
Analysis of Implementation Options for
MPI-2 One-Sided

Brian W. Barrett1, Galen M. Shipman1, Andrew Lumsdaine2,

1 Los Alamos National Laboratory ?, Los Alamos, NM 87545, USA,
{bbarrett, gshipman}@lanl.gov

2 Indiana University ??, Bloomington, IN 47405, USA,
lums@osl.iu.edu

Abstract. The Message Passing Interface provides an interface for one-
sided communication as part of the MPI-2 standard. The semantics spec-
ified by MPI-2 allow for a number of different implementation avenues,
each with different performance characteristics. Within the context of
Open MPI, a freely available high performance MPI implementation, we
analyze a number of implementation possibilities, including layering over
MPI-1 send/receive and true remote memory access.

1 Introduction

The Message Passing Interface [1,2,3,4] (MPI) has been adopted by the high
performance computing community as the communication library of choice for
distributed memory systems. The original MPI specification provides for point-
to-point and collective communication, as well as environment management func-
tionality. The MPI-2 specification added dynamic process creation, parallel I/O,
and one-sided communication.

The MPI-2 one-sided specification allows for implementation over send/re-
ceive or remote memory access (RMA) networks. Although this design feature
has been the source of criticism [5], it also ensures maximum portability, a goal
of MPI. The MPI-2 one-sided interface utilizes the concept of exposure and ac-
cess epochs to define when communication can be initiated and when it must
be completed. Explicit synchronization calls are used to initiate both epochs, a
feature which presents a number of implementation options, even when networks
support true RMA operations. This paper examines implementation options for
the one-sided interface within the context of Open MPI.

? Los Alamos National Laboratory is operated by Los Alamos National Security, LLC,
for the National Nuclear Security Administration of the U.S. Department of Energy
under contract DE-AC52-06NA25396. LA-UR-07-3197.

?? This work was supported by a grant from the Lilly Endowment and National Science
Foundation grants EIA-0202048 and ANI-0330620.

2 Related Work

A number of MPI implementations provide support for the one-sided interface.
LAM/MPI [6] provides an implementation layered over point-to-point, although
it does not support passive synchronization and performance generally does not
compare well with other MPI implementations. Sun MPI [7] provides a high
performance implementation, although it requires all processes be on the same
machine and the use of MPI ALLOC MEM for optimal performance. The NEC
SX-5 MPI implementation includes an optimized implementation utilizing the
global shared memory available on the platform [8]. The SCI-MPICH implemen-
tation provides one-sided support using hardware reads and writes [9].

MPICH2 [10] includes a one-sided implementation implemented over point-
to-point and collective communication. Lock/unlock is supported, although the
passive side must enter the library to make progress. The synchronization prim-
itives in MPICH2 are significantly optimized compared to previous MPI im-
plementations [11]. MVAPICH2 [12] extends the MPICH2 one-sided implemen-
tation to utilize InfiniBand’s RMA support. MPI PUT and MPI GET commu-
nication calls translate into InfiniBand put and get operations for contiguous
datatypes. MVAPICH2 has also examined using native InfiniBand for Lock/Un-
lock synchronization [13].

3 Open MPI Architecture

Open MPI [14] is a complete, open-source MPI implementation. The project is
developed as a collaboration between a number of academic, government, and
commercial institutions, including Indiana University, University of Tennessee,
Knoxville, University of Houston, Los Alamos National Laboratory, Cisco Sys-
tems, and Sun Microsystems. Open MPI is designed to be scalable, fault toler-
ant, and high performance, while at the same time being portable to a variety
of networks and operating systems. Open MPI utilizes a low-overhead compo-
nent architecture—the Modular Component Architecture (MCA)—to provide
abstractions for portability and adapting to differing application demands. In
addition to providing a mechanism for portability, the MCA allows developers
to experiment with different implementation ideas, while minimizing develop-
ment overhead.

