Tools Interface ✔

Non-collective comm. create ✔

F08 Bindings ✔

New Datatypes ✔

Large Counts ✔

Matched Probe ✔

1.6 à 1.8 gotchas

•  Mapping / binding / ranking
§  --map-by
§  --bind-to
§  --rank-by
§ New options: L1 cache, etc.
§ mpirun.1 man page is (finally) updated in 1.8.4

•  Hostfile: if you don’t say “slots=N”, Open
MPI autodetects

1.6 à 1.8 gotchas

•  Binding by default (!)
•  Launch on all available nodes at first

§  Except if you’re in an allocation and you –host
a,b,c, then you’ll only VM launch on a,b,c

•  Hetero topology: --hetero-nodes
§  To include alloc’ing different cores on different

servers
•  Be easy on MPI_THREAD_MULTIPLE support

1.8.x notable bug:
THREAD_MULTIPLE

•  MPI_THREAD_MULTIPLE was
accidentally enabled
§  Performance degraded
§  Particularly in shared memory latency

•  To be fixed in v1.8.4

v1.9 / v2.0 Series

v1.9 / v2.0 series

•  Release managers
§ Howard Pritchard, Los Alamos National Lab
§  Jeff Squyres, Cisco Systems, Inc.

v1.9 / v2.0 series

•  Version number changes
§  “v1.9.0” (vs. “v1.9”)
§  v2.0 – reflect the scope of changes across the

v1.9 series

v1.9.0 [tentative] timeline

January,
2015

• Branch for
v1.9 / v2.0
series

April,
2015

•  v1.9.0
feature
complete

July,
2015

• Release
v1.9.0

https://github.com/open-mpi/ompi/wiki/Releasev19

v1.9 removed features

•  Trim supported systems list in README
§ …maybe delete Solaris?

•  Cray XT legacy items
•  Outdated / orphaned plugins (i.e., deleted)

§ MX
§  “hierarch” collective setup

v1.9 / v2.0 MPI conformance

•  MPI-3.1 planned conformance for v1.9
series (not yet published)
§  Various errata, non-blocking I/O
§ Will be included in v1.9 series

•  MPI-4.0 …? (at least 2 years away)
§ Content far from certain
§  Too far off to make predictions
§ Will likely include portions of MPI-4 over time

Threads

•  MPI_THREAD_MULTIPLE
§  For real. Really.
§  Transport-specific

• …we’re flogging transport authors to make their
transport thread-safe

•  Asynchronous progress
§ …same flogging above applies

Open MPI I/O (OMPIO)

•  Research work from the University of Houston
•  Highly modular architecture for parallel I/O

§  Adaptability through MCA parameters

•  Selected OMPIO Highlights
§  Multiple Collective I/O algorithms supported
§  File view based automatic selection of collective I/O

module
§  Automatic adjustments of number of aggregators
§  Enhanced support for shared file pointer operations

This project is funded in part by NSF through grant SI2-SSE 1339763.

Open MPI I/O (OMPIO)

•  Deeply integrated with Open MPI
§  Derived data type optimizations
§  Main progress engine used for non-blocking I/O

operations
•  Already available in v1.7 / v1.8 series

§  But not the default

•  Significantly enhanced and stabilized version in
upcoming v1.9 series

This project is funded in part by NSF through grant SI2-SSE 1339763.

OMPIO frameworks overview
I/O

R
O

M
IO

OMPIO

fbtl
po

si
x

pv
fs

2

fcoll

dy
na

m
ic

-s
eg

m
en

t

fs

po
si

x

pv
fs

2

st
at

ic
-s

eg
m

en
t

in
di

vi
du

al

sharedfp

…

lo
ck

ed
fil

e

sm

ad
dp

ro
c

…

framework component

Tw
o-

ph
as

e
I/O

lu
st

re …

In
di

vi
du

al
 fi

le

pl
fs

This project is funded in part by NSF through grant SI2-SSE 1339763.

Extended Process
Management Interface (PMIx)

•  Collaboration between Intel and Mellanox
•  MPI job launch time is a hot topic!

§  Extreme-scale system requirements
§  30 second job launch time for O(106) MPI

processes
•  PMI and PMI2 have measureable

limitations at scale
§  Intent is to address these limitations in PMIx

PMIx: How does it work?

•  Client-server model – same as PMI / PMI2
§ Revamp API to minimize data exchanges

•  Support for:
§  Blocking and non-blocking collective

operations
§  Binary blobs – eliminates the need to slice/

encode/decode/reassemble “meta-keys”
§  Bulk “get” operations and prefetch through

shared memory

PMIx: How does it work?

