
High Performance RDMA Protocols in HPC

Tim S. Woodall1, Galen M. Shipman1, George Bosilca2, Arthur B. Maccabe3

Los Alamos National Laboratory, Advanced Computing Laboratory
{twoodall, gshipman}@lanl.gov

University of Tennessee, Dept. of Computer Science
bosilca@cs.utk.edu

University of New Mexico, Dept. of Computer Science
maccabe@cs.unm.edu

Abstract. Modern network interconnects that leverage Remote Direc-
tory Memory Access (RDMA) and OS bypass, such as Infiniband [2],
Myrinet [9], and iWARP over TCP [3], can offer significant performance
advantages over conventional send/receive network semantics. However,
the high performance of RDMA often comes with hidden costs. RDMA
based interconnects generally fail to provide true one-sided semantics, re-
quiring an exchange of information prior to initiating a one-sided RDMA
operation. In addition, both the initiator and target must typically pre-
serve the physical to virtual memory mappings during the RDMA oper-
ation.
This paper describes a unique user-level ‘pipeline’ protocol that addresses
these constraints while avoiding some of the pitfalls of existing tech-
niques. By effectively overlapping the cost of memory registration with
RDMA operations this protocol provides good performance even in the
absence of memory buffer reuse. This protocol may also take advantage
of memory buffers that have already been used in RDMA operations by
avoiding the cost of memory registration. Through this approach, band-
width may be increased up to 67% when memory buffers are not effec-
tively reused while providing performance equal to that of existing tech-
niques as demonstrated by both Linpack and NPB benchmark results.
Several user level protocols are explored using Open MPI’s PML (Point
to point messaging layer) and compared/contrasted to this ‘pipeline’ pro-
tocol.

1 Introduction

RDMA (Remote Direct Memory Access) capable interconnects are widely used in
high performance computing (HPC) systems. While these interconnects provide
for high bandwidth and low latency messaging, they also pose unique challenges
to HPC software designers. The Message Passing Interface (MPI) standard [8],
one of the most widely used HPC messaging paradigms, generally abstracts these
issues from the parallel programmer. However, implementations of this standard
and other messaging middleware must address these challenges to achieve bal-
anced performance across a wide variety of application communication patterns.

One such challenge is the requirement by the majority of RDMA intercon-
nects that memory used in RDMA operations be explicitly registered with the
interconnect and pinned by the OS. Memory registration is often an expensive
operation requiring a trap to the OS and an additional linear cost that is a func-
tion of the number of pages in the memory region. Various techniques exist to
minimize the impact of memory registration but each make specific assumptions
about application behavior or system usage. Typical approaches involve caching
registrations for later reuse. However, many applications do not effectively reuse
communication buffers. Additionally, the application may invalidate the cached
buffer, which places constraints on the return of cached pages to the OS.

Another issue is that RDMA operations are described entirely by the ini-
tiator of the operation. This requires that both source and target buffers be
made known to the intiator prior to the RDMA operation. The peer must send
their local address and any memory registration information required by the
interconnect to the intiator thereby incurring another roundtrip in the RDMA
operation.

In this paper we describe a high performance user level RDMA protocol
which minimizes the impact of memory registration while avoiding the pitfalls
of other techniques. This protocol provides performance at or exceeding other
methods while minimizing resource usage. In addition, this protocol makes no
assumption about application behavior thereby providing improved performance
for certain applications.

This protocol was implemented and evaluated in the context of Open MPI
[5]. The Open MPI project draws upon prior work from LA-MPI [6], LAM/MPI
[11], FT-MPI[4] and PAX-MPI [7]. Open MPI is however, a completely new MPI
implementation, designed from the ground up to address the demands of current
and next generation architectures and interconnects.

The remainder of this paper is organized as follows. Section 2 provides an
overview of Infiniband, the RDMA interconnect used in our research. Next, sec-
tion 3 discusses different approaches to minimize the impact of memory regis-
tration, while section 4 discusses our user-level pipeline protocol. Open MPI’s
support for multiple techniques is discussed in Section 4. Results are discussed
in Section 6, followed by conclusions and future work in Section 7.

