
Ralph Castain <rcastain@cisco.com> Cisco Systems, Inc.
Joshua Hursey <jjhursey@osl.iu.edu> Indiana University

Timothy I. Mattox <timattox@cisco.com> Cisco Systems, Inc.

There are many kinds of faults that can occur in an HPC or Internet Core
Router system. Some faults will effect an individual process while others may
disrupt an entire node or group of nodes. The ORTE code uses several
different techniques for detecting faults of various kinds. For application
processes that crash or otherwise unexpectedly exit, the local ORTE daemon
will receive and respond to the POSIX SIGCHLD signal generated by that
event. Several sensor modules can be configured to help detect other kinds of
faults, such as an application process consuming more memory than allowed,
or that a node's temperature is above a configurable threshold. Additional fault
detection techniques will be added as the project progresses.

A runtime environment should provide a range of recovery policy choices to
support higher level libraries and applications. The more flexible the runtime
policy the less restricted higher level implementations will be in the types of
resilient behavior options provided to the end users.

The Recovery Service (RecoS) framework implements a set of runtime policy
choices for how to recover the runtime environment in the event of the loss of
one or more processes. The four core policy components are:

- Abort: Upon failure, terminate the runtime environment
 and all dependent processes. This is the default to support
 MPI implementations in HPC.
- Ignore: Upon failure, stabilize the runtime and continue operating.
- Recover: Upon failure, automatically recover the lost process(es)
 from either the beginning of execution or from the last checkpoint,
 if available.
- Migrate: In anticipation of a failure (indicated by a fault prediction
 service or an end user), transparently move a set of processes
 from one set of nodes onto another.

 A Resilient Runtime Environment for HPC and Internet Core Router Systems

Core routers, with aggregate I/O capabilities now approaching 100 terabits/
second, are closely analogous to modern HPC systems (i.e., highly parallel
with various types of processor interconnects). Maintaining or improving
availability while continuing to scale demands integration of resiliency
techniques into the supporting runtime environments (RTEs). Open MPI's
Runtime Environment (ORTE) [7] is a modular open source RTE
implementation which we have enhanced to provide resilience to both HPC and
core router applications. These enhancements include proactive process
migration and automatic process recovery services for applications, including
unmodified MPI applications. We describe the distributed failure detection,
prediction, notification, and recovery components required for resilient
operations. During recovery, the fault topology aware remapping of processes
on the machine (based on the Fault Group model) reduces the impact of
cascading failures on applications. We present preliminary results and plans for
future extensions.

We are actively investigating a variety of future extensions, such as:
- Add more sensor components.
- Add fault prediction algorithms.
- Reduce memory footprint of ORTE daemons.
-  Implement support for the application driven fault tolerance standards
 that come out of the MPI Forum Fault Tolerance Working group [3].
-  Add a watchdog API to ORTE so that faults that result in an
 application hanging instead of exiting can be detected.
-  Investigate methods for applications to tell ORTE that one or more
 of its siblings seem to be faulty, allowing ORTE to kill off rogue
 processes in an orderly fashion.
- Add fault notifications to more external systems, such as the
 CIFTS Fault Tolerant Backplane (FTB) [2].

Recovering from faults in HPC environments becomes critical when the
application has real-time demands or the problem size and run time grow large
enough to intersect with the combined MTBF of the computing and storage
elements used. In either case, restarting such an application is an ineffective
response to faults. The required non-stop behavior of a large core router has
similar needs for recovery from process and element faults so as to prevent
service disruptions which would be caused if a router restart was required.

The software architecture described here, based on the Open MPI Runtime
Environment (ORTE), and augmented with support for fault management
allows for the development of redundant software applications which provide
additional system resilience for both HPC and core router systems.

[1] http://lammps.sandia.gov/

[2] R. Gupta, P. Beckman, H. Park, E. Lusk, P. Hargrove, A. Geist, D. K. Panda,
A. Lumsdaine and J. Dongarra. "CIFTS: A Coordinated infrastructure for Fault-
Tolerant Systems," International Conference on Parallel Processing (ICPP),
2009.

[3] MPI Forum Fault Tolerance Working Group.
http://meetings.mpi-forum.org/mpi3.0_ft.php

[4] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine. "The Design and
Implementation of Checkpoint/Restart Process Fault Tolerance for Open MPI."
DPDNS 07: 12th IEEE Workshop on Dependable Parallel, Distributed and
Network-Centric Systems. March 2007.

[5] J. Hursey, T. I. Mattox, and A. Lumsdaine. "Interconnect agnostic
checkpoint/restart in Open MPI." In HPDC ʼ09: Proceedings of the 18th ACM
international symposium on High Performance Distributed Computing, pages
49–58, New York, NY, USA, 2009. ACM.

