
A Checkpoint and Restart Service Specification
for Open MPI

Joshua Hursey1, Jeffrey M. Squyres2, Andrew Lumsdaine1

Open Systems Laboratory, Indiana University
{jjhursey, lums}@osl.iu.edu

Cisco Systems, Inc.
jsquyres@cisco.com

Abstract. HPC systems are growing in both complexity and size, in-
creasing the opportunity for system failures. Checkpoint and restart tech-
niques are one of many fault tolerance techniques developed for such ad-
verse runtime conditions. Because of the variety of available approaches
for checkpoint and restart, HPC system libraries, such as MPI, seeking
to incorporate these techniques would benefit greatly from a portable,
extensible checkpoint and restart framework. This paper presents a speci-
fication for such a framework in Open MPI that allows for the integration
of a variety of checkpoint/restart systems and protocols. The modular
design of the framework allows researchers to contribute to specialized
areas without requiring knowledge of the entirety of the code base.

1 Introduction
As High Performance Computing (HPC) systems grow in both complexity and
size, they suffer from increased opportunity for system failures of various kinds.
In fact, IBM warns users of the Blue Gene/L supercomputer that “faults are
expected to be the norm rather than the exception” [11]. It is reasonable to
expect that this advice will soon apply to other HPC systems as well. To run
successfully on emerging large-scale platforms, HPC applications must become
robust enough to account for their adverse operating conditions.

Modern HPC applications generally rely on message passing libraries such as
the Message Passing Interface (MPI) for inter-process communication [10]. MPI,
in turn, depends upon a parallel runtime system to manage the launching and
coordination among processes in a parallel job. Fault tolerance should not (and,
in reality, can not) solely be the responsibility of the application. System libraries
such as MPI and its corresponding run-time environment can help account for
and adapt to failures.

Checkpoint/restart systems are used to provide system layer support for
checkpoint and restart fault tolerance techniques. These systems capture an im-
age (or snapshot) of a running process and preserve it for later recovery. Check-
point/restart coordination protocols generate a global snapshot of a parallel ap-
plication by taking the union of the individual snapshots accounting for the



global state of the parallel process [3,5]. Since the runtime system manages all
of the processes in a parallel job, it is well positioned to assist in the generation
of the global snapshots. There may be some state in a parallel application that
is difficult or impossible for a checkpoint/restart system to preserve, such as
shared memory regions, messages “in flight”, or socket connections to remote
machines. In many cases, this state is internal to an MPI implementation and
could be preserved (or otherwise accounted for) by an MPI implementation that
can interface with checkpoint/restart systems.

This paper presents a the requirements for the integration of checkpoint and
restart fault tolerance techniques into Open MPI [7]. It provides a simple API for
interacting with checkpoint/restart systems, and opportunity for incorporating
a variety of parallel checkpoint/restart protocols to create global snapshots.

2 Related Work

A checkpoint/restart system is responsible for saving the current state of a se-
quential process for later restart (e.g., if that process is terminated by a sys-
tem failure). Many checkpoint/restart system implementations are available,
such as: libckpt [12], the checkpoint/restart system integrated into Condor [9],
CRAK (Checkpoint/Restart As a Kernel module) [16], and BLCR (Berkley Lab’s
Checkpoint/Restart) [4]. These checkpoint/restart system implementations dif-
fer in many ways, including the method used to preserve the process state, how
the state is stored, how much of the process state is preserved, APIs, and com-
mand line interfaces.

Checkpointing and restarting distributed or parallel applications may re-
quire additional coordination between individual processes to create a consis-
tent checkpoint of the entire application. Coordinated and uncoordinated check-
point/restart protocols are two such methods [5].

A few MPI libraries have attempted to integrate fault tolerance techniques.
The techniques integrated range from user interactive process fault tolerance
(FT-MPI [6]) to network failures recovery (LA-MPI [8]). Other MPI implementa-
tions integrate checkpoint/restart techniques to save and restore the state of the
parallel application. Starfish [1] provides support for coordinated and uncoordi-
nated checkpoint/restart protocols. MPICH-V [2] uses an uncoordinated check-
point/restart protocol to incorporates checkpoint/restart systems with message
logging to account for process state. CoCheck [15] uses a coordinated check-
point/restart protocol and the Condor checkpoint/restart system.

However, many of these MPI implementations are tightly coupled with a spe-
cific checkpoint/restart system. LAM/MPI modularized its checkpoint/restart
approach and allowed support for integrating multiple checkpoint/restart sys-
tems to its code base [14]. But LAM/MPI only supports a coordinated check-
point/restart protocol, and therefore only supports the checkpoint and restart of
the entire parallel application. LAM/MPI also requires that checkpoint/restart
systems provide a notification to mpirun in order to initiate the checkpoint of
the parallel job.