2 Infiniband

Infiniband, similar to Myrinet GM and iWARP, provides both Remote Direct
Memory Access (RDMA) and Operating System (OS) bypass facilities. RDMA
enables data transfer from the address space of an application process to a peer
process across the network fabric without requiring involvement of the host CPU.
Infiniband RDMA operations support both two-sided send/receive and one-sided
put/get semantics. Each of these operations may be queued from the user level
directly to the host channel adapter (HCA) for execution, bypassing the OS to
minimize latency and processing requirements on the host CPU.

Infiniband does place some constraints on these operations. As data is moved
directly between the host channel adapter (HCA) and user level source/destination
buffers, these buffers must be registered with the HCA in advance of their use.
Registration is a relatively expensive operation which locks the memory pages
associated with the request, thereby preserving the virtual to physical mappings.
Additionally, when supporting send/receive semantics, pre-posted receive buffers
are consumed in order as data arrives on the host channel adapter (HCA). Since
no attempt is made to match available buffers to the incoming message size, the
maximum size of a message is constrained to the minimum size of the posted
receive buffers.

Infiniband shares many characteristics with other common RDMA intercon-
nects including Myrinet and emerging standards such as iWARP. The common
requirement for explicit memory registration, local knowledge of peer registra-
tions prior to initiating an RDMA operation, and the associated issues with
effectively managing these registrations motivated the work described in the
following sections.

3 RDMA

To overcome the expense of registering memory with the interconnect, applica-
tion and library developers have used several techniques. A simple solution is to
restrict all RDMA operations to a static memory region. This allows the applica-
tion to register the memory region once and amortize this cost over a potentially
large number of RDMA operations. While this does help in hiding the costs of
the memory registration, it restricts the application to a static memory region.
For many applications this usage model is inappropriate and forces the user to
copy in/out of the registered memory. For larger messages copy costs quickly
become a bottleneck.

Another approach is to register memory on demand. The target and source
buffers are registered prior to the RDMA operation and then deregistered upon
completion of the operation. This approach allows the user to RDMA from any
memory region providing a true zero copy transfer. Unfortunately the benefits
of zero copy are mitigated by the high cost of registering the memory prior to
each RDMA operation.

A third approach avoids the high cost of copying in/out of a static memory
region and in some use cases allows the cost of registering the memory region
to be amortized over multiple RDMA operations. Prior to the RDMA opera-
tion the memory region is registered and the registration is then cached locally.
Subsequent RDMA operations first query the cache for a matching registration
and if found uses this registration to immediately initiate the RDMA opera-
tion. For applications which regularly reuse source and target buffers for RDMA
operations the cost of the initial registration is effectively amortized over these
subsequent RDMA operations. This approach was first available in MPICH-GM
[1].

A drawback to this approach is that some applications may not effectively
reuse source and target buffers incurring a high cost for each RDMA operation.
Additionally, cached buffers may be frequently invalidated by the application.
Message buffers allocated by the application, registered and cached by the MPI
layer, and later returned to the OS by the application must be removed from
the cache at the MPI layer. Reuse of these cached registrations would result
in corrupted data transfers due to changes in the page table mappings on sub-
sequent allocations. Current approaches to addressing this issue involve either
non-portable memory hooks and/or linker tricks to intercept sbrk, munmap,
and/or free to insure that returned pages are removed from the cache, or simply
disabling the return of pages to the OS by the allocator.

This paper describes an alternate approach which allows RDMA operations
from arbitrary memory regions while maintaining high performance. This ap-
proach makes no assumption about the applications reuse of source and tar-
get buffers. Instead of registering the entire source and target buffer prior to
an RDMA operation, memory is dynamically registered in smaller pieces and
RDMA operations are overlapped with memory registration/deregistration. Ad-
ditionally, send/recv operations are employed to eagerly send data to cover the
cost of initializing the pipeline. This pipeline protocol is described in further
detail in the following section.

