Why MPI Makes You <u>Scream!</u> And How Can We Simplify Parallel Debugging?

Jayant DeSouza, Intel Corporation Jeff Squyres, Indiana University

Goals of This BOF List what <u>we</u> think are the problems And some possible solutions Hear what <u>you</u> think are the problems Why are they problems for you? How do you solve them now? ...? Next steps

Jayant DeSouza

- ☐ Senior Software Engineer, Intel Corporation
 - Advanced Computing Center, Tools for petaflop architectures
- MPI tool implementer
 - Intel Message Checker

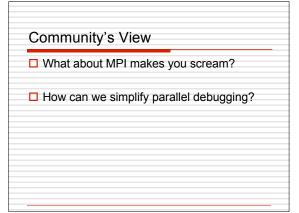
Classification of Errors in MPI Errors Synchronization Mismatch Resource Allocation Arguments Initialization Data Race Interprocess And yet, everyone uses MPI.

User Survey

State of the Tools Address Compile time lint tool for MPI? MPI-Check? printf/write is a difficult debugging model Requires many iterations to narrow down the error But: available on every system real easy to "install", "learn", and get started Debuggers Commercial ones may cost a lot (home equity loan) It's hard to scale debugging and debuggers Requires user to do the heavy lifting

State of the Tools Address Automated tools can help some Umpire, Marmot, MPI-Check, Intel Message Checker, NEC Collectives, MPICH2 collectives Still in infancy, but I believe it's the way to go A combination of tools would be best Why do users resist tools?

MPI Implementations □ No general test suite to validate/evaluate MPI implementations ■ Is ping-pong all that matters? □ Why won't users share their bad code? Hmmm, I wonder □ Should the standard be improved?


Summary Productivity is important Programming models and tools matter Is there a need for more than printf? What are the next steps? Professor, I left the printf in there because it fixed the bug.

Jeff Squyres Research associate, Indiana University MPI user (years ago) MPI implementer LAM/MPI Open MPI


Jeff's View: MPI Is Great / Horrible MPI does some things really well "6 function MPI" (2% of MPI!) Simple user models, simple MPI MPI does some things really poorly Doing complex things can be hard Datatypes can be great, but complex to setup Some of MPI-2 is... er... complex Performance portability can be... a challenge MPI implementations are not created equal

Jeff's View: User Problems Startup / compile problems "Dot" file issues / authentication Mixing compiler suites Mixing MPI implementations Run-time problems Simple message passing issues Assuming MPI implementation behavior Memory problems (buffer overflow, etc.) Heisenbugs Law of Least Astonishment

Jeff's View: User Solutions Three kinds of users: I'll do it myself (printf debugging) I can figure out the code (debuggers) I can refactor the algorithm (tracing/perf. tools) The parallel learning curve can be steep Many expect it to be identical to serial Not enough people use tools Not all tools are free ...but is there something better?

Conclusions We believe (but are biased): Use the tools! Users need to tell us what you want We want to hear the whacky ideas Sign up on the sheet to continue this discussion in e-mail

Horror Stories What horror stories do you have? What took forever to track down? How could MPI or a tool helped?

Scalability
☐ How many people run with: ■ 4, 8, 16, 32, 64, 256, 512,more processes ☐ What problems do you run into with
scalability? How can MPI or a tool help?

Multiple MPI Implementations

- How many people use the same application with different MPI implementations?
 - Do you have specific code paths for specific implementations? Why?
 - Is performance <u>always</u> the most important thing?
 - What other problems have you run into?

How do You Debug?

- ☐ How do you debug your parallel applications?
 - printf / trial and error
 - Performance / correctness / tracing tools
 - Serial debuggers
 - Parallel debuggers
 - Memory-checking debuggers
 - ...something else?

Do You Use MPI-2?

- What parts?
 - Dynamic processes
 - One-sided communication
 - MPI_THREAD_MULTIPLE
 - Extended collective operations
 - External interfaces
 - Parallel I/O
 - C++ / F90 bindings
- ☐ How well supported are these features?
- What is missing from MPI?

Do You Want / Need Heterogeneous?

- □ Architecture
 - Data size
 - Data layout (e.g., endian)
 - Processor type / speed
 - Multi-process or multi-thread?
- Multiple networks
 - Non-uniform networks