•  Support for bulk collectives
à Well suited to applications with dense

connectivity
•  Support for point-to-point operations

à Ideal for applications with sparse connectivity
•  Hints intended to decrease the volume of

data exchanged globally
§ Global
§  Local
§ Remote

Status

•  Reference implementation in Open MPI 1.9
server side over ORTE
§  Can leverage high-speed interconnects via BTLs for

PMIx daemon operations
•  Work in progress:

§  Extract client-side into standalone library
à MPI implementation agnostic

§  Server implementations for SLURM and ORCM
à Used in direct launch scenarios – e.g. srun

High-level overview

High-speed
transport for
collective or

point-to-point
communication

Shared memory MPI Processes

usocket
Put blobs

Get pointers

Shared memory MPI Processes

usocket
Put blobs

Get pointers

Shared memory MPI Processes

usocket
Put blobs

Get pointers

Shared memory MPI Processes

usocket
Put blobs

Get pointers

Contribute or follow along!

•  https://github.com/open-mpi/pmix/wiki
•  Interested in learning more?

§ Mail Ralph Castain (Intel) or Josh Ladd
(Mellanox)

§  rhc@open-mpi.org
§  joshual@mellanox.com

Yalla PML

•  MXM (Mellanox Messaging Library) specific PML
§  Reduces software overheads, minimizes time-to-wire

•  Significantly outperforms OpenIB BTL in terms of
message rates
§  1.6x increase in message rate over OpenIB BTL (!)

•  Lowers latency as well

Performance

PML / MTL or BTL / Provider Latency
(microsec.)
osu_latency

Millions of
messages /sec
osu_mbw_mr

CM / MXM / Mellanox 1.14 4.9

Yalla / None / Mellanox
(Plugs directly into MXM)

1.08 7.3

OB1 / OpenIB / OMPI 1.11 4.5

Ivy Bridge 2.7 Ghz, Connect IB HCA

Large-scale job start
performance improvements

•  Collaboration between Mellanox and
Hewlett-Packard

•  Better internal hash table implementation
§  Significantly improves data retrieval time
§ Grows and shrinks dynamically
§ Reduces OMPI job start time at scale by ~20%

OpenSHMEM

•  Work done by Mellanox
•  Test kit released into open source:

§  https://github.com/openshmem-org/tests-mellanox
•  Added support for hardware atomics in ikrit SPML

§  For RC, DC
•  OSHMEM startup improvement

§  Added scalable algorithms for bootstrapping
•  OSHMEM collectives can use collectives from OMPI

COLL framework, e.g. FCA, HCOLL
§  Added a new SCOLL component “MPI”
§  --mca scoll_mpi_enable 1!

Open MPI and ZIH
Past, Present, and Future

Bert Wesarg
ZIH, TU Dresden

The Past

•  VampirTrace has been part of Open MPI
since Version 1.3
§ Committed to trunk January 2008

•  Supports MPI, multiple threading
paradigms, and CUDA

•  Only one major performance analysis tool

The other past

•  In 2009 the ZIH started participating to
build a new performance measurement
infrastructure, now named Score-P
§  http://score-p.org
§ Community driven
§ Governed by a consortium

• Writes profiles and traces in common data
formats (without recompiling)

•  Supported by multiple tools

The Present

•  New features in Open MPI:
§ MPI-3
§ OpenSHMEM

•  ..but VampirTrace is in maintenance mode
§ Does not support some of these new features

•  ZIH is major contributor to Score-P, in
particular the support for OpenSHMEM

The Future

• Score-P is a matured product
§  v1.0 in 2012
§  v1.3 in 2014

• Healthy and broad community
• Rapidly adopting new features

• Discussing integration with Open MPI

Advertisement

•  Visit ZIH at booth #2323

•  Score-P / Vampir talks

§  Today 1:30 PM

§  Tomorrow 10:30 AM and 1:30 PM

Open MPI: RMA support

Nathan Hjelm
LANL

RMA: current status

•  Fully support MPI-3 RMA as of v1.7.4
•  Full support for MPI datatypes
•  Uses point-to-point communication

components (PML) for off-node
communication

•  No asynchronous progress
§  Target must call MPI functions to progress RMA

communication

LA-UR-14-28952

RMA: what's next?

•  Use network RDMA and atomic operation
support
§  Lower overhead, asynchronous progress, etc.