MPI communication is layered on a number of component frameworks, as
shown in Fig. 1. The PML and OSC frameworks provide MPI send/receive and
one-sided semantics, respectively. The BML, or BTL Management Layer, allows
the use of multiple networks between two processes and the use of multiple upper-
layer protocols on a given network, by maintainin available routes to every peer
and handling scheduling across available routes. The BTL framework provides
communication between two endpoints; an endpoint is usually a communication
device connecting two processes, such as an Ethernet address or an InfiniBand
port. The current BML/BTL implementation allows multiple upper-layer pro-
tocols to simultaneously utilize multiple communication paths. The design and
implementation of the communication layer is described in detail in [15,16].

MPI

Point-to-point (PML)

BML

GM BTL

Rcache

GM
MPool

TCP BTLSM BTL

SM
MPool

One Sided (OSC)

Fig. 1. Component structure for communication in Open MPI.

BTL components provide two communication modes: an active-message style
send/receive protocol and a remote memory access (RMA) put/get protocol.
All sends are non-blocking, with a callback on local send completion, generally
from a BTL-provided buffer. Receives are all into BTL-provided buffers, with a
callback on message arrival. RMA operations provide callbacks on completion
on the origin process and no completion callbacks on the target process (as all
networks do not support remote completion events for RMA operations). All
buffers used on both the origin and target must be “prepared” for use by calls
to the BTL by higher-level components.

4 Open MPI One-sided Implementation

Open MPI provides two implementations of the one-sided (OSC) framework:
pt2pt and rdma. The pt2pt component is implemented entirely over the point-
to-point and collective MPI functions. The original one-sided implementation in
Open MPI, it is now primarily used when a network library does not expose RMA
capabilities, such as Myrinet MX [17]. The rdma component is implemented di-
rectly over the BML/BTL interface and supports a variety of protocols, including
active-message send/receive and true RMA. More detail on the implemnetation
is provided in Section 4.2. Both components share the same synchronization im-
plementation, although the rdma component starts communication before the
synchronization call to end an epoch, while the pt2pt component does not.

4.1 Synchronization

Synchronization for both components is similar to the design used by MPICH2 [11].
Control messages are sent either over the point-to-point engine (pt2pt) or the
BTL (rdma). A brief overview of the synchronization implementation follows:

Fence MPI WIN FENCE is implemented with a reduce-scatter to share the num-
ber of incoming communication operations, then each process waits until
the specified number of operations has completed. Communication may be
started at any time during the exposure/access epoch.

General Active Target A call to MPI POST results in a post control message
sent to every involved process. Communication may be started as soon as a
post message is received from all involved processes. During MPI COMPLETE,
all RMA operations are completed, then a control message with the number
of incoming requests is sent to all peer processes. MPI WAIT blocks until all
peers send a complete message and incoming operations are completed.

Passive Lock/Unlock synchronization does not wait for a lock to be acquired
before returning from MPI WIN LOCK, but may start all communication as
soon as a lock acknowledgment is received. During MPI WIN UNLOCK, a
control message with number of incoming messages is sent to the peer. The
peer waits for all incoming messages before releasing the lock and potentially
giving it to another peer. Like other single threaded MPI implementations,
our implementation currently requires the target process enter the MPI li-
brary for progress to be made.

4.2 Communication

Three communication protocols are implemented for the rdma one-sided compo-
nent. For networks that support RMA operations, all three protocols are avail-
able at run-time, and the selection of protocol is made per-message.

send/recv All communication is done using the send/receive interface of the
BTL, with data copied at both sides for short messages. Long messages are
transferred using the protocols provided by the PML (which may include
RMA operations). Messages are queued until the end of the synchronization
phase.

buffered All communication is done using the send/receive interface of the
BTL, with data copied at both sides for short messages. Long messages are
transferred using the transfer protocols provided by the PML. Short messages
are coalesced into the BTL’s maximum eager send size. Messages are started
as soon as the synchronization phase allows.