[6] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L. Graham, and G. Bosilca.
"Analysis of the Component Architecture Overhead in Open MPI." In
Proceedings, 12th European PVM/MPI Usersʼ Group Meeting, Sorrento, Italy,
September 2005.

[7] R. H. Castain, T. S. Woodall, D. J. Daniel, J. M. Squyres, B. Barrett, and G.
E. Fagg. "The Open Run-Time Environment (OpenRTE): A Transparent Multi-
Cluster Environment for High-Performance Computing." In Proceedings, 12th
European PVM/MPI Usersʼ Group Meeting, Sorrento, Italy, September 2005.

The Open MPI Runtime Environment (ORTE) uses Open MPI's Modular
Component Architecture (MCA) system [6] that partitions the software into
frameworks, components, and modules. Each framework is dedicated to a
specific set of related functionality, such as process launch or resource
mapping. Each framework supplies a consistent API for invoking the desired
functionality, while hiding the complexity of each implementation. Specific
implementations are written as components which are then compiled into
modules for a given framework. Which set of modules that are used can be
selected at configure time, compile time, or run time as appropriate. The MCA
design provides flexibility while supporting good software engineering practices,
and allows the mixing of open source modules and closed source binary
modules.

For the purposes of resilience on HPC and Core Router Systems, we have
added or enhanced the following ORTE frameworks and components:

- Sensor Framework (process utilization, temperature, etc.)
- Recovery Service (RecoS) Framework
- Resilient Mapper Component
- ClusterManager Routed Component

Project support was provided by Cisco Systems, Inc., the United States
Department of Energy, National Nuclear Security Administration's ASCI/PSE
program and the Los Alamos Computer Science Institute; a grant from the Lilly
Endowment and National Science Foundation grants NSF-0116050,
EIA-0202048 and ANI-0330620.

Chase Cotton <ccotton@udel.edu> University of Delaware
Robert M. Broberg <rbroberg@cisco.com> Cisco Systems, Inc.
Jonathan M. Smith <jms@cis.upenn.edu> University of Pennsylvania

Although the project is still in the early stages of development, we have done
some preliminary performance tests as we get parts of the system functioning.
For a non-MPI application that is responsible for restoring its own state, our
system can restart an application process in approximately 6 milliseconds,
which includes the time taken by the fault group node selection logic run
remotely from the application's node. In comparison, a simple shell script loop
takes 3 milliseconds to restart a process locally on the same node, and an ssh
based restart takes about 80 milliseconds. These times were measured on an
18 node Linux PC cluster connected with Fast Ethernet.

For MPI task migration, we performed measurements on a Linux PC cluster at
Indiana University with an InfiniBand network. A 128 process LAMMPS [1]
application (metallic solid benchmark) simulating 13.5 million atoms was run
with an aggregate state of 6 GB distributed on 32 nodes. With preliminary non-
optimized code, we measured a factor of five reduction in overhead when
migrating four processes from a single node to another node, versus
checkpointing and restarting the entire 128 process application on 32 nodes.

Abstract Fault Detection Fault Recovery Future Extensions

Conclusions

References

Open RTE's Architecture

Acknowledgments

At this point in the project, only preliminary fault prediction code has been
written. However, it is clear that detecting temperature trends, supply voltage
changes, ECC memory events, disk/SSD media errors, etc. can give some
indication that a node is not healthy and applications running on it may soon
experience faulty behavior. An example fault prediction module would mark a
node as faulty when some number of application processes have crashed on
that node. Once this threshold is reached, the ORTE could preemptively
migrate any remaining processes to other node(s), as shown in the above
figure.

Fault Prediction

Preliminary Results
Fault Groups are user or system defined dependent nodes that are at greater
risk of spatially/temporally correlated failures (e.g., because they share a
common power supply). Upon recovery, processes are placed by the Resilient
Mapper in the least affected fault group, thus decreasing the likelihood of a
rolling or cascading failure. Fault groups affected by process failure may also
be subject to higher levels of fault monitoring.

Fault Groups

The transparent process migration and automatic recovery of unmodified MPI
applications is supported by the checkpoint/restart infrastructure currently
available in the Open MPI Runtime Environment [4,5].

The Recovery Service (RecoS) framework also provides a foundation for
implementing MPI application driven fault tolerance techniques. The MPI
interface standardization forum has created a Fault Tolerance Working group
[3] with the goal of defining the interfaces required for applications to
dynamically adapt to process failures in HPC systems. A resilient runtime with
flexible recovery policies is critical to supporting such an effort.

MPI Level Recovery Policy