3 Open MPI General Architecture
Open MPI consists of three abstraction layers that combine to provide a full fea-
tured MPI implementation, as illustrated by Fig. 1. Below the user application
is the Open MPI (OMPI) layer that presents the application with the expected
MPI specified interface. Below that is the Open Run-Time Environment (ORTE)
layer that provides a uniform parallel run-time interface regardless of system ca-
pabilities. Next is the Open Portable Access Layer (OPAL) that abstracts the
peculiarities of a specific system away to provide maximum portability. Below
OPAL is the checkpoint/restart system available for the operating system run-
ning on the machine.

Operating System

Checkpoint/Restart System

OPAL

ORTE

OMPI

User Application

Fig. 1. The layered design of Open MPI with respect to the user application
and checkpoint/restart system

Our checkpoint/restart work with Open MPI extends our previous work with
LAM/MPI [13]. We retain mpirun as the central checkpoint/restart coordina-
tion point between the user and the parallel application but also allow other
checkpoint mechanisms. The user is thus provided with a common reference no
matter how the parallel application is deployed. The framework proposed in this
paper is designed to allow any kind of application-level checkpointing scheme
(e.g., both coordinated and uncoordinated types of protocols can be used). Also,
Open MPI relaxes LAM/MPI’s requirement that the checkpoint/restart system
provide application-level notications when checkpoints occur. Instead, Open MPI
provides and coordinates these notifications internally.

Open MPI uses the Modular Component Architecture (MCA) to define the
OPAL Checkpoint and Restart Service (CRS) framework as a uniform API for
checkpoint/restart systems. The OPAL CRS design allows for checkpoint/restart
of MPI applications running on heterogeneous systems, even when multiple
checkpoint systems are employed.

4 Open MPI Requirements
Open MPI requires the ability to support multiple checkpoint/restart services
(e.g., BLCR, libckpt) and a variety of checkpoint/restart protocols (e.g., coor-
dinated, uncoordinated).



4.1 Checkpoint/Restart System
The checkpoint/restart system is responsible for accurately preserving and restor-
ing the state of a single process on a single machine. It may choose not to save
static data areas, such as the program text, in order to reduce the size of and
time taken to generate the checkpoint image(s).

Once the checkpoint/restart system has completed a checkpoint, it must pro-
vide Open MPI with a structure containing a reference to the checkpoint image
(or images) generated, denoted by the term snapshot reference in this paper. The
contents of the snapshot reference are determined by the checkpoint/restart sys-
tem.

4.2 Checkpoint/Restart Protocol
Open MPI uses the snapshot references from all of the processes to create a
global snapshot of the user application. The creation of the global snapshot is
determined by the checkpoint/restart protocol. By interacting with the snap-
shot references instead of the checkpoint/restart system specific files, the check-
point/restart protocol is abstracted from the underlying details of the check-
point/restart system. This enables Open MPI to combine snapshot references
from different checkpoint/restart systems into a single global snapshot, allowing
checkpoints on heterogeneous systems. Further, by using the global snapshot,
Open MPI could arrange for the migration of a single process or the storage
of the global snapshot to a remote server, without requiring knowledge of the
checkpoint/restart system used or how the checkpoint image(s) have been pre-
served.

Open MPI has some internal state that may not be accounted for by the
back-end checkpoint system, such as shared memory regions (which should only
be checkpointed by a single process, not all processes that share it) and network
connections (that will be stale upon restart). Higher-level algorithms must co-
ordinate between processes to capture a globally-consistent snapshot that either
excludes this kind of data or invalidates it upon restart.

5 Handling Checkpoint Requests
An external checkpoint request is generated by a supporting tool sending the
request to the mpirun command (see Section 7 for more details). Internal check-
point requests are generated by mpirun distributing the request to the target
parallel process. All of these processes handle the request by entering the OPAL
ENTRY POINT function, as illustrated by Fig. 2.

Checkpoint requests are handled by the OPAL ENTRY POINT function in
mpirun. Since different layers of the Open MPI hierarchy require the oppor-
tunity to prepare for and recover from a checkpoint, each layer can register an
intra-layer coordination callback function. This function is called before and af-
ter a checkpoint is taken by the ENTRY POINT function. By default the intra-layer
coordination callback function is set to the OPAL coordination routine. It is then
overridden by ORTE, and subsequently overridden by OMPI. Similar to POSIX
signal handlers, the overriding layer assumes responsibility for calling the coor-



O
M
P
I

O
R
T
E

O
P
A
L

co
o
rd
()

co
o
rd
()

co
o
rd
()

e
n
tr
y_
p
o
in
t(
)

Prepare for a Checkpoint Continue/Restart/Termination

Incoming 
checkpoint request

Checkpoint taken by checkpoint/restart system (OPAL_CRS_CHECKPOINT)

