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Abstract As large-scale clusters become more distributed and heterogeneous, significant
research interest has emerged in optimizing MPI collective operations because
of the performance gains that can be realized. However, researchers wishing to
develop new algorithms for MPI collective operations are typically faced with sig-
nificant design, implementation, and logistical challenges. To address a number
of needs in the MPI research community, Open MPI has been developed, a new
MPI-2 implementation centered around a lightweight component architecture
that provides a set of component frameworks for realizing collective algorithms,
point-to-point communication, and other aspects of MPI implementations. In this
paper, we focus on the collective algorithm component framework. The “coll”
framework provides tools for researchers to easily design, implement, and exper-
iment with new collective algorithms in the context of a production-quality MPI.
Performance results with basic collective operations demonstrate that the com-
ponent architecture of Open MPI does not introduce any performance penalty.

Keywords: MPI implementation, Parallel computing, Component architecture, Collective
algorithms, High performance

1. Introduction

Although the performance of the MPI collective operations [6, 17] can be
a large factor in the overall run-time of a parallel application, their optimiza-
tion has not necessarily been a focus in some MPI implementations until re-
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cently [22]. MPI collectives are only a small portion of a production-quality,
compliant implementation of MPI; implementors tend to give a higher priority
to reliable basic functionality of all parts of MPI before spending time tuning
and optimizing the performance of smaller sub-systems.

As a direct result, the MPI community has undertaken active research and
development of optimized collective algorithms. Although design and theoret-
ical verification is the fundamental basis of a new collective algorithm, it must
also be implemented and used in both benchmark and real-world applications
(potentially in a variety of different run-time / networking environments) before
its performance can be fully understood. The full cycle of design, development,
and experimental testing allows the refinement of algorithms that is not possible
when any of the individual steps are skipped.

1.1 Solution Space

Much research has been conducted in the area of optimized collective op-
erations resulting in a wide variety of different algorithms and technologies.
The solution space is vast; determining which collective algorithms to use in a
given application may depend on multiple factors, including the communication
patterns of the application, the underlying network topology, and the amount
of data being transferred. Hence, one set of collective algorithms is typically
not sufficient for all possible application / run-time environment combinations.
This is evident in the range of literature available on different algorithms for
implementing the MPI collective function semantics.

It is therefore useful to allow applications to select at run-time which algo-
rithms are used from a pool of available choices. Because each communicator
may represent a different underlying network topology, algorithm selection
should be performed on a per-communicator basis. This implies that the MPI
implementation both includes multiple algorithms for the MPI collectives and
provides a selection mechanism for choosing which routines to use at run-time.

1.2 Implementation Difficulties

There are significant barriers to entry for third-party researchers when imple-
menting new collective algorithms. For example, many practical issues arise
when testing new algorithms with a wide variety of MPI applications in a large
number of run-time environments. To both ease testing efforts and to make the
testing environment as uniform as possible, MPI test applications should be able
to utilize the new algorithms with no source code changes. This will even allow
real world MPI applications to be used for testing purposes; the output and
performance from previous runs (using known correct collective algorithms)
can be compared against the output when using the collective algorithms under
test.
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This means that functions implementing new algorithms must use the stan-
dard MPI API function names (e.g., MPI Barrier). Techniques exist for this
kind of implementation, but they may involve significant learning curves for the
researcher with respect to the underlying MPI implementation: how it builds,
where the collective algorithms are located in the source tree, internal restric-
tions and implementation models for the collective functions, etc.

1.3 A New Approach

To address a number of needs in the MPI research community, Open MPI [5]has
been developed; a new MPI-2 implementation based upon the collected research
and prior implementations of FT-MPI [3–4] from the University of Tennessee,
LA-MPI [1, 7] from Los Alamos National Laboratory, and LAM/MPI [2, 19]
from Indiana University. Open MPI is centered around a lightweight compo-
nent architecture that provides a set of component frameworks for realizing
collective algorithms, point-to-point communication, and other aspects of MPI
implementations.

