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Abstract. To improve the scalability of InfiniBand on large scale clus-
ters Open MPI introduced a protocol known as B-SRQ [2]. This protocol
was shown to provide much better memory utilization of send and receive
buffers for a wide variety of benchmarks and real-world applications.
Unfortunately B-SRQ increases the number of connections between com-
municating peers. While addressing one scalability problem of InfiniBand
the protocol introduced another. To alleviate the connection scalabil-
ity problem of the B-SRQ protocol a small enhancement to the reliable
connection transport was requested which would allow multiple shared
receive queues to be attached to a single reliable connection. This modi-
fied reliable connection transport is now known as the extended reliable
connection transport.
X-SRQ is a new transport protocol in Open MPI based on B-SRQ which
takes advantage of this improvement in connection scalability. This pa-
per introduces the X-SRQ protocol and details the significantly improved
scalability of the protocol over B-SRQ and its reduction of the memory
footprint of connection state by as much as 2 orders of magnitude on
large scale multi-core systems. In addition to improving scalability, per-
formance of latency-sensitive collective operations are improved by up to
38% while significantly decreasing the variability of results. A detailed
analysis of the improved memory scalability as well as the improved per-
formance are discussed.

1 Introduction
The widespread availability of commodity multi-core CPUs from both Intel and
AMD is changing the landscape of near-commodity clusters. Compute nodes
with 8 cores (2 quad core CPUs) and even 16 cores (4 quad core CPUs) are
becoming more common and 8 or more cores in a single socket are expected in
the next 12-18 months. A number of these multi-core clusters are connected with
InfiniBand (IB), thereby increasing the need to examine the scalability of MPI
in such environments.
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Open MPI [1] supports the IB interconnect using the reliable connected (RC)
transport layer. RC in IB currently requires a connection to be established be-
tween each communicating pair of processes and consumes one page (commonly
4KB) of system memory for each connection. Multi-core systems increase the
number of dedicated processes per node and therefore increase the number of
connections per node. This additional memory consumed on the node may be
substantial in a large scale multi-core system. Furthermore, maintaining a fixed
amount of memory per core is becoming increasingly difficult as memory prices
remain high relative to the falling price of a CPU core. Pressure on memory will
increase as applications are migrated to multi-core machines.

This paper describes Open MPI’s use of the extended reliable connection
(XRC) which alleviates some of the memory pressure in multi-core environments.
In addition to reducing overall memory consumption in Open MPI, the use of
XRC in conjunction with B-SRQ improves performance. This conjunction will be
referred to as X-SRQ throughout this paper.

The rest of this paper is organized as follows. Section 2 provides a brief discus-
sion of previous work in this area as well as an overview of the XRC architecture.
Section 3 describes the new protocol, including necessary modifications to our
on-demand connection wire-up scheme. Section 4 describes the test platform
followed by performance analysis of the results. Section 5 summarizes relevant
results and concludes with a discussion of areas of possible future work.

2 Background
The InfiniBand specification details 5 transport layers:

1) Reliable Connection (RC): connection-oriented and acknowledged
2) Reliable Datagram (RD): multiplexed and acknowledged
3) Unreliable Connection (UC): connection-oriented and unacknowledged
4) Unreliable Datagram (UD): connectionless and unacknowledged
5) Raw Datagram: connectionless and unacknowledged

RC provides a connection-oriented transport between two queue pairs (QPs).
Work requests posted to a QP are implicitly addressed to the remote peer. The
scalability limitations of connection-oriented transports are well known [2], [3]
requiring

(
N
2

)
connections for N peers.

Fig. 1 illustrates two nodes, each with two cores connected via RC. In this
example each core is running a single process and is connected to each of the
remote processes. If we assume that shared memory is used for intra-node MPI
communication then the total number of QPs is 4 per node.

RD allows using a single QP to send and receive from any other addressable
RD QP. RD was designed to provide a number of desirable scalability features but
in practice RD has proven difficult to implement with no manufacturer currently
supporting this transport layer.

While some are examining the use of UD to enhance scalability [4], the addi-
tional costs of user-level reliability and implementation complexity are still being
examined.
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Fig. 1. RC - 2 Nodes

To improve the scalability of InfiniBand in multi-core environments Mellanox
has introduced XRC - the new transport layer. Requiring changes both in the
HCA and in the software stack; XRC allows a single receive QP to be shared
by multiple shared receive queues (SRQs) across one or more processes. Note
that these SRQs can exist in any process which shares the same XRC domain
as the receive QP. The SRQ “destination” is specified in the work queue entry
(WQE) at the send QP. The receive QP consumes a buffer from the specified
SRQ and enques a WQE to the completion queue (CQ) connected to this SRQ.
This mechanism allows each process to maintain a single send QP to each host
rather than to each remote process. A receive QP is established per remote send
QP. These receive QPs can be shared among all the processes on the host.
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Fig. 2. XRC - 2 Nodes