•  This requires changes to the Byte
Transport Layer (BTL) in Open MPI

§  Adding support for network atomics (compare-
and-swap, fetch-and-add, etc)

§  Updating interface to better support RMA
operations

LA-UR-14-28952

RMA: performance

•  Early performance on Cray Gemini network

LA-UR-14-28952

 0.25

 1

 4

 16

 64

 256

 1024

 4096

20 25 210 215 220

La
te

nc
y

(µ
s)

Message Size (B)

Put latency

Open MPI osc/pt2pt
Open MPI osc/rdma

Cray SHMEM

RMA: wrap up

•  BTL changes in master this week
•  RMA optimizations will come later
• Will be available as part of the Open MPI

v1.9 / v2.0 release series

LA-UR-14-28952

Laust Brock-Nannestad

Technical University of Denmark

Exposing MPI Objects for
Debugging

Joint Work

•  Developed in collaboration with:
§  John DelSignore, Rogue Wave Software

§  Jeffrey M. Squyres, Cisco Systems, Inc.
§  Sven Karlsson, Technical University of

Denmark

§  Kathryn Mohror, Lawrence Livermore National
Laboratory

Lawrence Livermore
National Laboratory

Lawrence Livermore
National Laboratory

Motivation

•  Debuggers have limited insight into the MPI
runtime

•  “What’s going on inside this communicator?”
•  “Why did my program stall?”
•  Runtime experts can debug these problems, but:

§  Application developers are not system developers
§  Time consuming and MPI implementation dependent
§  Some existing debug support – Message Queue

Dumping

Contributions

•  Proposal from the MPI Tools Working Group:
§  Debugger ó MPI library interface for inspecting MPI

handles
§  MPI Handle Introspection

•  We implement the interface in Open MPI and a
development version of the TotalView debugger

•  We use the implementation to view MPI
communicator state from the debugger

Operation 1/8

Operation 2/8

Operation 3/8

Operation 4/8

Operation 5/8

Operation 6/8

Operation 7/8

Operation 8/8

Debugger ó MPI interface

•  Debugger and MPI implementation agnostic
•  MPI vendor provides a library

•  Debugger services library
§  Provides read access to application’s state

•  MPI library services debugger
§  Give debugger insight into runtime – introspection

Implementation

•  Command line interface to TotalView
•  Development version
•  Queries can be performed on MPI

Communicator handles

•  Demonstration follows

Demonstration

Demonstration

Demonstration

Demonstration

Demonstration

Demonstration

Demonstration

Demonstration

Demonstration

Demonstration

Demonstration

Conclusions

Conclusions
•  MPI handle introspection simplifies

debugging of MPI related problems
•  Developer gains insight into MPI runtime
•  Cross MPI runtime and debugger support
Future Work
•  Support for more aspects of MPI objects

§  Communicator topologies, Error Handlers, etc.

•  Support TotalView’s graphical interface
•  Allow flexible breakpoint/watch conditions?

University of Tennessee
LANL

Thread Multiple and Asynchronous
progress – take 2

Support for THREAD_MULTIPLE

•  Do we have it / Do we not have it (?)
§  We did not do it right

•  Reassess the costs/benefits
§  Cost of internal objectification
§  Minimize the matching logic protection overhead
§  Define requirements for the BTL (and other

components)
§  How to allow threads to collaborate while inside the

library?
§  Redo the wait/test support for multiple requests

One step further

•  Allow asynchronous progress
§ Major obstacle the PML

•  Ongoing experimentation of the design
proposal
§ UTK: BTL (tcp, sm)
§  LANL: BTL (ugni, vader)
§  ?: BTL(openib)
§ MTL work in progress

The TCP BTL (easy)

Vertical line = the
time to send a 128Kb
message

Sandia SMB – Host availability

Overlap on TCP with a 128Kb message

A difficult BTL (SM)

Overlap on SM with a 64Kb message

Sandia SMB – Host availability

Vertical line = the
time to send a 128Kb
message

University of Tennessee

Fault Tolerance

Fault Tolerance @ MPI level

•  User Level Fault Mitigation
§  http://fault-tolerance.org

•  Provide mechanism to MPI to gracefully survive
failures
§  Allow both soft and hard failures

•  Gained a lot of support from the user community
•  Implementation details

§  Fork of 1.6.4
§  Soon to migrate to the master

ULFM: API extensions to
“repair MPI”

•  Flexible:
§  Must accommodate all application recovery patterns
§  No particular model favored
§  Application directs recovery, pays only the necessary cost

•  Performance:
§  Protective actions outside of critical communication routines
§  Unmodified collective, rendez-vous, rma algorithms
§  Encourages a reactive programming style (diminish failure free overhead)

•  Productivity:
§  Backward compatible with non-FT applications
§  A few simple concepts enable FT support
§  Key concepts to support abstract models, libraries, languages, runtimes,

etc 80

User Level Failure Mitigation: a set of MPI interface
extensions to enable MPI programs to restore MPI
communication capabilities disabled by failures

Application Recovery Patterns

81

Revoke & Agreement

•  Cost in Log(n)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 110
 120

D
U

R
A

T
IO

N
 O

F
 A

G
R

E
E

M
E

N
T

 (
m

s)

NUMBER OF PROCESSES

R
e
fe

re
n
ce

 A
g
re

e
m

e
n
t

Two P
hase

 C
ommit A

gre
ement

Optimized Agreement

TI
M

E
(m

s)

MESSAGE SIZE (Bytes)

Revoke Time and Perturbation in Allreduce (np=128, IB20G)

Fault Free Allreduce
Fault Free [Min:Avg+Standard Dev.]
Revoked Allreduce
1st post-revoke Allreduce
1st post-revoke [Min:Avg+Standard Dev]
2nd post-revoke Allreduce
3rd post-revoke Allreduce

 0.1

 1

 10

 100

16 64 256 1K 4K 16K 64K 256K 1M 4M

Jeff Squyres
Cisco Systems, Inc.