RMA All communication for contiguous data is done using the RMA inter-
face of the BTL. All other data is transferred using the buffered protocol.
MPI ACCUMULATE also falls back to the buffered protocol.

Due to the lack of remote completion notification for RMA operations, care
must be taken to ensure that an epoch is not completed before all data transfers
have been completed. Because ordering semantics of RMA operations (especially
compared to send/receive operations) tends to vary widely between network
interfaces, the only ordering assumed by the rdma component is that a message
sent after local completion of an RMA operation will result in remote completion
of the send after the full RMA message has arrived. Therefore, any completion
messages sent during synchronization may only be sent after all RMA operations
to a given peer have completed. This is a limitation in performance for some
networks, but adds to the overall portability of the system.

5 Performance Evaluation

Latency and bandwidth micro-benchmark results are provided using the Ohio
State benchmark suite. Unlike the point-to-point interface, the MPI community
has not developed a set of standard “real world” benchmarks for one-sided com-
munication. Following previous work [11], a nearest-neighbor ghost cell update
benchmark is utilized — the fence version is shown in Fig. 5. The test was also
extended to call MPI PUT once per integer in the buffer, rather than once per
buffer.

for (i = 0 ; i < ntimes ; i++) {
MPI Win fence(MPI MODE NOPRECEEDE, win);
for (j = 0 ; j < num nbrs ; j++) {

MPI Put(send buf + j ∗ bufsize, bufsize, MPI DOUBLE, nbrs[j],
j, bufsize, MPI DOUBLE, win);

}
MPI Win fence(0, win);

}

Fig. 2. Ghost cell update using MPI FENCE

All tests were run on the Indiana University Department of Computer Sci-
ence Odin cluster, a 128 node cluster of dual-core dual-socket 2.0 GHz Opteron
machines, each with 4 GB of memory. Each node contains a single Mellanox
InfiniHost PCI-X SDR HCA, connected to a 148 port switch. MVAPICH2 0.9.8
results are provided as a baseline. No configuration or run-time performance op-
tions were specified for MVAPICH2. The mpi leave pinned option, which tells
Open MPI to leave memory registered with the network until the buffer is freed
by the user rather than when communication completes, was specified to Open
MPI (this functionality is the default in MVAPICH). Results are provided for
the pt2pt component and all three protocols of the rdma component.

Latency/Bandwidth Fig. 3 presents the latency and bandwidth of MPI PUT
using the Ohio State benchmarks [18]. The buffered protocol presents the best
latency for Open MPI. Although the message coalescing of the buffered proto-
col does not improve performance of the latency test, due to only one message
pending during an epoch, the protocol outperforms the send/recv protocol due to
starting messages eagerly, as soon as all post messages are received. The buffered
protocol provides lower latency than the rdma protocol for short messages be-
cause of the requirement for portable completion semantics, described in the
previous section. No completion ordering is required for the buffered protocol,
so MPI WIN COMPLETE does not wait for local completion of the data transfer
before sending the completion count message. On the other hand, the rdma pro-
tocol must wait for local completion of the event before sending the completion

count control message, otherwise the control message could overtake the RDMA
transfer, resulting in erroneous results.

The bandwidth benchmark shows the advantage of the buffered protocol, as
the benchmark starts many messages in each synchronization phase. The buffered
protocol is therefore able to outperform both the rdma protocol and MVAPICH.
Again, the send/recv protocol suffers compared to the other protocols, due to the
extra copy overhead compared to rdma, the extra transport headers compared to
both rdma and buffered, and the delay in starting data transfer until the end of
the synchronization phase. For large messages, where all protocols are utilizing
RMA operations, realized bandwidth is similar for all implementations.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

La
te

nc
y

(u
s)

Message size (bytes)

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

MVAPICH2

(a) Latency

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
ill

io
ns

 o
f b

yt
es

 /
se

co
nd

)

Message size (bytes)

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

MVAPICH2

(b) Bandwidth

Fig. 3. Latency and Bandwidth of MPI PUT calls between two peers using gen-
eralized active synchronization.