In this paper, we focus on the collective algorithm component framework.
The “coll” framework provides tools for researchers to easily design, im-
plement, and experiment with new collective algorithms in the context of a
production-quality MPI. Collective routines are implemented in standalone
components that are recognized by the MPI implementation at run-time. The
learning curve required to create new components is deliberately small to allow
researchers to focus on their algorithms, not the details of the MPI implementa-
tion. The framework also offers other benefits: source and binary distribution of
components, seamless integration of all algorithms at compile and/or run-time,
and fine-grained run-time selection (on a per-communicator basis).

This paper is therefore not about specific collective algorithms, but rather
about providing a comprehensive framework for researchers to easily design,
implement, and experiment with new collective algorithms. Components con-
taining new algorithms can be distributed to users for additional testing, verifi-
cation, and finally, production usage.

Both MPICH and MPICH2 [8–9] use sets of function pointers (to varying
degrees) on communicators to effect some degree of modularity, but have no
automatic selection or assignment mechanisms, therefore requiring abstraction
violations (the user application has to assign function pointers inside an opaque
MPI communicator) or manual modification of MPICH itself.

LAM/MPI v7 debuted the first fully-integrated component-based framework
that allowed source and binary distribution of several types of components
(including collective algorithms) while requiring no abstraction violations or
source code changes to the MPI implementation in a production-quality, open-
source MPI implementation. Open MPI evolves these abstractions by refining
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the concepts introduced in LAM/MPI v7, essentially creating a second gener-
ation set of component frameworks for MPI implementations called the MPI
Component Architecture (MCA) [5, 23]. This paper presents Open MPI’s MCA
collective component framework design.

The rest of this paper is organized as follows. §1.2 discusses the current state
of the art with regards to implementing third-party collective algorithms within
an MPI framework. §1.3 describes Open MPI’s component model for collective
algorithms, and explores different possibilities for third-party implementations.
§1.4 provides overviews of two collective modules that are included in the Open
MPI software distribution. Finally, §1.5 and §1.6 discuss run-time performance,
final conclusions, and future work directions.

2. Adding Collective Algorithms to an MPI
Implementation

Third-parties implementing new collective functions can encounter both
technical and logistical difficulties, even in MPI implementations that encapsu-
late collective function pointers in centralized locations. Not only is it desirable
for MPI applications to invoke new collective routines through the standard MPI
API, there must be a relatively straightforward mechanism for making the new
routines available to other users (download, compile, install, compile / link
against user applications, etc.).

2.1 Common Interface Approaches

Common approaches to developing new collective routines include: using
the MPI profiling layer, editing an existing MPI implementation, creating a
new MPI implementation, and using alternate function names. Each of these
scenarios have benefits and drawbacks, but all require the collective algorithm
author to implement at least some level of infrastructure to be able to invoke
their functions.

Use the MPI Profiling Layer. The MPI profiling layer was designed for ex-
actly this purpose: allowing third-party libraries to insert arbitrary functionality
in an MPI implementation. This can be done without access to the source code
for either the MPI implementation or the MPI application.

This approach has the obvious advantage that any MPI application will auto-
matically use the new collective routines without modifications. Although the
MPI application will need to be relinked against the new library, no source code
changes should be necessary. A non-obvious disadvantage is that since the pro-
filing layer uses linker semantics to overload functions, only one version of an
overloaded function is possible. For example, MPI BARRIER cannot be over-
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loaded with both a new collective routine and a run-time debugging/profiling
interface.

Edit an Existing MPI Implementation. This method involves editing an
MPI implementation to either include new collective routines in addition to the
implementation’s existing routines [21–22], or outright replacing the imple-
mentation’s collective routines with new versions [10]. This can only be used
with MPI implementations where the source code is available and the license
allows such modifications.

Similar to the profiling approach, this method allows unmodified MPI appli-
cations to utilize new functionality. This is perhaps the easiest method for MPI
applications because the API is the same and the new routines are in the MPI
implementation itself.

However, the learning curve to add or replace functionality in the MPI im-
plementation may be quite large. Additionally, editing the underlying MPI
effectively creates a “fork” in the implementation’s development path. This
may make the code difficult to maintain and upgrade.