Cisco work

OFIWG / libfabric

•  “Next generation verbs API”
§  Being developed by the OpenFabrics

Interfaces Working Group (OFIWG)
§  Anyone can participate

•  Charter:
§ Develop an extensible, open source

framework and interfaces aligned with upper-
layer protocols and application needs for high-
performance fabric services.

•  http://ofiwg.github.io/libfabric/

libfabric API

•  Linux implementation of the OFIWG APIs
§ Design documents: man pages
§  Implementation for Linux
§  https://github.com/ofiwg/libfabric

•  Similar structure to Linux Verbs API
§ Core + “provider” plugins for specific hardware

•  Different focus than Linux Verbs API
§ Hardware independent
§  App-centric (e.g., target MPI)

Cisco libfabric participation

•  Cisco ultra-low
latency Ethernet
§  usNIC (userspace NIC)
§  Initially written to Linux

Verbs
§  Now switching to

libfabric
YAY!!

Cisco libfabric participation

•  Contributed libfabric
provider Oct 2014

•  Published Open MPI
usNIC libfabric BTL
this past Monday
§  Branch on

https://github.com/
jsquyres/ompi

§  Still tweaking it a bit
§  Expected to go to

master “soon”

usNIC performance
Verbs vs. Libfabric (latency)

 1.9

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 0.1 1 10 100

T
im

e
 (

m
ic

ro
se

co
n
d
s)

Buffer size

Open MPI with usNIC: IMB PingPong Latency

imb-pingpong-ompi-1.8-verbs.out
imb-pingpong-ompi-1.8-libfabric.out

usNIC performance
Verbs vs. Libfabric (bandwidth)

 61000

 62000

 63000

 64000

 65000

 66000

 67000

 68000

 69000

 1e+06

B
a
n
d
w

id
th

 (
m

e
g
a
b
it

s/
se

co
n
d
)

Buffer size

Open MPI with usNIC: IMB SendRecv Bandwidth

imb-sendrecv-ompi-1.8-verbs.out
imb-sendrecv-ompi-1.8-libfabric.out

Picture says it all

Public service announcement

STOP USING mpif.h!

•  All modern Fortran compilers have strong

“use mpi” Open MPI support
§ Modern = Gfortran >= v4.9
§ Modern = any other Fortran compiler

Public service announcement

Change two lines of code

subroutine foo!
 implicit none!
 include ‘mpif.h’!
!
 integer :: a!
 …!

subroutine foo!
 use mpi!
 implicit none!
!
 integer :: a!
 …!

Public service announcement

Stop the madness

mpif.h

Open MPI sub-project
Ralph Castain

Intel Corporation

Open Resilient
Cluster Manager (ORCM)

Objectives

•  Extend to exascale and beyond
§  Launch 1M procs on 50k nodes in ≤ 30s thru MPI_Init

(current estimate: ~20s)
§  Support minimum of 100k nodes and 10M cores

•  Full featured
§  IO subsystem support (preload, burst buffers)
§  Application and environment monitoring

•  Analytics support both post-collection and distributed for in-
situ algorithms

§  Fabric management (QoS, topology info)
§  Checkpoint / restart (application and binary)

Objectives

•  Power management
§ Cluster power cap, job power specifications
§  Idle power, auto power-off configurations

•  Resilient
§  Failover across fabrics, across routes

•  Plug-in architecture
§  BSD licensed (Open MPI subproject)
§  Support proprietary plugins
§ On-the-fly updates

Contribute or follow along!

•  https://github.com/open-mpi/orcm/wiki
•  Interested in learning more, beta testing, or

contributing?
•  Mail Ralph Castain (Intel)

§  rhc@open-mpi.org

Fun fact

•  ORCM developers
use Docker to
simulate giant clusters
§  4 physical servers
§  512 simulated servers

•  Docker FTW!

Where do we need help?

•  Code
§  Soon: MPI_THREAD_MULTIPLE testing
§  Soon: Asynchronous progress testing
§ …any bug or feature that bothers you

•  Release engineering
•  User documentation
•  Usability
•  Testing

Researchers: how can we help you?

•  Fork OMPI on GitHub
•  Ask questions on the devel list
•  Come to Open MPI developer meetings

§ Next: January 27-29, 2015, Dallas, TX, USA
•  Generally: be part of the open source

community

Questions?

Come Join Us!

http://www.open-mpi.org/

