Building a Fault Tolerant MPI Application:
A Ring Communication Example

Joshua Hursey, Richard L. Graham
Oak Ridge National Laboratory Oak Ridge, TN USA 37831
Email: {hurseyjj,rlgraham} @ornl.gov

Abstract—Process failure is projected to become a normal
event for many long running and scalable High Performance
Computing (HPC) applications. As such many application devel-
opers are investigating Algorithm Based Fault Tolerance (ABFT)
techniques to improve the efficiency of application recovery
beyond what existing checkpoint/restart techniques alone can
provide. Unfortunately for these application developers the li-
braries that their applications depend upon, like Message Passing
Interface (MPI), do not have standardized fault tolerance seman-
tics. This paper introduces the reader to a set of run-through
stabilization semantics being developed by the MPI Forum’s
Fault Tolerance Working Group to support ABFT. Using a well-
known ring communication program as the running example,
this paper illustrates to application developers new to ABFT
some of the issues that arise when designing a fault tolerant
application. The ring program allows the paper to focus on
the communication-level issues rather than the data preservation
mechanisms covered by existing literature. This paper highlights
a common set of issues that application developers must address
in their design including program control management, dupli-
cate message detection, termination detection, and testing. The
discussion provides application developers new to ABFT with
an introduction to both new interfaces becoming available, and
a range of design issues that they will likely need to address
regardless of their research domain.

Keywords-MPI; Fault Tolerance; Algorithm Based Fault Tol-
erance; Run-through Stabilization

I. INTRODUCTION

Scientists use High Performance Computing (HPC) systems
to help solve complex scientific problems that cannot be solved
on more traditional computing systems. As these applications
run longer and scale further to address increasingly complex
scientific questions, they begin to exceed the reliability of a
given HPC system. Administrators of large HPC systems often
measure system reliability, in terms of mean time to failure
(MTTF), in days or weeks [1]. It is anticipated that future
exascale HPC systems will reduce the MTTF to minutes or
hours, further exposing the application to the risk of failure
during normal computation. Process failures, in particular, will
no longer be rare events, but normal events that the application
must be prepared to handle [2].

In light of this, applications are looking to augment (or
replace) their existing checkpoint/restart fault tolerance tech-
niques with more application focused, Algorithm Based Fault
Tolerance (ABFT) techniques to improve the efficiency of ap-
plication recovery after process failure. Unfortunately, many of
the software libraries that HPC applications depend upon are
not resilient enough to support ABFT. A library fundamental

to many HPC applications is the Message Passing Interface
(MPI) [3]. Applications are looking to the MPI standard for a
foundation of reliability from which they can develop ABFT
techniques. However, the MPI standard does not address how
an implementation should behave after a failure, except in the
default, abort case (i.e., MPI_ERRORS_ARE_FATAL). So
even if the application can find an MPI implementation with
reliability semantics, any changes they make to their code will
significantly reduce its portability to other HPC systems.

Another daunting challenge for application developers new
to the field of ABFT is the amount of both theoretical and
practical literature available that they must wade through to
understand the range of issues that they will likely encounter
during development. Even the practical literature often ob-
scures the communication-level design issues in order to fully
describe the high-level algorithmic design and data preserva-
tion mechanisms. This can lead an application developer to
overlook critical issues such as duplicate message handling
and termination detection.

This paper first introduces the reader to a set of run-through
stabilization semantics being developed by the MPI Forum’s
Fault Tolerance Working Group. Implementations of the pro-
posed interface, like the prototype used in this paper, will allow
portable fault tolerant applications and libraries to be built
using MPI. Using a well-known ring communication program
as the running example, this paper illustrates to application
developers some of the issues that arise when creating a fault
tolerant variant of their application. We demonstrate how to
design a ring program that is able to run-through the failure of
multiple processes during normal operation. Process recovery
is not addressed in this paper to focus the discussion on the
issues that provide the required stabilization functionality.