Fig. 2 illustrates two nodes with two processes per node (PPN) using XRC
for communication. Note that each receive QP is a machine resource and exists
within an XRC domain. SRQs are setup in each process and are connected to one
or more receive QPs. Send QPs are a per process resource (as in RC), however
each process can use a single send QP to communicate with any process on the
remote machine by specifying the SRQ of the target process. If we assume that
shared memory is used for intra-node MPI communication, then each node uses



4 QPs. In general, XRC can be used to reduce the number of QPs by a factor of
PPN−1. Thus for applications running P processes on N nodes, XRC decreases
the number of required transport connections from P 2∗(N−1) to P ∗2∗(N−1).
Note that the QPs in Fig. 2 are used either as send only QPs or as receive only
QPs although they are currently implemented as bidirectional send/receive QPs.
Work is ongoing within the OpenFabrics community to trim the QP size for the
new XRC usage model.

To support the XRC hardware feature the OpenFabrics API defines two new
APIs to create an XRC QP. The first API creates an XRC QP in userspace (just
as in RC). This QP may be used for both send and receive operations. When
using the QP for receive, a single process creates the QP and others share this
by attaching SRQs to the QP. The same process which creates the QP must
eventually destroy the QP, but it must defer the destruction of the QP until
after all other processes have finished using the QP.

The second API creates a receive XRC QP at the kernel level. This allows
a process to open the XRC QP and later exit without coordinating with other
consumers of the QP. Each process wanting to use the XRC receive QP simply
registers with the QP number which increments the internal reference count of
the QP. When finished with the QP each process unregisters with the QP number
which decrements the internal reference count. When the reference count drops
to zero the QP is reclaimed. This method is used by Open MPI in order to
support XRC with dynamic processes.

In previous work [5] Open MPI was enhanced to emulate the behavior of
receive buffer pools [6] when using IB. “Buckets” of receive buffers of different
sizes, with each bucket using a single SRQ, are created in each process. Each
SRQ is then associated with a single QP. The sender can achieve better memory
utilization on both sender and receiver sides by simply sending data on the QP
with the minimum buffer of adequate size. This protocol was shown to signifi-
cantly enhance memory utilization across a wide variety of applications and in
some cases it enhance performance.

As part of this work a generic mechanism was created to allow the user or
system administrator to specify any number of QPs (up to system limits) with
various size buffers associated with them. Each QP can be specified to use either
an SRQ or per-peer receive buffers posted to the QP directly. This mechanism
allows for greater flexibility in tuning and experimentation.

Our current work involves modifying this generic mechanism to allow XRC
QPs to be used in a similar fashion. Multiple SRQs can then be used to increase
memory utilization without the need for creating a separate QP for each SRQ.

3 Protocol Description

One substantial drawback to the B-SRQ protocol is that each SRQ requires a
separate QP. This limits the overall scalability of the protocol as node and core
counts continue to increase. The X-SRQ protocol removes this limitation. Fig. 3
illustrates two nodes with two PPN using X-SRQ for communication. Note that



each process maintains a number of SRQs each with a different buffer size. These
SRQs are then attached to a single node level receive QP per remote process.
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Fig. 3. X-SRQ - 2 Nodes

A number of changes in Open MPI were required in order to make use of XRC.
Instead of addressing processes by simply using the implicit addressing of an RC
QP, XRC requires specifying the remote SRQ number in the work request prior
to enqueuing a send on an XRC QP. A few other minor changes were required
such as extending our QP specification syntax to allow specifying XRC QPs via
Open MPI’s Modular Component Architecture parameter system [7].

Of special interest is the connection establishment mechanism within Open
MPI which supports XRC. The XRC QP establishment is considerably different
from the usual RC QP wireup [3]. During process initialization, all processes
perform the following:

1. exchange Local Identifiers (LIDs)
2. create an XRC domain
3. create SRQ entries

After the initialization phase each process keeps a table of LIDs for all remote
processes and the connection status to the remote process. Fig. 4(a) illustrates
a unidirectional connection establishment from process 0 to process 2. When
process 0 initiates a send to process 2, process 0 checks the connection status to
process 2. If the connection is closed then process 0 will create an XRC send QP
(user level), and will send a connection request to process 0 (step 1 in Fig. 4(a)).
Process 2 will create all the SRQ receive buffers as specified by the configuration
(step 2 in Fig. 4(a)). Process 2 will then open an XRC receive QP (kernel level)
and respond with an SRQ number for each SRQ as well as the XRC receive QP
number (step 3 in Fig. 4(a)). Process 0 will receive the remote QP number and
SRQ numbers and will connect the send QP to process 2 (step 4 in Fig. 4(a)).
Process 0 will then update the connection status (both IB and MPI) of process
2 to “connected”. Process 3’s table entry is updated as well, but the MPI con-
nection status remains “disconnected”. At the end of the handshake there will
be a unidirectional QP from process 0 on node 0 to process 2 on node 1.
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Fig. 4. XSRQ Connection Establishment

Fig. 4(b) illustrates process 0 initiating a unidirectional connection to process
3 on node 1. Process 0 first checks the IB status and sees that process 0 already
has an XRC send QP to node 1 (process 3). Process 0 then sends a connection
request with an XRC receive QP number on node 1 to process 3 (step 1 in
Fig. 4(b)). Process 3 creates all the SRQ receive buffers as specified by the
configuration (step 2 in Fig. 4(b)). Process 3 will increase a reference counter
on the XRC receive QP with the requested QP number (step 3 in Fig. 4(b))
and respond to process 0 with the SRQ numbers (step 4 in Fig. 4(b)). Process
0 receives the SRQ numbers and changes the connection status of process 3 to
MPI “connected”.