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

La
te

nc
y

(u
s)

Message size (bytes)

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

MVAPICH2

(a) Latency

 0.1

 1

 10

 100

 1000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 (

M
ill

io
ns

 o
f b

yt
es

 /
se

co
nd

)

Message size (bytes)

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

MVAPICH2

(b) Bandwidth

Fig. 4. Latency and Bandwidth of MPI GET calls between two peers using gen-
eralized active synchronization.

The latency and bandwidth of MPI GET are shown in Fig. 4. The rdma
protocol has lower latency than the send/receive based protocols, as the target
process does not have to process requests at the MPI layer. The present buffered
protocol does not coalesce reply messages from the target to the origin, so there
is little advantage to using the buffered protocol over the send/recv protocol.
For the majority of the bandwidth curve, all implementations other than the
rdma protocol provide the same bandwidth. The rdma protocol clearly suffers
from a performance issue that the MVAPICH2 implementation does not. For
short messages, we believe the performance lag is due to receiving the data
directly into the user buffer, which requires registration cache look-ups, rather
than copying through a pre-registered “bounce” buffer. The use of a bounce
buffer for MPI PUT but not MPI GET is an artifact of the BTL interface, which
we are currently addressing.

Ghost Cell Updates Fig. 5 shows the cost of performing an iteration of a
ghost cell update sequence. The tests were run across 32 nodes, one process
per node. For both fence and generalized active synchronization, the ghost cell
update with large buffers shows relative performance similar to the put latency
shown previously. This is not unexpected, as the benchmarks are similar with
the exception that the ghost cell updates benchmark sends to a small number of
peers rather than to just one peer. Fence results are not shown for MVAPICH2
because the tests ran significantly slower than expected and we suspect that the
result is a side effect of the testing environment.

When multiple puts are intiated to each peer, the benchmark results show
the disadvantage of the send/recv and rdma protocol compared to the buffered
protocol. The number of messages injected into the MPI layer grows as the
message buffer grows. With larger buffer sizes, the cost of creating requests,
buffers, and the poor message injection rates of InfiniBand becomes a limiting
factor. When using InfiniBand, the buffered protocol is able to reduce the number
of messages injected into the network by over two orders of magnitude.

6 Summary

As we have shown, there are a number of implementation options for the MPI
one-sided interface. While the general consensus in the MPI community has been
to exploit the RMA interface provided by modern high performance networks,
our results appear to indicate that such a decision is not necessarily clear-cut.
The message coalescing opportunities available when using send/receive seman-
tics provides much higher realized network bandwidth than when using RMA.
The completion semantics imposed by a portable RMA abstraction also requires
ordering that can cause higher latencies for RMA operations than for send/re-
ceive semantics.

Using RMA operations has one significant advantage over send/receive –
the target side of the operation does not need to be involved in the message
transfer, so the theoretical availability of computation/communication overlap is

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06

T
im

e
pe

r
ite

ra
tio

n
(u

s)

Message Size

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

(a) Fence – one put

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000 100000

T
im

e
pe

r
ite

ra
tio

n
(u

s)

Message Size

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

(b) Fence – many puts

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06

T
im

e
pe

r
ite

ra
tio

n
(u

s)

Message Size

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

MVAPICH

(c) Generalized – one put

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000 100000

T
im

e
pe

r
ite

ra
tio

n
(u

s)

Message Size

Open MPI Pt2Pt
Open MPI send/recv

Open MPI buffered
Open MPI RDMA

(d) Generalized – many puts

Fig. 5. Ghost cell iteration time at 32 nodes for varying buffer size, using fence
or generalized active synchronization.

improved. In our tests, we were unable to see this in practice, likely due less to any
shortcomings of RMA and more due to the two-sided nature of the MPI-2 one-
sided interface. Further, we expected the computation/communication overlap
advantage to become less significant as Open MPI develops a stronger progress
thread model, allowing message unpacking as messages arrive, regardless of when
the application enters the MPI library.