Create a New MPI Implementation. Entirely new MPI implementations
have been created simply to design, test, and implement new MPI collective
algorithms [11–12]. The advantage to this approach is complete control over
the entire MPI implementation. This may be desirable for situations where
the collective routines are radically different than current MPI implementa-
tions allow. For example, PAC-X MPI was created to enable communications
in metacomputing environments, requiring alternate collective algorithms for
efficiency.

The overhead with this approach is enormous. Writing enough of an MPI
implementation such that a simple MPI program that only invokes MPI INIT,
MPI COMM RANK, MPI COMM SIZE, and MPI FINALIZE is a monumen-
tal task. The time necessary to create an entire MPI framework before actually
being able to work on collective algorithms can be prohibitively large.

Use Alternate Function Names. Perhaps the simplest approach from the
algorithm implementor’s perspective is to use function names other than the
ones mandated by the MPI standard. For example, provide an alternate barrier
implementation in the function New Barrier instead of MPI Barrier.

Difficulties arise in testing because MPI applications need to be modified to
call the alternate functions. This can be as simple as preprocessor macros in a
standardized header file, or may entail manually modifying all invocation points
in the application. Requiring source code modification necessarily means that
precompiled, binary-only MPI applications will not be able to utilize the new
functionality.
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2.2 A Component-Based Approach

We propose an open, component-based framework for the implementation
of collective algorithms that will solve many of the technical and logistical
issues faced by third-party collective algorithm researchers. In this frame-
work, a collective component is comprised of a set of top-level collective rou-
tines. A collective routine implements one MPI collective function (such as
MPI BARRIER, MPI BCAST, etc.). The framework also includes built-in
mechanisms for configuration, compilation, installation, and source and binary
distributions of components.

The collective component framework was designed and implemented with
the following goals:

Do not require modifying Open MPI source code to import new collective
algorithms.

Allow new collectives to be imported into the MPI implementation at
compile- and run-time.

Provide easy-to-understand interface and implementation models for col-
lective routines that do not require detailed internal knowledge of the MPI
implementation.

Provide minimal overhead before invoking collective routines to maxi-
mize run-time performance.

Allow (but not require) collective routines to be layered upon MPI point-
to-point routines.

Allow collective routines to exploit back-end hardware and network
topologies.

Allow collective components to be layered upon other collective compo-
nents.

Facilitate both source and binary distribution of collective components.

Enable MPI applications to utilize the new collective components without
recompiling / relinking.

Allow multiple collective components to exist within a single MPI pro-
cess.

Provide a fine-grained, run-time, user-controlled component selection
mechanism.

There are no current plans to allow experimentation with collective algo-
rithms that are not specified by MPI.
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3. Collective Components

Open MPI is based upon a lightweight component architecture, including
a component framework for MPI collective algorithms named “coll.” The
coll component interface was designed to satisfy the goals listed in §1.2.2.
coll components can be loaded and selected at compile-time or run-time. For
example, multiple coll components are included in the standard Open MPI
distribution, but third-party components can also be added at any time.

3.1 Design Overview

The Open MPI component framework manages all coll components that are
available at run-time. This management code is typically referred to as the
Open MPI coll framework in the discussion below.

Simply put, a coll components is essentially a list of top-level function point-
ers that the Open MPI infrastructure selectively invokes upon demand. When
paired with a communicator, a component becomes a module [20]. Top-level
MPI collective functions have been reduced to thin wrappers that perform error
checking before invoking back-end coll module implementation functions. One
coll module is assigned to each communicator; this module is used to imple-
ment all MPI collectives that are invoked on that communicator. For example,
MPI BCAST simply checks the passed parameters for errors and then invokes
the back-end broadcast function on its assigned coll module.

3.2 Implementation Models

Components are free to implement the standardized MPI semantics in any
way that they choose. Most, however, use one or more of the following models:
layered over point-to-point, alternate communication channels, or layered over
another coll components.