II. FAULT TOLERANT MPI SEMANTICS AND INTERFACES

The MPI Forum’s Fault Tolerance Working Group is
charged with defining a set of semantics and interfaces to
enable fault tolerant applications and libraries to be portably
constructed on top of the MPI interface. This paper focuses
on the run-through stabilization component of the developing
proposal which is being extended to include flexible recovery
strategies [4]. Run-through stabilization is sufficient for many
applications and is a necessary step for applications that
may require process recovery. The run-through stabilization
component of the proposal provides an application with the
ability to continue running and using MPI even when one

MPI_Rank_info {
rank, /* Rank in the communicator */
generation, /« Generation of this rank x/
state {
MPI_RANK_OK, /4« Normal running state x/
MPI_RANK_FAILED, /« Failed, not recognized */
MPI_RANK_NULL /* Recognized as failed +/

}
}

/x Local operations x/

MPI_Comm_validate_rank(comm, rank, rank_info);

MPI_Comm_validate(comm, incount, outcount,
rank_infos[]);

MPI_Comm_validate_clear(comm, count,

15 rank_infos[]);

6 /x Collective operation */

17 MPI_Comm_validate_all(comm, outcount);

18 MPI_Icomm_validate_all(comm, outcount, request);

O 0 N AN RN =

[T
A LW = O

Fig. 1: MPI Communicator Management Extensions

or more processes in the MPI universe fail. The proposal
assumes fail-stop process failure meaning that a process is
permanently stopped, often due to a crash [5]. For a discussion
on how transient failures should be handled by the MPI
implementation see the proposal [4]. Other types of faults not
currently addressed by the MPI standard (i.e, reliable message
delivery), like Byzantine failures [6], are left to the application
to address, as necessary.

For our discussion, we assume that the MPI implementation
provides the application with a view of the failure detector that
is both strongly accurate and strongly complete, thus a perfect
failure detector [7]. This means that eventually every failed
process will be known to all processes in the MPI universe
(strong completeness), and that no process is reported as failed
before it actually fails (strong accuracy). The application is
notified of a process failure once it attempts to communicate
directly (e.g., point-to-point operations) or indirectly (e.g.,
collective operations) with the failed process through the
return code of the function, and error handler set on the
associated communicator. This proposal does not change the
default error handler of MPI_ERRORS_ARE_FATAL, so the
application must explicitly change the error handler to, at least,
MPI_ERRORS_RETURN on all communicators involved in
fault handling in the application.

The subset of the new interfaces that relate to our discussion
are presented in Figure 1. The proposal and corresponding
prototype implementation in Open MPI [8] used in this
paper currently support all of MPI-1 functionality including
collective and group management operations. We are currently
extending both the proposal and prototype to support the
remainder of the MPI standard including parallel I/O and one-
sided operations.

The proposal is based in the principle that the application
should explicitly recognize process failures that affect them in

each communicator they intend to continue using. Unrecog-
nized process failures continue to throw errors when the failed
process is referenced, while recognized process failures have
MPI_PROC_NULL semantics and do not throw errors when
referenced.

A process can locally query for the state of an in-
dividual rank using the MPI_Comm_validate_rank func-
tion, or access an array of all failed ranks using the
MPI_Comm_validate function. A process can recognize
a set of rank failures locally on a specific communica-
tor using the MPI_Comm_validate_clear function. Local
recognition of the rank failure allows for the continued use
of point-to-point operations with the specified ranks, but
not collective operations. Additionally, a process can col-
lectively recognize all failures in a communicator by using
the MPI_Comm_validate_all function. The collective val-
idate function returns the total number of failures in that
communicator as agreed upon by all of the alive processes
in the communicator, and re-enables collective operations on
that communicator. This function will return either success
everywhere or some error at each alive rank. This means
that the MPI_Comm_validate_all function provides the ap-
plication with an implementation of a fault tolerant consensus
algorithm [9]. Failures are recognized on a per-communicator
basis to guarantee that libraries are able to receive notification
of the failure, even if the main application has previously
recognized the failure on a duplicate communicator.

The MPI_Rank_info object is used by the validate func-
tions to express the rank, generation, and state of a specific
process. The rank field indicates the rank in the asso-
ciated communicator. The generation field is a mono-
tonically increasing number that is used to distinguish be-
tween multiple recovered versions of a process. Since we
are only concerned with run-through stabilization in the pa-
per, this field will not be used. The state field indicates
which one of the three states that the rank is in. The
MPI_RANK_OK state indicates that the rank is running
normally. The MPI_RANK_FAILED state indicates that the
rank has failed, and not yet been recognized by this process
on this communicator. The MPI_RANK_NULL state indicates
that the rank has failed, and has been recognized by this
process on this communicator.

As previously mentioned, the application is notified of
a process failure once it attempts to communicate directly
or indirectly with the failed process. Direct point-to-point
communication with non-failed ranks behaves normally even
if there are unrecognized process failures in the communicator.
If a rank tries to communicate directly with an unrecognized
failed rank then the function will return an error in the class
MPI_ERR_RANK_FAIL_STOP. If a rank posts a receive to
MPI_ANY_SOURCE (an indirect communication) and there
is an unrecognized failed rank then the function will return an
error in the class MPI_ERR_RANK_FAIL_STOP.