References

1. Geist, A., Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Saphir, W.,
Skjellum, T., Snir, M.: MPI-2: Extending the Message-Passing Interface. In: Euro-
Par ’96 Parallel Processing, Springer Verlag (1996) 128–135

2. Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W.,
Snir, M.: MPI: The Complete Reference: Volume 2, the MPI-2 Extensions. MIT
Press (1998)

3. Message Passing Interface Forum: MPI: A Message Passing Interface. In: Proc. of
Supercomputing ’93, IEEE Computer Society Press (November 1993) 878–883

4. Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI: The
Complete Reference. MIT Press, Cambridge, MA (1996)

5. Bonachea, D., Duell, J.: Problems with using MPI 1.1 and 2.0 as compilation
targets for parallel language implementations. Int. J. High Performance Computing
and Networking 1(1/2/3) (2004) 91–99

6. Burns, G., Daoud, R., Vaigl, J.: LAM: An Open Cluster Environment for MPI.
In: Proceedings of Supercomputing Symposium. (1994) 379–386

7. Booth, S., Mourao, F.E.: Single Sided Implementations for SUN MPI. In: Super-
computing. (2000)

8. Trff, J.L., Ritzdorf, H., Hempel, R.: The implementation of mpi-2 one-sided com-
munication for the nec sx-5. In: Supercomputing 2000, IEEE/ACM (2000)

9. Worringen, J., Ger, A., Reker, F.: Exploiting transparent remote memory access for
non-contiguous and one-sided-communication. In: Proceedings of ACM/IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS 2002), Work-
shop for Communication Architecture in Clusters (CAC 02), Fort Lauderdale, USA
(April 2002)

10. Argonne National Lab.: MPICH2. http://www-unix.mcs.anl.gov/mpi/mpich2/
11. Thakur, R., Gropp, W., Toonen, B.: Optimizing the Synchronization Operations

in Message Passing Interface One-Sided Communication. Int. J. High Perform.
Comput. Appl. 19(2) (2005) 119–128

12. Huang, W., Santhanaraman, G., Jin, H.W., Gao, Q., Panda, D.K.: Design and
Implementation of High Performance MVAPICH2: MPI2 over InfiniBand. In: Int’l
Sympsoium on Cluster Computing and the Grid (CCGrid), Singapore (May 2006)

13. Jiang, W., Liu, J., Jin, H.W., Panda, D.K., Buntinas, D., Thakur, R., Gropp,
W.: Efficient Implementation of MPI-2 Passive One-Sided Communication on
InfiniBand Clusters. In: Proceedings, 11th European PVM/MPI Users’ Group
Meeting, Budapest, Hungary (September 2004)

14. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next gen-
eration MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary (September 2004) 97–104

15. Shipman, G.M., Woodall, T.S., Graham, R.L., Maccabe, A.B., Bridges, P.G.: In-
finiBand Scalability in Open MPI. In: IEEE International Parallel And Distributed
Processing Symposium. (2006 (to appear))

16. Woodall, T., et al.: Open MPI’s TEG point-to-point communications methodol-
ogy : Comparison to existing implementations. In: Proceedings, 11th European
PVM/MPI Users’ Group Meeting. (2004)

17. Myricom, Inc: Myrinet Express (MX): A High-Performance, Low-Level, Message-
Passing Interface for Myrinet (2006)

18. Network-Based Computing Laboratory, Ohio State University: Ohio State Bench-
mark Suite. http://mvapich.cse.ohio-state.edu/benchmarks/

	Analysis of Implementation Options for MPI-2 One-Sided
	 Brian W. Barrett , Galen M. Shipman , Andrew Lumsdaine ,