Acknowledge 
checkpoint completion

co
or

d
_

ca
ll

ba
ck

(C
K

P
T

)

or
te

_
co

or
d

(C
K

P
T

)

op
al

_
co

or
d

(C
K

P
T

)

re
tu

rn
...

re
tu

rn
...

re
tu

rn
...

or
te

_
co

or
d

(s
ta

te
)

op
al

_
co

or
d

(s
ta

te
)

re
tu

rn
...

re
tu

rn
...

re
tu

rn
...

co
or

d
_

ca
ll

ba
ck

(s
ta

te
)

Fig. 2. Illustration of Checkpoint Request Handling in Open MPI

dination routine that it has overridden. Therefore the OMPI layer intra-layer
coordination callback will call the ORTE layer intra-layer coordination callback
before returning. Further the ORTE layer intra-layer coordination callback will
call the OPAL layer intra-layer coordination callback before returning as illus-
trated by Fig. 2

When a checkpoint request arrives at a process, the OPAL ENTRY POINT
function first calls intra-layer coordination callback with the CHECKPOINT state
indicating that the layers are to prepare for a checkpoint.

Once the coordination function has finished, the OPAL ENTRY POINT initi-
ates the checkpoint by using the OPAL CRS CHECKPOINT function. Through Open
MPI’s component system, CHECKPOINT invokes the selected back-end check-
point/restart system to begin the process checkpoint. The return from the back-
end checkpoint function will either be in the same process from which the check-
point was initiated (known as the CONTINUE state) or will be in a new, restarted
process (known as the RESTART state). Specifically, restarted processes do not
start at main() – they simply “return” out of the back-end checkpoint function.
If the checkpoint request indicated that the process should terminate after the
checkpoint, then the notification routine changes the state to TERMINATE.

To allow the layers to recover from a checkpoint, the OPAL ENTRY POINT
function calls the intra-layer coordination callback again passing it the state
returned by the OPAL CRS CHECKPOINT function. Once the OPAL ENTRY POINT
function is finished, the user application either resumes normal execution, or if
the checkpoint request indicated that the application should terminate, exits the
application.



In Open MPI, the checkpoint/restart protocol is integrated into the ORTE
layer intra-layer coordination callback. This allows ORTE to coordinate as ap-
propriate with the other processes in the parallel application to generate the
global snapshot of it.

6 Checkpoint and Restart Service (CRS) Frame-
work

The OPAL CRS MCA framework provides a simple API (shown in Fig. 3) for
the Open MPI layers to interact with checkpoint/restart services. Every sup-
ported checkpoint/restart system creates a component of the CRS framework
containing checkpoint/restart system specific commands as to conform to it.
The OPAL CRS framework API extends the LAM/MPI API by removing the
requirement that the checkpoint/restart system must provide an application no-
tification upon a checkpoint. As such, Open MPI can support a wider variety of
checkpoint/restart systems and more platforms. By adding the CHECKPOINT and
RESTART functions to the API, this enables Open MPI to request a checkpoint
internally as well as still retaining support for user requested checkpoints via
command line tools (see Section 7 for more details).

int CHECKPOINT( pid_t pid,

snapshot_handle_t *snapshot,

int *state);

int RESTART( snapshot_handle_t *snapshot,

bool spawn_child,

pid_t *child_pid);

int DISABLE_CHECKPOINT( void );

int ENABLE_CHECKPOINT( void );

Fig. 3. OPAL CRS Framework API

The CHECKPOINT function initiates the checkpoint of a single process, identi-
fied by its PID, by calling the checkpoint/restart system’s checkpoint routine(s).
This function returns a snapshot handle t representing the snapshot reference.
This function also returns the state of the system following the checkpoint that
is used by the inter-layer coordination callbacks. The state is expected to be one
either CONTINUE or RESTART.

The RESTART function initiates the restart of a single process from a snapshot
reference by interacting with the checkpoint/restart system’s restart functional-
ity. The spawn child argument indicates whether the checkpoint system should
replace the current process image with the restarted process, or to spawn a child
process and return the PID of the child.

Finally, the DISABLE CHECKPOINT and ENABLE CHECKPOINT functions can be
used to surround critical sections of code where checkpoints should be disallowed
(e.g., during MPI INIT and MPI FINALIZE).



7 Supporting Tools
Open MPI requires support for user or system service (e.g., a batch scheduler) di-
rected checkpointing of MPI applications. Two command line tools are provided
for this purpose: ompi checkpoint and ompi restart.

To send a checkpoint request to mpirun, the user specifies the PID of the
application to the ompi checkpoint command:

shell$ ompi_checkpoint [OPTIONS] mpirun_pid

When this command completes, the user is presented with a string name refer-
encing the global snapshot that can be used to restart the parallel application.