4 RDMA Pipeline Protocol

The pipeline protocol begins by eagerly sending the first part of the message data,
up to a configurable eager limit, along with a MATCH header using send/receive
semantics, as illustrated in Figure 1,

Sender Receiver

match + eager data

MPI Message
Eager Data

Eager Limit

match ()

Fig. 1. Sending Eager Data with Match Header

From figure 2 upon receipt and match of the header to a posted receive, the re-
ceiver responds with an ACK to the source and begins registering blocks (RDMA

fragments) of the target buffer across the available RDMA capable HCAs. The
number of blocks registered at any given time is bound by a maximum pipeline
depth. The size of each block is constrained by the maximum configured RDMA
size for each interconnect. As each registration in the pipeline completes, an
RDMA target fragment READY control message is sent to the source to initiate
a registration of the source RDMA fragment followed by an RDMA write on the
block.

MPI Message

Send/Recv Data RDMA Pipeline DataEager Data

Eager Limit
RDMA Offset -

Eager Limit

Max RDMA
Size

RDMA
Fragment 1

Max RDMA
Size

RDMA
Fragment 2

Max RDMA
Size

RDMA
Fragment 3

Max RDMA
Size

RDMA
Fragment 4

Max RDMA
Size

RDMA
Fragment 5

Sender Receiver

match + eager data

match ()

prepare(frag 1)

prepare(frag 2)

ACK match

READY Frag 1

READY Frag 2

prepare(frag 3)

READY Frag 3

Pipeline
Depth

Fig. 2. Receiver Registers RDMA Target Fragments

To cover the cost of initializing the pipeline, on receipt of the initial ACK at
the source, send/receive semantics are used to deliver data from the eager limit
up to the initial RDMA write offset returned from the peer in the message ACK,
as illustrated in Figure 3. If the rdma offset is larger than the maximum config-
ured send size, the data is again fragmented and delivered across the available
interconnects.

From Figure 4 we see that as RDMA READY control messages are received
at the source, the corresponding block of the source buffer is registered and an
RDMA write operation is initiated on the current block. On local completion
at the source, an RDMA FIN message is sent to the peer. Registered blocks
are deregistered (released) upon local completion or receipt of the RDMA FIN
message. If required, the receipt of an RDMA FIN messages may also further
advance the RDMA pipeline.

This protocol effectively overlaps the cost of registration/deregistration with
RDMA writes. Resources are released immediately and the high overhead of a

MPI Message

Send/Recv DataEager Data

Eager Limit
RDMA Offset -

Eager Limit

Sender Receiver

match + eager data

match ()

ACK match

Data

Data

send ()

send ()
S

en
d/

R
ec

v
D

at
a

Fig. 3. Sender Sends Data up to the RDMA Offset to Cover Pipeline Initialization
Costs

single large memory registration is avoided. Additionally, this protocol results
in improved performance for applications which may not reuse buffers for MPI
operations effectively.

5 Other RDMA protocols

In addition to the RDMA pipeline protocol, which is enabled by default, Open
MPI supports additional techniques for managing RDMA registrations. These
approaches have been developed to contrast the relative merits of each, and allow
the behaviour to be tuned at run-time to best match the application character-
stics.

5.1 RDMA Cache

Open MPI provides the capability to optionally register memory on first use and
cache these registrations for later re-use. When this approach is used, the entire
source/destination buffer is registered and a single RDMA operation is initiated
on receipt of an ack from the peer. If multiple network interfaces are available,
the message is divided across the available interfaces, and a single operation is
initiated on each interface.

While other MPI implementations prevent physical pages from being re-
leased to the OS, Open MPI provides the capability to use memory hooks to

MPI Message

Send/Recv Data RDMA Pipeline DataEager Data

Eager Limit
RDMA Offset -

Eager Limit

Max RDMA
Size

RDMA
Fragment 1

Max RDMA
Size

RDMA
Fragment 2

Max RDMA
Size

RDMA
Fragment 3

Max RDMA
Size

RDMA
Fragment 4

Max RDMA
Size

RDMA
Fragment 5

Sender Receiver

prepare(frag 1)

READY Frag 1

prepare(frag 1)

RDMA_Write(frag 1)

Data Frag 1

Poll(RDMA Completion)

FIN Frag 1

release(frag 1)
release(frag 1)

Fig. 4. Sender Prepares and RDMA Writes a Fragment

intercept the deallocation of memory and it’s return to the OS. When pages are
returned to the OS via sbrk/munmap, the pages are checked and any matching
entries de-registered. This prevents future use of an invalid memory registration
while allowing memory to be returned to the host operating system. Intercept-
ing memory deallocation introduces additional overhead and additional research
into reducing this overhead is ongoing.