Layered over Point-to-Point. A simple implementation model is to utilize
MPI point-to-point functions to send data between processes. For example,
using MPI SEND and MPI RECV to exchange data is both natural and easy
to understand, freeing the coll component author to concentrate on the compo-
nents’ algorithms and remain independent of how the underlying communica-
tion occurs. This model has been used extensively by MPI implementations [8,
19] and third-party collective algorithm researchers [13–14].

Alternate Communication Channels. Recently, researchers have been ex-
ploring the possibility of avoiding MPI point-to-point functionality and instead
using alternate communication channels for collective communications. Some
network interfaces contain native primitives for collective operations and/or
streamlined one-sided operations which can lead to significant performance
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Figure 1. Four processes in MPI COMM WORLD are distributed across two nodes. Three sub-
communicators (vertical and horizontal) each contain the two processes local to their respective
nodes. One “bridge” communicator (horizontal) contains a representative process from each
node.

gains as compared to using traditional point-to-point methods. Examples of al-
ternate communication channels that at least partially support collective opera-
tions include (but are not limited to): shared memory [16], UDP multicast [11],
Myrinet [24], and Infiniband [15].

Hierarchical coll Components. The coll framework was carefully designed
such that coll components can be re-used at run-time in two ways. First, the
coll component “basic,” as its name implies, is a basic implementation of all
of the MPI collectives. It can be used with any communicator and topology.
The purpose of this component is to provide a baseline implementation for all
MPI collective operations, allowing other components to use its routines as
necessary. For example, a component that only provides an optimized scatter
algorithm implementation can complete itself by using the methods from the
basic component (or other components) for all other collective routines. This
allows the optimized scatter component to be used in any MPI program even
though it only implements a small number of new/optimized routines.

A second, more complex model involves using a hierarchy of coll modules to
implement a single, top-level MPI collective. This is useful when a collective is
invoked on a communicator that spans multiple types of networks. For example,
Figure 1 shows two SMPs, each running two MPI processes. A single MPI
communicator contains all four processes. The top-level communicator’s coll
module creates three sub-communicators: one for each SMP (containing the
two processes on each node), and a third “bridge” communicator connecting
one representative process from each node.
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Checkpoint/
restart usage

Normal

Initialization

Selection

Finalization

MPI_ALLGATHER
...

MPI_SCATTERV

MPI_FINALIZE

MPI_COMM_FREE

MPI_INIT

MPI_COMM_SPLIT

MPI_COMM_CREATE

MPI_COMM_DUP

Figure 2. Five phases in the life of a coll component. The component is selected and initialized
when a communicator is created. It is used and/or checkpointed during the run, and finalized
when the communicator is destroyed.

Note that each sub-communicator will have its own coll module. This hier-
archical arrangement of communicators allows each network to utilize its own
optimized coll component, resulting in an efficient movement of data across
each medium. This model will be explained in more detail in §1.4, where the
smp coll component is discussed as an example implementation.

3.3 Component / Module Life Cycle

There are five phases in a coll component’s life cycle: selection, initialization,
checkpoint / restart, normal operation, and finalization. Figure 2 shows these
phases and the corresponding MPI functions that trigger them. Note that a
component may be involved in multiple life cycles simultaneously (i.e., several
modules of the same component may exist in a single process); coll components
have a one-to-many relationship with communicators.

Selection. As each communicator is created (including MPI COMM SELF
and MPI COMM WORLD), a coll component is selected for it from all avail-
able components. Specifically, the Open MPI coll framework queries each
available coll component to determine if it is available to be used with the
newly-created communicator. The queried component analyzes factors such as
the current run-time environment and topology of the processes in the commu-
nicator. If the component determines that its algorithms are a good match for
the target communicator, it returns priority value (from 0 to 100) intended as a
relative indicator of the component’s expected performance. The priority value
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is relative and changable at run-time. Hence, components typically provide de-
fault priority values that is a guesstimate (e.g., MagPIe-based algorithms across
WANs should return a high priority – it doesn’t matter what the priority is, as
long as it is higher than the rest). Users can change default priorities to force
selection of specific components based on their environment. The component
returning the highest priority is selected; all MPI collective functions invoked
on that communicator will use the selected module.