To restart the parallel application (or a subset of processes from it), the
user specifies the global snapshot name to the ompi restart command, as seen
below.

shell$ ompi_restart [OPTIONS] global_snapshot_reference_name

8 Summary and Future Work
Checkpoint and restart techniques are one of many fault tolerance techniques
used by application developers. This paper presents an overview for integrating
checkpoint and restart systems into Open MPI. These systems can than be
used by upper-level protocols (such as in ORTE) to effect whole- or partial-job
checkpointing and restarting, different protocols for creating (and maintaining)
global snapshots, and whole- or partial job migration.

By logically separating the checkpoint of a single process from the checkpoint
of an entire job, adding support for a particular checkpoint/restart system is both
easy and orthogonal from complicated upper-layer protocols to effect parallel
checkpoints. Perhaps more importantly, it also allows third-party researchers to
continue studying checkpoint protocols independent of the back-end checkpointer
that is used, allowing their work to be applicable to a wide variety of systems.

The framework described in this paper has been implemented in Open MPI
and has integrated with BLCR and a “self” checkpointer (where user-level func-
tions are called to write and read critical process state to effect the checkpoint).
Support for more checkpointers will likely be added over time.

Future developments of this specification may include a protocol describing
the movement of the checkpoint image(s) referenced by a snapshot reference to
other machines, such as a checkpoint server. Other future developments may
involve extensions to the API to enable explicit checkpoint image garbage col-
lection requests, and explicit memory region inclusion and exclusion routines.
Such API additions are meant to shrink the memory requirements for archiving
or producing checkpoint images.

Acknowledgments
Special thanks to Brian Barrett for helping revise this paper. This work was sup-
ported by a grant from the Lilly Endowment and National Science Foundation
grants NSF ANI-0330620, CDA-0116050, and EIA-0202048.



References
[1] Adnan Agbaria and Roy Friedman. Starfish: Fault-tolerant dynamic MPI pro-

grams on clusters of workstations. Cluster Computing, 6(3):227–236, 2003.
[2] George Bosilca et al. MPICH-V: Toward a scalable fault tolerant MPI for volatile

nodes. In SC’2002 Conference CD, Baltimore, MD, 2002. IEEE/ACM SIGARCH.
pap298,LRI.

[3] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[4] Jason Duell, Paul Hargrove, and Eric Roman. The design and implementa-
tion of Berkeley Lab’s linux Checkpoint/Restart. Technical Report LBNL-54941,
Lawrence Berkeley National Laboratory, 2003.

[5] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM Comput.
Surv., 34(3):375–408, 2002.

[6] Graham E. Fagg and Jack Dongarra. FT-MPI: Fault tolerant MPI, supporting
dynamic applications in a dynamic world. In Proceedings of the 7th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, pages 346–353, London, UK, 2000. Springer-
Verlag.

[7] E. Garbriel et al. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,
2004.

[8] R. L. Graham et al. A network-failure-tolerant message-passing system for teras-
cale clusters. International Journal of Parallel Programming, 31(4), August 2003.

[9] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny. Checkpoint
and migration of UNIX processes in the Condor distributed processing system.
Technical Report CS-TR-199701346, University of Wisconsin, Madison, 1997.

[10] Message Passing Interface Forum. MPI: A Message Passing Interface. In Proc. of
Supercomputing ’93, pages 878–883. IEEE Computer Society Press, November
1993.

[11] Gary L. Mullen-Schultz. Blue Gene/L: Application Development. Technical Re-
port SG24-7179-01, IBM, December 1 2005.

[12] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent
checkpointing under Unix. Technical report, Knoxville, TN, USA, 1994.

[13] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine.
Checkpoint-restart support system services interface (SSI) modules for LAM/MPI.
Technical Report TR578, Indiana University, Computer Science Department,
2003.

[14] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine, Jason
Duell, Paul Hargrove, and Eric Roman. The LAM/MPI checkpoint/restart frame-
work: System-initiated checkpointing. International Journal of High Performance
Computing Applications, 19(4):479–493, Winter 2005.

[15] Georg Stellner. CoCheck: Checkpointing and process migration for MPI. In IPPS
’96: Proceedings of the 10th International Parallel Processing Symposium, pages
526–531, Washington, DC, USA, 1996. IEEE Computer Society.

[16] Hua Zhong and Jason Nieh. CRAK: Linux checkpoint/restart as a kernel mod-
ule. Technical Report CUCS-014-01, Department of Computer Science, Columbia
University, November 2001.


	A Checkpoint and Restart Service Specification for Open MPI
	 Joshua Hursey , Jeffrey M. Squyres , Andrew Lumsdaine  