Once any rank fails in a communicator, all col-
lective operations will return an error in the class

MPI_ERR_RANK_FAIL_STOP until the communicator is

1 int P, Pgr, me, size, Proot;

2 MPI_Comm MCW = MPI_COMM_WORLD;
3 int main() {

4 int value;

5 MPI_Init();

6 MPI_Comm_size(&size, MCW);

7 MPI_Comm_rank(&me, MCW);
8
9

Pr = (me + 1)%size;
10 Pr=(0==me ?size — 1: me — 1);

11 Proot = 05

12

13 for(i = 0; i < max_iter; ++i) {
14 if(Proot == me) {

15 value = 1;

16 MPI_Send(value, Pg);
17 MPI_Recv(value, Pr);
18 } else {

19 MPI_Recv(value, Pr);
20 value++;

21 MPI_Send(value, Pg);
22 }

23}

24 MPI_Finalize();

25 }

Fig. 2: Traditional fault unaware ring application.

repaired using the collective MPI_Comm_validate_all func-
tion. This requirement allows the MPI implementation an
opportunity to re-optimize collective operations for improved
performance after the failure. Once the communicator has been
collectively validated, then recognized failed ranks participate
as if they were MPI_PROC_NULL (see [4] for more details).
In order to preserve failure-free performance of collective
operations, the working group decided to not require consistent
return codes from collective operations (with the exception of
MPI_Comm_validate_all). For example, if the MPI imple-
mentation uses a tree implementation for MP|_Bcast then it
is possible for a process to successfully leave the collective
early once it has propagated the message to its children.
However, a failure may occur while traversing the remainder
of the tree that would cause some processes to return error.
The MPI_Comm_validate_all function is useful in creating
recovery blocks for sets of collective operations [10].

III. NEIGHBOR BASED COMMUNICATION: RING

Usually the first point-to-point MPI program that a student
creates is a ring program. This program receives a message
from the left rank and sends it to the right rank usually
changing the buffer slightly before sending it along. Figure 2
presents pseudo code for such a program, which is also used
for some latency benchmarks. The ring application example
allows us to focus the reader on the communication-level
design issues rather than issues related to, for example, data

1 int Pr, Pgr, me, size, Proot, In=1, Tp=2;

2 int cur_marker = 0;

3 MPI_Comm MCW = MPI_COMM_WORLD;
4 struct ring_msg_t {int value; int marker};

5 int main() {

6 ring_msg_t buffer;

7 MPIL_Init();

8 MPI_Comm_size(&size, MCW);

9 MPI_Comm_rank(&me, MCW);

10 MPI_Comm_set_errhandlerMMCW,

11 MPI_ERRORS_RETURN);
12 Pr = to_right_of(me);

13 Pr = to_left_of(me);

14 Pproot = get_current_root();

15 for(i = 0; i < max_iter; ++i) {

16 if(Proot == me) {

17 buffer.marker = cur_marker = i,
18 buffer.value = 1;

19 FT_Send_right(buffer);
20 FT_Recv_left(buffer);
21 1 else {

22 FT_Recv_left(buffer);
23 buffer.value++;

24 FT_Send_right(buffer);
25 cur_marker++;

26 }

27}

28 FT_Termination(buffer);
29 MPI_Finalize();
30 }

Fig. 3: Fault tolerant ring application (main function).

preservation, as in other ABFT literature mentioned in Sec-
tion IV.

Figure 3 presents a modified version of the original code
which hides some of the fault tolerance complexity in the
supporting functions. The first change on Line 10 is to replace
the default error handler of MPI_ERRORS_ARE_FATAL with
MPI_ERRORS_RETURN for MPI_COMM_WORLD.

Next, the application needs to determine the left and right
neighbors of a given process (named Pr and Ppgr, respec-
tively for rank P). The previous calculation for the left
and right neighbors (seen in Figure 2 on Lines 9-10) must
be checked to ensure they return active ranks. This check
prevents the application from interacting with a rank that
is already known to be failed, thus wasting effort. Figure 4
presents the new neighbor calculation functions that uses
the local MPI_Comm_validate_rank function to skip
known failed ranks in the communicator. For this example,
we assume that the root process (Proot) does not fail, and the
get_current_root function always returns 0. Removing
this limitation is discussed in Section III-D.

