
1

Why MPI Makes You Scream!
And How Can We Simplify
Parallel Debugging?

Jayant DeSouza, Intel Corporation
Jeff Squyres, Indiana University

Goals of This BOF

 List what we think are the problems
 And some possible solutions

 Hear what you think are the problems
 Why are they problems for you?
 How do you solve them now?
 …?

 Next steps

Jayant DeSouza

 Senior Software Engineer, Intel
Corporation
 Advanced Computing Center, Tools for

petaflop architectures
 MPI tool implementer

 Intel Message Checker

Errors

Synchronization Mismatch

Call type

Arguments

Length

Deadlock

Data Race

Resource

Allocation

Initialization

Deallocation

Standard

Timing-dependent

Interface

Interprocess

Classification of Errors in MPI

And yet, everyone uses
MPI.

User Survey
State of the Tools Address
 Compile time lint tool for MPI?

 MPI-Check?

 printf/write is a difficult debugging model
 Requires many iterations to narrow down the error
 But:

 available on every system
 real easy to "install", "learn", and get started

 Debuggers
 Commercial ones may cost a lot (home equity loan)
 It's hard to scale debugging and debuggers
 Requires user to do the heavy lifting

2

State of the Tools Address

 Automated tools can help some
 Umpire, Marmot, MPI-Check, Intel Message

Checker, NEC Collectives, MPICH2 collectives
 Still in infancy, but I believe it’s the way to go

 A combination of tools would be best
 Why do users resist tools?

MPI Implementations

 No general test suite to validate/evaluate
MPI implementations
 Is ping-pong all that matters?

 Why won't users share their bad code?
Hmmm, I wonder

 Should the standard be improved?

Summary

 Productivity is important
 Programming models and tools matter

 Is there a need for more than printf?
 What are the next steps?

Professor, I left the Professor, I left the printf printf in therein there
because it fixed the bug.because it fixed the bug.

Jeff Squyres

 Research associate, Indiana University
 MPI user (years ago)
 MPI implementer

 LAM/MPI
 Open MPI

Jeff’s View: MPI Is Great / Horrible

 MPI does some things really well
 “6 function MPI” (2% of MPI!)
 Simple user models, simple MPI

 MPI does some things really poorly
 Doing complex things can be hard
 Datatypes can be great, but complex to setup
 Some of MPI-2 is… er… complex
 Performance portability can be… a challenge

 MPI implementations are not created equal

Jeff’s View: User Problems
 Startup / compile problems

 “Dot” file issues / authentication
 Mixing compiler suites
 Mixing MPI implementations

 Run-time problems
 Simple message passing issues
 Assuming MPI implementation behavior
 Memory problems (buffer overflow, etc.)
 Heisenbugs

 Law of Least Astonishment

3

Jeff’s View: User Solutions

 Three kinds of users:
 I’ll do it myself (printf debugging)
 I can figure out the code (debuggers)
 I can refactor the algorithm (tracing/perf. tools)

 The parallel learning curve can be steep
 Many expect it to be identical to serial
 Not enough people use tools

 Not all tools are free
 …but is there something better?

Community’s View

 What about MPI makes you scream?

 How can we simplify parallel debugging?

Conclusions

 We believe (but are biased):
 Use the tools!

 Users need to tell us what you want
 We want to hear the whacky ideas
 Sign up on the sheet to continue this

discussion in e-mail

Resources (Google for These)
 Correctness tools

 Umpire, Marmot, MPI-Check, Intel Message
Checker, NEC Collectives, MPICH2 collectives

 Tracing / performance tools
 Vampir, Intel Trace Analyzer, TAU,

MPE/Jumpshot, XMPI
 Debuggers

 FX2, Totalview, DDT, PGDBG
 Gdb, Valgrind, … other serial debuggers

 …and probably others!

Horror Stories

 What horror stories do you have?
 What took forever to track down?
 How could MPI or a tool helped?

Scalability

 How many people run with:
 4, 8, 16, 32, 64, 256, 512, …more processes

 What problems do you run into with
scalability?
 How can MPI or a tool help?

4

Multiple MPI Implementations

 How many people use the same
application with different MPI
implementations?
 Do you have specific code paths for specific

implementations? Why?
 Is performance always the most important

thing?
 What other problems have you run into?

How do You Debug?

 How do you debug your parallel
applications?
 printf / trial and error
 Performance / correctness / tracing tools
 Serial debuggers
 Parallel debuggers
 Memory-checking debuggers
 …something else?

Do You Use MPI-2?
 What parts?

 Dynamic processes
 One-sided communication
 MPI_THREAD_MULTIPLE
 Extended collective operations
 External interfaces
 Parallel I/O
 C++ / F90 bindings

 How well supported are these features?
 What is missing from MPI?

Do You Want / Need
Heterogeneous?

 Architecture
 Data size
 Data layout (e.g., endian)
 Processor type / speed
 Multi-process or multi-thread?

 Multiple networks
 Non-uniform networks