5.2 RDMA Caching Pipeline

A hybrid approach was developed to explore the benefit of caching individual
registrations within the RDMA pipeline protocol. In this approach, the pipeline
protocol described in section 4 is modified to cache each registration as it oc-
curs in the pipeline. Subsequent pipeline RDMA operations from the same or
overlapping buffer space then re-use the cached registrations. Registrations are
aligned to the segment size to further promote reuse.

This hybrid approach leverages the pipeline protocol for good performance
in the case of low buffer reuse, and achieves performance closer to the RDMA
cache when existing registrations can be re-used. The drawback to the introduc-
tion of the cache is the added requirement for memory hooks to intercept the
deallocation of memory as described above.

6 Results

This section presents a comparison of the different protocols in Open MPI. We
first demonstrate the performance of the pipeline protocol as a function of buffer
reuse in terms of bandwidth. Next, we examine effective bandwidth among mul-
tiple peers using differnt communication patters via the Effective Bandwidth
Benchmark [10]. In general, our results provide comparisons of the pipeline pro-
tocol to:

copy in/out - Standard send/recv semantics with copy in/out of pre-registered
buffers

leave pinned (memory hooks) - Registration cache described in section 5.1 with
memory hooks to intercept memory deallocations.

leave pinned (disable sbrk) - Registration cache described in section 5.1 with re-
turn of pages to OS disabled.

pipeline - Pipeline protocol described in section 4
pipeline leave pinned (memory hooks) - Caching pipeline described in section 5.2

with memory hooks to intercept memory deallocations
pipeline leave pinned (disable sbrk) - Caching pipeline described in section 5.2

with return of pages to OS disabled.

6.1 Bandwidth

The following graphs illustrate the performance of the pipeline protocol as a func-
tion of buffer reuse. As Figure-5 illustrates, with no buffer reuse, the standard
pipeline protocol achieves a speedup of up to 67 percent over the registration
cache. This can be attributed to the pipeline protocol effectively overlapping the
cost of registration with RDMA. In contrast, with no buffer reuse, the caching
protocol is limited by the high cost of registration.

An interesting metric is the amount of reuse required for the caching proto-
col to achieve performance comparable to the pipeline. Figure-6 illustrates the
bandwidth achieved for each protocol as a function of the number of times the
buffer is reused, for an arbitrary fixed message size (8 Mbytes). As the graph
illustrates, the buffer must be reused on the order of 40-50 times before the
caching protocol achieves performance equivalent to the standard pipeline. Note
that the hybrid caching pipeline ramps up much earlier, as the registrations are
overlapped with RDMA and re-used on subsequent invocations of the pipeline.
This approach improves bandwidth over the standard pipeline as we defer the
cost of deregistation until memory is released by the application.

6.2 Effective Bandwidth Benchmark beff

The Effective Bandwidht Benchmark (beff) was used to examine protocol effect
on bandwidth in more complex communication patterns. In this benchmark 8
nodes were used to communicate message sizes up to 1 GByte using different
communication patterns. In this benchmark the benefits of the pipeline procotol

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 M

B
yt

es
/S

ec

Message Size Bytes

Protocol performance - No buffer reuse (log scale)

pipeline
copy in/out

pipeline leave pinned
leave pinned

Fig. 5. Ping Pong Bandwidth - No Buffer Reuse - Log Scale

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 1 10 100

B
an

dw
id

th
 M

B
yt

es
/S

ec

Number of Time Buffer Reused

Protocol performance - Varying Buffer reuse (log scale)

pipeline leave pinned
pipeline

copy in/out
leave pinned

Fig. 6. Ping Pong Bandwidth - Varying Buffer Reuse - Log Scale

beff Lmax beff beff ping-pong
at Lmax at Lmax bandwidth
rings& rings
random only

MByte/s MByte/s MByte/s MByte/s

accumulated
- pipeline leave pinned 1803 8 MB 5409 5426 743
- pipeline 1509 8 MB 4714 4679 710
- leave pinned 1375 8 MB 3912 3934 604
- copy in/out 1369 8 MB 3131 3129 682
per process
- pipeline leave pinned 225 676 678
- pipeline 189 589 585
- leave pinned 172 489 492
- copy in/out 171 391 391

are apparent. When the memory cache is used (leave pinned) in conjunction
with the pipeline protocol the total bandwidth achieved outperforms all the
other protocols by a significant margin.