Next, we turn our attention to the FT_Send_right and
FT_Recv_left functions. In the FT_Send_right func-

1 int to_left_of(int n) {

2 MPI_Rank_info rs;

3 do{

4 n=(0==n?size — 1:n — 1),

5 MPI_Comm_validate_rank(MCW, n, rs);
6 } while(MPI_RANK_OK != rs.state);

7 if(me == n) { MPI_Abort(MCW, —1); }
8§ return n;

=)

}

10 int to_right_of(int n) {

11 MPI_Rank_info rs;

12 do {

13 n = (n + 1)%size;

14 MPI_Comm_validate_rank(MCW, n, rs);
15} while(MPI_RANK_OK != rs.state);

16 if(me == n) { MPI_Abort(MCW, —1); }
17 return n;

18}

Fig. 4: Fault aware right and left neighbor selection.

1 int FT_Send_right(ring_msg_t buffer) {
2 do {

3 failed = false;
4 if(MPI_SUCCESS != MPI_Send(buffer, T, Pr)) {
5 failed = true;
6 Pr = to_right_of(PR);
7}

8} while(failed);

9 return MPI_SUCCESS;

Fig. 5: Fault tolerant send to right neighbor.

tion (seen in Figure 5) the application attempts to send the
buffer to Pg. If this fails then it chooses the next alive rank
that is to the right of Pr and attempts to resend the message.
It continues this until either the function successfully sends the
message, or finds itself alone in the communicator and calls
MPI_Abort.

A first attempt at the code for the FT_Recv_left
might mirror the technique used for FT_Send_right. The
FT_Recv_left function would attempt to receive from Pr,
and, upon failure, search for the next left neighbor and repost
the receive. This version of the function may seem correct,
but consider the scenario seen in Figure 6 where P; sends to
P, and P, fails after receiving the buffer but before sending
the buffer onto Ps;. Ps will re-post the receive to P, but P;
is already waiting for the next iteration of the ring and does
not yet notice the failure of P». The result is that the parallel
program hangs waiting for progress in the ring that will never
occur because the control was lost with P,. The question is
how do we get P, to notice P, failed in order to resend the
buffer to Ps, while still waiting for the next buffer from Fy?

Recv®

Po
ﬁd‘ >
P 1 Recv? Recv? >
Send”
P, Recv'

Failed(le)
1 Recv'
]

Recv?
P3

>

Fig. 6: Using the receive function modeled after the
FT_Send_right function (seen in Figure 5), the application
hangs when P, fails after receiving the message from P;, but
before sending it to Ps.

3,1
Faileq(P,)
P, R°72\§ g2 mo | o
S= ?\‘83
\
1,3 \
P, \
\
Failed(P,) \
R2’0 [} R1 q
P3 | SO>

Fig. 7: Using the receive function from Figure 9, P; notices
the failure of P» and resends the message to Ps.

A. Using MPI_Irecv as a Failure Detector

To solve the problem with the FT_Recv_left function
illustrated by Figure 6, we take advantage of the new semantics
of the MPI receive operation. If a peer fails then all posted
MPI receive operations involving that peer will return an error
in the class MPI_ERR_RANK_FAIL_STOP. So we can use
this semantic and MPI_lrecv to detect if the right peer fails
even while waiting for the next ring buffer from the left peer.

Figure 9 presents a version of the FT_Recv_1left function
that uses an MPI_ Trecv posted to the Pr as a fault detection
mechanism. Since Pr will never send a message backwards
in the ring, the only time this request will complete is if Pg
fails. If we determine that Pp fails then we find the next, right
neighbor and resend the last buffer sent. If Py, fails then we
just repost to the next, left neighbor and wait for it to resend
the last buffer, as seen in Figure 7.

Without Lines 24-28 in Figure 9, there is a problem with
this version of FT_Recv_1left. As illustrated in Figure 8, it
is possible that the resend will trigger duplicate messages in
the ring. In this example, P, sends to P», which then sends
to P3. P, fails as P sends to Py. P; notices the failure of
P; and resends the buffer to Ps;. P already forwarded on the
original buffer when it receives a resent buffer. Since both the
normal and resent buffers arrived on the same tag, Ps is unable

3.1
Py~ .
ox ozFai|ed('P2) 0,3
B B R
P 'S >
\
\
P ‘\
2 \
‘\
I
2,0 iR
P, B B >
3 sV Faidarp,) Vs0

Fig. 8: Using the receive function from Figure 9, Ps receives
the same message twice (once from P, before it fails, and from
P, as a resent message). This causes the iteration to complete
twice, when there is no control for duplicate messages.

to distinguish them and forwards the resent buffer incorrectly
thinking it is from the next iteration of the ring. Duplicate
messages like this would lead to multiple completions of the
same ring iteration.