Initialization. Once a coll module is selected for a given communicator, it
is initialized. Specifically, the component’s initialization function is invoked,
passing the target communicator as an argument. The initialization function
performs any one-time setup required by the module, and returns a module
that contains any local state required to perform collectives on the target com-
municator. By definition, a communicator’s member processes and ordering
are static, allowing a module’s initialization routine to pre-compute any data
structures that will later be used during collective routines. This design em-
phasizes the potential run-time optimizations that can be obtained by shifting
as much overhead calculations and coordination to the one-time initialization
function as possible. This can reduce the amount of computational overhead in
the run-time of collective routines.

The module is associated with the target communicator by caching its local
state (such as the pre-computation results) on the communicator itself. All sub-
sequent phases in the module’s life cycle are invoked relative to a communicator
for which it was selected; the communicator is passed as an argument to all invo-
cation functions. This allows the module to retrieve its communicator-specific
pre-computation data when a collective function is invoked.

Once a component has been initialized, it returns the module – including
a list of function pointers for its algorithms – which is then assigned to the
communicator. These functions are later invoked by the coll framework during
the “normal usage” phase in the module’s life cycle whenever a top-level MPI
collective function is invoked. The module is then ready to be checkpointed or
used for collective operations.

Checkpoint / Restart. Open MPI includes the capability for parallel MPI ap-
plications to be transparently checkpointed and restarted. In order for a parallel
MPI application to be checkpointed, all its modules must include checkpoint
/ restart functionality. Much of this work is usually the responsibility of the
point-to-point modules: they must ensure that “in flight” messages will not be
lost upon restart. This is typically effected either by draining the network or
utilizing acknowledgment / retransmission schemes.

coll modules that are layered on top of MPI point-to-point functionality there-
fore require no additional work to support checkpoint / restart; all the necessary
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work is already performed by the point-to-point modules. coll modules that
use their own communication channels, however, will typically need to include
additional code to support checkpoint / restart functionality. Such modules
can provide hook functions that the Open MPI framework will invoke during
checkpoints and restarts to perform any required cleanup and re-initialization,
respectively.

It is not an error if a module does not include the functionality required
for checkpointing and restarting itself; support for checkpoint/restart in a coll
module is optional. Currently, the determiniation of whether a process can
checkpoint occurs during MPI INIT: a process is checkpointable only if all the
components that may be used in the process support checkpointing (regardless
of whether they are selected).

Normal Usage. After a coll module has been initialized with a commu-
nicator, that module’s collective routines will be invoked whenever an MPI
collective function is invoked on the communicator. Note that since the type of
communicator is known at selection and initialization time (i.e., intra- or inter-
communicator), it is the module’s responsibility to set itself up so that intra- or
intercommunicator algorithms are invoked as appropriate.

For example, when the MPI Bcast C function is invoked on MPI COMM -
WORLD, it checks all of the parameters that are passed into it. It then invokes
the the module’s broadcast function pointer. The module’s broadcast function
pointer can either be specifically for intracommunicators or dispatch to an in-
tracommunicator algorithm when it detects the type of MPI COMM WORLD.
This model allows for a natural separation of algorithms and code since the
algorithms used for intracommunicators are, by definition, different than the
algorithms used for intercommunicators.

Finalization. The final phase in a coll module’s life cycle on a communicator
occurs when the communicator is destroyed. The module’s finalization method
is responsible for cleaning up all resources associated with the communicator
that is being destroyed.

3.4 Component and Module Interfaces

The coll component interface is relatively small; it contains data required
for all Open MPI MCA modules such as references to the framework that
the component belongs to, the name and version number of the component,
and once-per-process initialization (“open”) and finalization (“close”) actions.
Finally, two actions are defined specifically for coll components:

One-time initialization. This method is invoked during MPI INIT to ask
certain threading characteristics about the component, and is mainly used
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coll component interface {
// Metadata identifying what version of the MCA this component
// adheres to, what framework and version this component belongs to,
// and this component’s name and version.

version mca version number;
string mca framework name;
version mca framework version number;
string component name;
version component version number;

// Actions defined for all MCA components

int component open function(void);
int component close function(void);

// Actions defined on coll components.

int component init query(bool &allow user threads,
bool &have hidden threads);

coll module component comm query(MPI Comm comm, int &priority);
}

Figure 3. Pseudocode for the coll component interface.

to determine the final threading level that will be used during the process
(MPI THREAD SINGLE through MPI THREAD MULTIPLE).

