
Open MPI’s TEG Point-to-Point Communications
Methodology: Comparison to Existing Implementations

T.S. Woodall1, R.L. Graham1, R.H. Castain1, D.J. Daniel1, M.W. Sukalski2,
G.E. Fagg3, E. Gabriel3, G. Bosilca3, T. Angskun3, J.J. Dongarra3,

J.M. Squyres4, V. Sahay4, P. Kambadur4, B. Barrett4, A. Lumsdaine4

1 Los Alamos National Lab
{twoodall, rlgraham, rhc, ddd}@lanl.gov

2 Sandia National Laboratories,
mwsukal@ca.sandia.gov

3 University of Tennessee,
{fagg, egabriel, bosilca, anskun, dongarra}@cs.utk.edu

4 Indiana University
{jsquyres, vsahay, pkambadu, brbarret, lums}@osl.iu.edu

Abstract. TEG is a new methodology for point-to-point messaging developed
as a part of the Open MPI project. Initial performance measurements are pre-
sented, showing comparable ping-pong latencies in a single NIC configuration,
but with bandwidths up to 30% higher than that achieved by other leading MPI
implementations. Homogeneous dual-NIC configurations further improved per-
formance, but the heterogeneous case requires continued investigation.

1 Introduction

Petascale computing is of increasing importance to the scientific community. Concur-
rently, the availability of small size clusters (on the order of tens to hundreds of CPUs)
also continues to increase. Developing a message-passing system that efficiently deals
with the challenges of performance and fault tolerance across this broad range repre-
sents a considerable challenge facing MPI developers.

The Open MPI project [3] —an ongoing collaboration between the Resilient Tech-
nologies Team at Los Alamos National Lab, the Open Systems Laboratory at Indiana
University, and the Innovative Computing Laboratory at the University of Tennessee—
is a new open-source implementation of the Message Passing Interface (MPI) standard
for parallel programming on large-scale distributed systems [4,6] focused on addressing
these problems. This paper presents initial results from Open MPI’s new point-to-point
communication methodology (code-named “TEG”[9]) that provides high-performance,
fault tolerant message passing. A full description of the design is given in the accompa-
nying paper [9].

Open MPI/TEG’s provides an enhanced feature set with support for dropped pack-
ets, corrupt packets, and NIC failures; concurrent network types (e.g. Myrinet, Infini-



Band, etc.), in a single application run; single message fragmentation and delivery uti-
lizing multiple NIC, including different NIC types, such as Myrinet and InfiniBand;
and heterogeneous platform support within a single job, including different OS types,
different addressing modes (32 vs 64 bit mode), and different endianess. All of these
features have been adapted into a new modular component architecture that allows for
both compile-time and runtime selection of options.

2 Results

The performance of Open MPI’s TEG methodology was compared against that of sev-
eral well-known existing MPI implementations: FT-MPI v1.0.2[2], LA-MPI v1.5.1[5],
LAM/MPI v7.0.4[1], and MPICH2 v0.96p2[7]. Experiments were performed using
a two processor system based on 2.0GHz Xeon processors sharing 512kB of cache
and 2GB of RAM. The system utilized a 64-bit, 100MHz, PCI-X bus with two Intel
Pro/1000 NICs (based on the Super P4Dp6, Intel E7500 chipset), and one Myricom
PCI64C NIC running LANai 9.2 on a 66MHz PCI interface. A second PCI bus (64-bit,
133MHz PCI-X) hosted a second, identical Myricom NIC. The processors were running
the Red Hat 9.0 Linux operating system based on the 2.4.20-6smp kernel. All measure-
ments were made using TCP/IP running over both Gigabit Ethernet and Myrinet.

Data was collected for two critical parameters: latency, using a ping-pong test code
(for both MPI blocking and non-blocking semantics) and measuring half round-trip
time of zero byte messages; and single NIC bandwidth results, using NetPIPE v3.6 [8].

2.1 Latency

Latency was measured using a ping-pong test code for both blocking and non-blocking
MPI semantics. Blocking semantics allow for special optimizations, so more mature
implementations will often create specially optimized versions to take advantage of
these capabilities. This optimization has not yet been performed for TEG.

Table 1 compares TEG’s latencies with those of LAM/MPI 7, LA-MPI, FT-MPI,
and MPICH2 for the non-blocking scenario. The latencies for all MPI implementations
with TCP/IP over Myrinet are similar, at about 51µs. Even when TEG makes asyn-
chronous progress with a progress thread, thus greatly reducing the CPU cycles used,
latency is basically unchanged.

When the tests are run using Gigabit Ethernet, however, the measured latencies are
generally lower and show a greater range of values. TEG’s polling mode and LAM/MPI
7 have the lowest latencies at just below 40µs, or about 25% lower than was obtained
over Myrinet. MPICH2 has slightly higher latency, followed by LA-MPI and FT-MPI.
The asynchronous progress mode of Open MPI’s TEG is much higher than the other
entries, with values slightly lower than those obtained with TCP/IP over Myrinet.

Table 2 lists the latency data for the ping-pong results using blocking MPI se-
mantics. In this case, TEG’s latencies are not as good as was obtained when using
non-blocking semantics, with LAM/MPI 7 and MPICH2 is outperforming TEG better,
while LA-MPI and FT-MPI didn’t perform as well as TEG. Again, TEG’s asynchronous
progress mode gives much higher latencies than the polling based approach.