B. Controlling for Duplicate Messages

There are a couple of ways to address the problem illustrated
by Figure 8 regarding duplicate messages. We could use
a separate tag for the resend communication and post two
receives to Pr, (or one receive using MPI_ANY_TAG). By
using a different tag for normal messages and resending,
we create two different communication contexts, so messages
between these two contexts may be received out of order. For
our ring example, this does not impact correctness, but it may
for other applications using neighbor based communication.

As an alternative, we can use the same communication
context (i.e., same tag, communicator, and peer) and piggyback
an iteration marker on the buffer to allow us to detect and drop
duplicate, already processed messages. The iteration marker
would indicate the current ring iteration, seen in Figure 3 on
Lines 17 and 25.

Line 17 of Figure 3 adds the ring iteration marker to the
buffer before being transferred among the ranks. A non-root
process will increment the iteration marker after it passes
along the buffer, seen on Line 25. This will allow it to
distinguish between resent and normal buffers when it waits
in the modified FT_Recv_left function seen in Figure 9
on Lines 24-28. This isolates each iteration as a context of
communication.

Figure 10 illustrates how this receive variant avoids dupli-
cate message transmission. Upon a successful receive from
Py, the process checks the iteration marker field of the buffer.
If the iteration marker is less than the current generation,
then this is a resent message from the last ring iteration and
this process has already passed the buffer onto Pr and can
disregard this buffer. If the iteration marker is equal to the
current iteration, then this is a resent message for the current
ring iteration and this process will need to forward it along
to Pr as normal. If the iteration marker is greater than the

1 int FT_Recv_left(ring_msg_t buffer) {

2/ For normal ring messages */

3 MPIL_Irecv(buffer, Pr, T, &req[Idxn]);

4 /x Use MPI to detect when we need to resend +/
5 MPIL_Irecv(NULL, Pg, Ty, &req[ldzr]);

6 do {

7 failed = false;

8 ret = MPI_Waitany(2, req, &idx, &status);

9 if(MPI_SUCCESS !=ret) {

10 failed = true;

11 if(idx == Idxp) {

12 /% Our right peer failed, resend message */
13 Pr = to_right_of(PRr);

14 FT_Send_right(buffer);

15 MPI_Irecv(NULL, Pgr, Ty, req[ldzr]);
16 } else {

17 /x The left peer has failed. Try to get the
18 * buffer from the nearest left peer.

19 */

20 Pr, = to_left_ of(Pr);

21 MPI_Irecv(buffer, Py, T, req[Idxn]);
22 }

23 }

24 else if(buffer.marker < cur_marker) {

25 /% Disregard if message is from previous round */
26 failed = true;

27 MPI_Irecv(buffer, Py, Ty, req[ldzn]);

28 }

29 } while(failed);

30 return MPI_SUCCESS;

W
=
——

Fig. 9: Fault tolerant receive from left neighbor.

current iteration, then this message has been received out of
order which will never happen. This will never happen since,
as seen in Figure 10, Ps would have had to pass control to
Py in order for P; to send it a future iteration (unless P; is
Byzantine faulty, which is a failure mode not addressed here).

C. Termination Detection

The current ring program is able to run-through multiple,
non-root process failures by recovering the ring topology in a
local manner. There is one final issue to address, termination
detection. In a failure free program all ranks know when
the ring operation is finished by counting locally how many
times they have participated in the ring operation. Once this
number has reached a predefined limit all ranks rendezvous in
MPI_Finalize.

In a fault tolerant ring program once a process finishes
propagating the last iteration of the ring, it must still stick
around to make sure that the ring finishes by resending
the buffer as necessary. So how does the algorithm tell all
processes that it is time to stop watching their Pr neighbor
and call MPI_Finalize?

R3’1
X Failed(P,)
0,2 02| | RO3
P. B R R 3R >
NS
\
\
\
\
\
\
\
, \Discard
1IRT\| Msg.

sN Faidap,) S0

Fig. 10: By using the iteration marker to discard duplicate
messages during the receive (seen in Figure 9) the ring
iteration is able to complete without duplicating messages.

One may think to use MPI_Barrier to determine when all
processes have arrived at the end of the program. However,
this is not sufficient for two reasons. First, MPI_Barrier is
a blocking operation so an MPI_Ibarrier (scheduled to be
included in the MPI 3.0 standard) would need to be used
in order to progress the resend messages to Pg. Secondly,
the return value from the barrier operation is not guaranteed
to be consistent across all processes. So some processes may
receive success and others an error if a process fails during
the barrier operation. It is be possible to use multiple calls
to MPI_Ibarrier to determine if all processes entered the
first barrier by inspecting combinations of return codes, but
this comes at considerable cost in both performance and
complexity of the application program.