Per-communicator query. The coll framework invokes this method on
each component, effectively asking the component if it wants to be con-
sidered for selection. If it does, the component will return a module.

Pseudocode for the component interface is shown in Figure 3.
The module interface is divided into several categories of actions (shown in

Figure 4):

Initialization and finalization. If a module is selected, its initialization
method is invoked, allowing the module to complete any setup or pre-
compute results that are utilized during the module’s “normal usage”
life cycle phase. All modules have their finalize method invoked when
they are no longer used (which may be immediately if a module is not
selected).
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coll module interface {
// Initialization and finalization of a module

int init(MPI Comm comm)
int finalize(MPI Comm comm)

// Checkpoint/restart functionality

int cr interrupt(void)
int cr checkpoint(MPI Comm comm)
int cr continue(MPI Comm comm)
int cr restart(MPI Comm comm)

// Collective algorithm methods

int allgather(buffer sbuf, int scount, MPI Datatype sdtype,
buffer rbuf, int rcount, MPI Datatype rdtype,
MPI Comm comm)

int allgatherv(buffer sbuf, int scount, MPI Datatype sdtype,
buffer rbuf, int rcounts[], int disps[], MPI Datatype rdtype,
MPI Comm comm);

// ...and the rest of the MPI collective operations
}

Figure 4. Pseudocode for the coll module interface. Module-specific state is cached on the
communicator and is therefore passed in to every module method.

Checkpoint / restart functionality. As described in [18], the check-
point/restart functionality in LAM/MPI (and carried forward to Open
MPI) consists of three distinct phases: checkpoint, continue, and restart.
Methods are included to support each of these actions; their functionality
is described further in [18].

MPI collective functions. Modules contain a method for each MPI collec-
tive function (e.g., MPI BCAST, MPI BARRIER, etc.). Their function
signatures are quite similar to their MPI counterparts, but some of the
functions and arguments have been streamlined by the coll framework.
For example, some components can treat a zero-byte broadcast as a no-op,
and the coll framework will not invoke the module in such situations.
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4. Example Components

basic and smp are two of the coll components included in Open MPI. These
components serve both as reference algorithms as well as examples of two
different implementation models.

4.1 The basic Component

The basic component contains a full set of intra- and intercommunicator
collectives. The intracommunicator algorithms are quite mature; they have been
in LAM/MPI production code for years. The intercommunicator algorithms are
new, but are essentially variations of their intracommunicator counterparts.

Prior generations of LAM/MPI—including the collective algorithms that the
basic component is founded on—were based on a monolithic architecture. This
made it a natural choice for not only influencing the design of the coll component
interface, but also as a first coll component implementation. The successful port
of the legacy LAM/MPI collective algorithms to the new framework (originally
in LAM/MPI 7.x, and later to Open MPI) served as a validation of the overall
coll design.

Although relatively naive, the basic routines can be used on any communica-
tor (regardless of underlying topology), switching betweenO(n) and O(log(n))
algorithms depending on the number of processes in the communicator. All of
the basic algorithms essentially use MPI point-to-point functions for moving
data between MPI processes. For example, in MPI BCAST’s logarithmic im-
plementation, a traditional binomial tree is used: parent processes send data
with MPI SEND while child processes block in MPI RECV.

4.2 The smp Component

The smp component was also instrumental in shaping the design of the coll
framework. Based on the algorithms from the MagPIe project [13–14], the smp
algorithms attempt to maximize bandwidth conservation across multiple levels
of network latency. MagPIe focused on uniprocessors communicating across
a WAN; the smp component is oriented to SMPs communicating on a LAN.
The end effect is the same: two levels of network latency that can be exploited
at run-time. Segmenting the communicator into groups of local process peers
and electing representatives from each group to communicate with other groups
provides a natural segregation of local and global communications.