6.3 Experimental Setup

Our experiments were performed on a 256 node cluster consisting of dual In-
tel Xeon X86-64 3.4 GHz processors with a minimum 6GB of RAM, Mellanox
PCI-Express Lion Cub adapters connected via a Voltair switch. The Operating
System is Linux 2.6.9-11 with Open MPI 1.1 pre-release.

7 Conclusions - Future Work

In this section we summarize the results of this work and provide directions for
future work.

7.1 Conclusions

RDMA capable interconnects pose unique challenges that require careful con-
sideration to achieve balanced performance and scalability across a wide range
of application communication patterns. The results of this work indicate the
RDMA pipeline protocol effectively addresses these concerns, by overlapping
the dynamic registration and deregistration of memory buffers with data trans-
fer. This approach avoids the issues associated with maintaining a registration
cache, which requires non-portable memory hooks to either intercept dealloca-
tions, or disable the return of pages to the OS. Additionally, the pipeline protocol
reduces the memory footprint and resource requirements of the application over
the caching approach.

7.2 Future work

The hybrid pipeline protocol which cached registrations as they occurred in
the pipeline provided promising results over the dynamic pipeline. However, the
caching approach is still constrained by the above issues. Additional work to
address these issues would involve effectively managing cache size, investigating
the potential for efficient notification from the OS on changes to registered pages,
and improving the performance of cache cleanup/deregistration.

Acknowledgments

This material is based upon work supported by Subcontract No. 12783-001-05 49
issued to Rice University from the Regents of the University of California (Los
Alamos National Laboratory). Los Alamos National Laboratory is operated by
the University of California for the National Nuclear Security Administration of
the United States Department of Energy under contract W-7405-ENG-36.

Project support was provided through ASC/PSE and ASC/S&CS programs.
LA-UR-06-1268.

References

1. Performance of mpich-gm.
2. I. T. Association. Infiniband architecture specification vol 1. release 1.2, 2004.
3. M. Chadalapaka, H. Shah, U. Elzur, P. Thaler, and M. Ko. A study of iscsi

extensions for rdma (iser). In NICELI ’03: Proceedings of the ACM SIGCOMM
workshop on Network-I/O convergence, pages 209–219, New York, NY, USA, 2003.
ACM Press.

4. G. E. Fagg, A. Bukovsky, and J. J. Dongarra. HARNESS and fault tolerant MPI.
Parallel Computing, 27:1479–1496, 2001.

5. E. Garbriel, G. Fagg, G. Bosilica, T. Angskun, J. J. D. J. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R. Castain, D. Daniel, R. Graham, and
T. Woodall. Open MPI: goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,
2004.

6. R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnich, C. E. Ras-
mussen, L. D. Risinger, and M. W. Sukalksi. A network-failure-tolerant message-
passing system for terascale clusters. International Journal of Parallel Program-
ming, 31(4), August 2003.

7. R. Keller, E. Gabriel, B. Krammer, M. S. Mueller, and M. M. Resch. Towards
efficient execution of MPI applications on the grid: porting and optimization issues.
Journal of Grid Computing, 1:133–149, 2003.

8. Message Passing Interface Forum. MPI: A Message Passing Interface. In Proc. of
Supercomputing ’93, pages 878–883. IEEE Computer Society Press, November
1993.

9. Myricom. Myrinet-on-VME protocol specification.
10. R. Rabenseifner and A. Koniges. The parallel communication and i/o bandwidth

benchmarks: b eff and b eff io. 2001.
11. J. Squyres and A. Lumsdaine. A Component Architecture for LAM/MPI. In

Proceedings, 10th European PVM/MPI Users’ Group Meeting, number 2840 in
Lecture Notes in Computer Science, Venice, Italy, September / October 2003.
Springer-Verlag.