If we assume that the root process (Proot) cannot fail, then
we can have Pg,,; broadcast out a special termination message
to all alive processes. Concurrently all non-root processes
will be waiting in a receive from Pgr,,; (for termination)
and Pr (for resending). If Ppr,o+ fails, then the remaining
alive processes will call MPI_Abort since root failure is not
supported. Figure 11 presents the pseudo code for this type of
termination detection (called in Figure 3 Line 28).

D. What if the root fails?

Up to this point we have assumed that Pg,,; does not fail.
So what would happen to our algorithm if the root process
fails during either the main ring portion or the termination
detection portion of the application?

First a new Ppr,,; must be chosen by all alive processes.
Figure 12 presents a simple leader election algorithm that
determines the new root by choosing the lowest rank among
all the alive processes in the communicator. For the termi-
nation detection function instead of aborting the application
when the root fails, a new root should be chosen and will
resume broadcasting the termination message. However, such
reliable broadcast algorithms are delicate to implement, es-
pecially when attempting to improve the scalability of the
algorithm [11], [12], [13], [14].

So instead of incorporating the complexity of a reliable
broadcast algorithm into our application, we can use the fault

1 int FT_Termination(buffer) {

2 if(me == PRroot) {

3 foreach P; in Py n {

4 ret = MPI_Send(NULL, T, P;); /* Ignore fail.+/
s}

6 }else{

7 do{

8 /* For termination message */

9 MPI_Irecv(t_buff, Proot, I, reqldzn]);

10 /x Use MPI to detect when we need to resend */
11 MPI_Irecv(dummy_buff, Pr, T, req[ldzr]);

12 do {

13 failed = false;

14 ret = MPI_Waitany(2, req, &idx, &status);

15 if(MPI_SUCCESS !=ret) {

16 failed = true;

17 if(idx == Idxp) {

18 /* Our right peer failed, resend message */
19 Pgr = to_right_of(PRr);
20 FT_Send_right(buffer);
21 MPI_Irecv(dummy_buff, Pr, T, req[ldzr]);
22 } else {
23 /% Root failed, Abort */
24 MPI_Abort(MCW, —1);
25 }
26 }
27

28} while(failed);
29 return MPI_SUCCESS
30 }

Fig. 11: Fault tolerant termination detection function. With
both the non-root fault tolerant and root fault tolerant versions.

1 int get_current_roox() {

2 MPI_Rank_info rs;

3 for(n = 0; n < size; ++n) {

4 MPI_Comm_validate_rank(MCW, n, rs);
5 if MPI_RANK_OK == rs.state) {

6 return n;

7}

s)

9 MPI_Abort(MCW, —1);

10 return n;

1}

Fig. 12: Leader Election Algorithm

tolerant consensus algorithm provided by the MPI implemen-
tation (i.e., MPI_Comm_validate_all). Since we still need to
progress the ring, we must use the non-blocking form of the
function, MPIl_lcomm_validate_all. Figure 13 presents the
new termination detection pseudo code.

For the main ring portion of the program, once a rank

1 int FT_Termination(buffer) {

2 /x For termination agreement */

3 MPIL_Icomm_validate_allMCW, cnt, req[Idxy]);
4 /x Use MPI to detect when we need to resend */

5 MPIL_Irecv(dummy_buff, Pgr, Ty, req[/dzr]);

6 do {

7 failed = false;

8 ret = MPI_Waitany(2, req, &idx, &status);

9 if(MPI_SUCCESS !=ret) {

10 failed = true;

11 if(idx == Idxp) {

12 /% Our right peer failed, resend message */

13 Pr = to_right_of(PR);

14 FT_Send_right(buffer);

15 MPI_Irecv(dummy_buff, Pr, Ty, req[Idxr]);

16 } else {

17 /x Validate should not fail, but if it does repost +/
18 MPI_Icomm_validate_allMCW, cnt, req[/dxn]);
19 }

20 }

21} while(failed);
22 return MPI_SUCCESS

Fig. 13: Fault tolerant termination detection function using
MPI_Icomm_validate_all

determines that it has become the root it must regain control
over the loop iteration based upon its current knowledge of
the ring state. The P peer will resend to the new root the
last buffer it passed to the old root before it failed. From
this information and local knowledge of the last buffer that
it passed to Pg, the new root can determine the last known
iteration of the ring. Once it has determined the state of the
ring, it can resume control over the iterations and lead the
remaining processes to completion.