Similar to the basic component, the smp component uses point-to-point
communication to pass messages. Standard MPI functions are used to create
sub-communicators and translate rank identifications between them. A direct
implication of this model is that the coll framework must be able to handle
recursive communicator creation and destruction. During the construction of
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Figure 5. MagPIe algorithm for broadcast from process 0. Process 0 sends to its peer on the
remote node (process 3). Each then do a local broadcast to the remaining processes on their
nodes (processes 1 and 2, and processes 4 and 5, respectively).

int ssi coll smp bcast(buffer, ..., MPI Comm comm) {
if (i am a representative) {

MPI Bcast(buffer, ..., rep root, rep comm);
}
MPI Bcast(buffer, ..., local root, local comm);
return MPI SUCCESS;

}

Figure 6. Pseudocode broadcast implementation using sub-communicators (error handling
ignored for this example).

a communicator, the initialization of a coll module may cause the creation of
another communicator. This may, in turn, trigger the creation of yet another
communicator (and so on).

For example, in the MagPIe broadcast algorithm, the root broadcasts the
data to the set of representatives from the other process groups. Each repre-
sentative (including the root) then broadcasts to the members of its local group
(see Figure 5). During the initialization phase of the smp module, the three
sub-communicators shown in Figure 5 are created: two containing local-only
processes, and one “bridge” communicator between processes 0 and 3. This
allows the reducing the MagPIe broadcast algorithm implementation to the
pseudocode shown in Figure 6.

Note that there are two calls to MPI BCAST. These broadcasts use whichever
module was selected when the sub-communicators were created. Depending
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on the number of processes and topology involved, the broadcasts may be
optimized according to however the selected coll component is implemented.

5. Performance

It is critical that the coll framework does not contribute additional overhead to
collective algorithm performance. Measuring this is straightforward: compare
the performance of Open MPI’s collective functions against the prior generation
of LAM/MPI (specifically, v6.5.9) that both provided the algorithms used in
the basic component and was based on an integrated, monolithic model.

The collective algorithm implementations used in LAM/MPI 6.5, although
somewhat naive, had well-understood behavior characteristics. Its main op-
timization technique is to switch between O(n) and O(log(n)) when enough
processes are involved in the collective. These collective algorithms were ported
to the component architecture in Open MPI (the basic component, as described
in §1.4.1). Measuring the performance of the same algorithms in two different
architectures allows the comparison of overhead between the two.

A pair of dual-processor 2.0Ghz Intel Xeon nodes connected with Gigabit
Ethernet and a dedicated switch was used for testing. Each node was running
Red Hat 9 with Linux kernel 2.4.20 SMP and contained 2GB of RAM. The
Pallas Benchmarks v2.2.1 were used to measure the wall-clock execution time
of several MPI collectives in LAM/MPI and Open MPI.

The performance of MPI BCAST, and MPI ALLTOALL is shown in Fig-
ures 7 and 8, respectively. These graphs show that the performance of the col-
lective algorithms in the Open MPI are on par with their peers in the LAM/MPI
6.5 series. Similarly, the performance of MPI BARRIER is nearly identical
between the two; wall-clock execution time for two processes was 73.5µs for
LAM/MPI, and 80.2µs for Open MPI.

6. Conclusions

Effective, easy-to-use tools for enabling research in high performance com-
puting are critical to meet the ever-growing demands of scientific applications.
The component framework of Open MPI allows third-party researchers to de-
velop and test new algorithms within an MPI implementation without the large
time investment required to first become an MPI implementor. This allows
quicker development of algorithms as well as a robust vehicle to allow users
access to cutting-edge research.

Future work includes completing and releasing Open MPI (expected Novem-
ber 2004), writing coll components to exploit high performance in a new en-
vironments, tighter integration of MPI topology-based communicators with
collective algorithms, and continued development and integration of other com-
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Figure 7. Wall-clock execution times for MPI BCAST.
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Figure 8. Wall-clock execution times for MPI ALLTOALL.
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ponent types within the Open MPI implementation (particularly as they relate
to collective algorithms).
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