Other aspects of the X-SRQ protocol remain similar to that of the B-SRQ
protocol. As previously discussed, Open MPI supports mixing QPs with receive
buffers posted directly (per-peer) on the QP with QPs using SRQs . This flex-
ibility allows using flow-control mechanisms over the per-peer QP while using
SRQs for scalability. Currently Open MPI does not support mixing XRC QPs
with non-XRC QPs; this is left for future work.



4 Results
All experiments were conducted on a 32 node cluster located at Mellanox Tech-
nologies, USA. Each node consisted of dual quad-core Intel Xeon X5355 CPUs
running at 2.66GHz with 8GB memory and a Mellanox ConnectX HCA running
firmware 2.3.0. Each node ran Redhat Enterprise Linux with the 2.6.9-42 SMP
kernel, OFED version 1.3 (release candidate 5) and Open MPI trunk subversion
r17144. All nodes were connected via a DDR switch.

The most notable result was the significant reduction in the memory footprint
of the Open MPI library when using multiple SRQs per process. X-SRQ has
much better memory scaling characteristics than B-SRQ as the number of QPs is
significantly smaller. The number of QPs for B-SRQ is governed by the following:
PPN - number of processes per node; N - number of nodes; NSRQ - number
of SRQs; and NQP - number of QPs.

For B-SRQ, the number of QPs created is
NQP = PPN2 ∗NSRQ ∗ (N − 1)

For X-SRQ, the number of QPs created is
NQP = PPN ∗ 2 ∗ (N − 1)

Note that for X-SRQ the NSRQ parameter is dropped. Instead of squaring
PPN , we multiplied it by 2 to account for the separate send QP and receive
QP. Fig. 5(a),5(b) illustrate the impact of increasing the number of processes
per node - as is often the case for multi-core clusters. At 1024 nodes and 8 PPN,
QP memory resources peak at 256MB when using RC as opposed to only 64MB
for XRC .

Fig. 6(a),6(b) illustrate the impact of increasing the number of SRQs per
process at 8 PPN. At 1024 nodes and 8 SRQs per process, QP memory resources
peak at 2GB as opposed to only 64MB for XRC
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Fig. 5. Memory footprint of QPs (Varying PPN)]

In addition to significant memory savings, XRC improves performance. As the
number of QPs is decreased, the HCA needs to manage fewer interconnect con-
text resources. Consequently, the HCA is better able to cache context resource
data and thereby to avoid a lookup on host memory. To evaluate the perfor-
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mance improvements of XRC, the SkaMPI collectives benchmarks [8] were used.
MPI BARRIER, MPI REDUCE (8 bytes), MPI ALLREDUCE (8 bytes) and
MPI ALLGATHER (8 bytes) collectives where chosen in order to evaluate the
performance of X-SRQ. Overall performance of X-SRQ was better than that of B-
SRQ . Fig. 7(a),7(b) illustrate that X-SRQ performance improvements reach up
to 42% on the MPI BARRIER benchmark and up to 38% on the MPI REDUCE
benchmark. The standard deviation of the results was also much lower for X-SRQ
when compared to B-SRQ.
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Fig. 7. Collective performance

Fig. 8(a), 8(b) also show some improvement of MPI ALLREDUCE and
MPI ALLGATHER benchmarks at larger process counts, although not as signif-
icant as that of MPI BARRIER and MPI REDUCE benchmarks. Larger over-
heads for these collectives may minimize the overall performance improvement.
The standard deviation of the results was again lower for X-SRQ compared to
B-SRQ.
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5 Conclusions
Through a novel use of the XRC transport layer, both the scalability and per-
formance of Open MPI have improved. The X-SRQ protocol improves both send
and receive buffer utilization while significantly improving the scalability of QP
connections. While not limited to multi-core systems, these scalability improve-
ments are significant in larger multi-core environments. Current trends point
towards increased core counts for the foreseeable future thereby making these
scalability enhancements a necessity for clusters using IB.

In addition to improved scalability, X-SRQ improves performance on latency-
sensitive operations due to more efficient use of network resources. These perfor-
mance improvements are consistent with the HCA architecture and are relevant
not only for larger clusters, but for any multi-core cluster (as small as 32 nodes)
using InfiniBand.

Open MPI does not currently support the use of XRC QPs and RC QPs
concurrently. Future work will involve allowing these different QP “types” to be
used concurrently within a single Open MPI job.
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