E. Testing

Process failure can occur at any time during application
execution. This paper discussed how to handle various process
failure scenarios that were discovered by code inspection and
fault injection testing using the prototype implementation.
Fault injection is currently the most popular technique avail-
able to application developers [15], [16], [17]. Fault injection
tools allow an application developer to inject failures into their
application during normal execution to test if the application
behaves according to design. Intensive use of fault injection
tools can allow a developer to build confidence in their
solution.

But how can a developer know when they have addressed
all of the problematic fault scenarios in their application? The
debugging, verification, and validation research communities
do not currently have many tools to support MPI application
developers. The lack of support is most likely attributed to the
lack of standardized MPI process fault tolerance semantics

to test applications against. Once MPI provides standardized
process fault tolerance semantics then the various tool de-
veloper communities can start developing tools and adapting
techniques to assist application developers in answering this
critical question.

IV. RELATED WORK

In [18], Gropp and Lusk described how a manager/worker
style MPI program might recover from process loss by using
multiple intercommunicators and forgetting about intercom-
municators connecting to lost processes. Though they demon-
strated how an application might use a high-quality MPI
implementation to achieve some fault tolerance semantics, this
behavior is not standardized and therefore not portable. This
has been and continues to be a significant barrier for appli-
cation developers that need fault tolerance semantics since
they can only design for a single version of a particular MPI
implementation on a particular HPC machine. Additionally,
the management of multiple sets of intercommunicators for
a single group of processes is cumbersome in comparison
to directly using intracommunicators, as in the run-through
stabilization proposal.

When it comes to extending the MPI standard the FT-
MPI project is the most closely related in terms of semantics
to the run-through stabilization proposal used in this paper.
FT-MPI is an MPI-1 implementation that extended the MPI
communicator states and modified the MPI communicator
construction functions [19]. Fault tolerant MPI applications
use these extensions to stabilize MPI communicators and, op-
tionally, recover failed processes by relaunching them from the
original binary and rejoining them into the MPI communicator.
The run-through stabilization proposal behaves similar to FT-
MPI's blank communicator mode, where failed processes
are replaced by MPI_PROC_NULL. Additionally, the two
proposals have complementary semantics regarding point-to-
point and collective operations. The main difference between
these projects is in the handling of communicator and group
objects. Upon process failure, FT-MPI destroys all MPI objects
with non-local information (e.g., communicators and groups),
except MPI_COMM_WORLD, requiring the application to
manually recreate these objects after every failure in the
same order. In contrast, the run-through stabilization proposal
preserves all communicators and groups. Additionally, FT-MPI
required that every process failure be recognized globally by
all alive processes in order to complete the recovery stage.
In the run-through stabilization proposal process failures can
be recognized locally, and on a per-communicator basis. These
two differences allow the run-through stabilization proposal to
more flexibly support libraries, and, by allowing for localized
failure recognition, open the door to more scalable fault
tolerance solutions. However, the run-through stabilization
proposal does not, at the moment, handle process recovery
and rejoining recovered processes to existing communicators.

Applications have already started to experiment with in-
tegrating fault tolerance techniques into their code. ABFT
techniques require specialized algorithms that are able to adapt

to and recover from process loss [20]. ABFT techniques typ-
ically require data encoding, algorithm redesign, and diskless
checkpointing [21] in addition to a fault tolerant message
passing environment (e.g., MPI). Although matrix operations
have been the focus of much of the research into ABFT [22],
[23], [24], there has also been research in other domains such
as heat transfer applications [25].

Related to ABFT is natural fault tolerance techniques.
Natural fault tolerance techniques focus on algorithms that can
withstand the loss of a process and still get an approximately
correct answer, usually without the use of data encoding or
checkpointing. So natural fault tolerance can be viewed as a
more general form of ABFT [26], [27].

V. CONCLUSION

In future HPC systems process failure is projected to be
a normal event that the application must be prepared to
handle [2]. In light of this projection, HPC application devel-
opers are starting to consider ABFT techniques to improve
the efficiency of application recovery after process failure.
MPI supports many HPC applications, but lacks standardized
process fault tolerance semantics.

This paper introduced the reader to some of the run-through
stabilization semantics being developed by the MPI Forum’s
Fault Tolerance Working Group. Using the proposed semantics
and a well-known ring communication program as a running
example, this paper illustrated to application developers new
to ABFT some of the issues that arise when creating a fault
tolerant variant of their application. The ring application ex-
ample allowed the discussion to focus on the communication-
level issues rather than the data preservation issues covered by
existing literature. We highlighted a common set of issues that
application developers will need to address regardless of their
domain including program control management, duplication
message handing, termination detection, and testing.

This paper presented pseudocode for the fault tolerant ring
MPI application. The full source code can be found at the link
below:
http://users.nccs.gov/~jjhursey/papers/2011-dpdns.html

ACKNOWLEDGMENTS

Research sponsored by the Mathematical, Information, and
Computational Sciences Division, Office of Advanced Scien-
tific Computing Research, U.S. Department of Energy, under
Contract No. DE-AC05-000R22725 with UT-Battelle, LLC.

REFERENCES

[11 B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” Journal of Physics: Conference Series, vol. 78, 2007.

[2] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience,” International Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 374-388, 2009.

[3] Message Passing Interface Forum, “MPI: A Message Passing Interface,”
in Proceedings of Supercomputing "93. 1EEE Computer Society Press,
November 1993, pp. 878-883.

[4] Fault Tolerance Working Group, “Run-though stabilization inter-
faces and semantics,” svn.mpi-forum.org/trac/mpi-forum-web/wiki/ft/
run_through_stabilization.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288-323,
1988.

L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382401, 1982.

T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, vol. 43, no. 2, pp. 225-267,
1996.

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings of the 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary, September 2004, pp. 97-104.

M. Barborak, A. Dahbura, and M. Malek, “The consensus problem in
fault-tolerant computing,” ACM Computing Surveys, vol. 25, no. 2, pp.
171-220, 1993.

B. Randell, “System structure for software fault tolerance,” in Proceed-
ings of the international conference on reliable software. New York,
NY, USA: ACM Press, 1975, pp. 437-449.

T. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an
engineering perspective,” PODC '07: Proceedings of the twenty-sixth
annual ACM symposium on principles of distributed computing, Aug
2007.

L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems (TOCS), Jan 1998.

J.-M. Chang and N. F. Maxemchuk, “Reliable broadcast protocols,” ACM
Trans. Comput. Syst., vol. 2, no. 3, pp. 251-273, 1984.

D. Skeen, “Nonblocking commit protocols,” in SIGMOD ’81: Proceed-
ings of the 1981 ACM SIGMOD international conference on manage-
ment of data. New York, NY, USA: ACM, 1981, pp. 133-142.

J. A. Clark and D. K. Pradhan, “Fault injection: A method for validating
computer system dependability,” Computer, vol. 28, pp. 47-56, 1995.
M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75-82, 1997.

D. Blough and P. Liu, “FIMD-MPI: A tool for injecting faults into MPI
applications,” in 14th International Parallel and Distributed Processing
Symposium (IPDPS), 2000, pp. 241 —247.

W. Gropp and E. Lusk, “Fault tolerance in message passing interface
programs,” International Journal of High Performance Computing Ap-
plications, vol. 18, no. 3, pp. 363-372, 2004.

G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, J. Pjesivac-
Grbovic, and J. J. Dongarra, “Process fault-tolerance: Semantics, design
and applications for high performance computing,” International Journal
for High Performance Applications and Supercomputing, vol. 19, no. 4,
pp. 465478, 2005.

K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. 33, no. 6, pp.
518-528, 1984.

J. S. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 9, no. 10, pp.
972-986, October 1998.

Z. Chen and J. Dongarra, “Algorithm-based fault tolerance for fail-
stop failures,” IEEE Transactions on Parallel and Distributed Systems,
vol. 19, no. 12, pp. 1628-1641, 2008.

Y. Du, P. Wang, H. Fu, J. Jia, H. Zhou, and X. Yang, “Building
single fault survivable parallel algorithms for matrix operations using
redundant parallel computation,” International Conference on Computer
and Information Technology, pp. 285-290, 2007.

J. Langou, Z. Chen, G. Bosilca, and J. Dongarra, “Recovery patterns for
iterative methods in a parallel unstable environment,” SIAM Journal of
Scientific Computing, vol. 30, no. 1, pp. 102-116, 2007.

H. Ltaief, E. Gabriel, and M. Garbey, “Fault tolerant algorithms for
heat transfer problems,” Journal of Parallel and Distributed Computing,
vol. 68, no. 5, pp. 663-677, 2008.

C. Engelmann and A. Geist, “Super-scalable algorithms for computing
on 100,000 processors,” in Proceedings of International Conference on
Computational Science (ICCS), vol. 3514, no. 1, May 2005, pp. 313—
320.

A. Geist and C. Engelmann, “Development of naturally fault tolerant
algortihms for computing on 100,000 processors,” Journal of Parallel
and Distributed Computing, 2002.