Implementation Myrinet Latency (µs) GigE Latency (µs)
Open MPI/TEG (Polling) 51.5 39.7
Open MPI/TEG (Async) 51.2 49.9
LAM7 51.5 39.9
LA-MPI 51.6 42.9
FT-MPI 51.4 46.4
MPICH2 51.5 40.3

Table 1. Open MPI/TEG latency measurements compared to other MPI implementa-
tions (non-blocking MPI semantics—i.e.,MPI ISEND / MPI IRECV).

Implementation GigE Latency (µs)
Open MPI/TEG (Polling) 41.3
Open MPI/TEG (Async) 52.6
LAM7 36.0
MPICH2 39.0
LA-MPI 42.8
FT-MPI 46.8

Table 2. Open MPI/TEG latency measurements compared to other MPI implementa-
tions (blocking MPI semantics—i.e.,MPI SEND, MPI RECV).

Overall, the initial results obtained with Open MPI/TEG show good latency perfor-
mance characteristics when compared with more mature implementations. This perfor-
mance is obtained despite the overhead required to: (a) stripe a single message across
any number of different network types; (b) provide thread safety (MPI THREAD -
MULTIPLE); and (c) allow proper handling of various failure scenarios. The latency
of the blocking calls is not as good as some of the other current implementations. This
reflects the relative immaturity of the TEG module and the current lack of optimization.

2.2 Bandwidth

Open MPI/TEG’s ability to run in a heterogeneous networking environment makes the
study of bandwidth performance very interesting. To establish this condition, a single
PTL implementation (TCP/IP) was used for this study and operated on networks with
different physical characteristics for the underlying physical transport layer (Myrinet
and Gigabit Ethernet). Bandwidths were measured using NetPIPE v3.6 [8] and com-
pared to that obtained from the same set of MPI implementations used in the latency
measurements.

Figure 1(a) shows the performance of TEG compared to that from other MPI imple-
mentations over Gigabit Ethernet. As the figure shows, TEG, MPICH2, FT-MPI, LA-
MPI, and LAM/MPI all have similar performance characteristics, peaking out close to
900 Mb/sec, similar to that obtained from raw TCP. MPICH2, FT-MPI, and LAM/MPI
exhibit some irregular behavior with message sizes around 100 Kbyte, but this smoothes
out at higher bandwidths and is most likely an artifact of the rendezvous protocol.



However, as Figure 1(b) shows, when running the same tests on a higher bandwidth
interconnect (Myrinet), TEG displays much better bandwidths than MPICH2, FT-MPI,
LA-MPI, and LAM/MPI. TEG’s performance closely tracks the raw TCP/IP bench-
mark results, except at just above a message size of 100 Kbyte, where the rendezvous
protocol causes a temporary drop in measured bandwidth. Both TEG and raw TCP/IP
peak out at a little above 1800 Kb/sec. In contrast, MPICH2, FT-MPI, LA-MPI, and
LAM/MPI all peak out about 30% lower around 1400 Kb/sec. This is due to TEG’s
reduced overheads associated with multiple packet messages, including generation of
the rendezvous protocol’s ACK as soon as a match has been made on the receive side,
and embedding a pointer to the receive object in the ACK so that subsequent packets
can include this in their header for fast delivery on the receive side.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1  10  100  1000  10000  100000  1e+06

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

"open-mpi-poll.out"
"open-mpi-thread.out"

"ftmpi.out"
"la-mpi.out"

"mpich2.out"
"lam7.out"

"tcp.out"

(a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1  10  100  1000  10000  100000  1e+06  1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

"open-mpi-1nic-poll.out"
"open-mpi-1nic-thread.out"

"la-mpi-1nic.out"
"ftmpi.out"

"mpich2.out"
"lam7.out"

"tcp.out"

(b)

Fig. 1. Open MPI/TEG point-to-point ping-pong bandwidth compared to with the
MPICH2, FT-MPI, LA-MPI, and LAM/MPI implementations, and raw TCP/IP. (a) Gi-
gabit Ethernet (b) Myrinet.

Figure 2 shows the results of running the same bandwidth tests over two Myrinet
NICS, with TEG fragmenting and reassembling Open MPI’s messages. The single NIC
data is included for reference. As one would expect, the advantages of using multiple
NIC’s are not apparent in this particular test, until the message is large enough to be
fragmented. At about an 8Mbyte message size, the dual NIC overall bandwidth is about
30% higher than the single NIC bandwidth. The dual NIC data does not appear to have
peaked at the 8Mbyte maximum message size used in the experiment. However, we
do not expect the dual NIC configuration to achieve double the rate of the single NIC
data, since a single process is handling the TCP/IP stack. Parallelism, therefore, is only
obtained over the network and by overlapping the send with the receive in the multiple
fragment case.

The dual NIC implementation in Open MPI/TEG is about 10% more efficient than
that in LA-MPI. Similar to the single NIC case, TEG benefits from the early generation
of the rendezvous protocol ACK and embedding the receive object pointer information
in the ACK message.



 0

 500

 1000

 1500

 2000

 2500

 1  10  100  1000  10000  100000  1e+06  1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

"open-mpi-2nic-poll.out"
"open-mpi-1nic-poll.out"

"open-mpi-2nic-thread.out"
"la-mpi-2nic.out"

Fig. 2. Open MPI/TEG single and dual NIC point-to-point ping-pong bandwidth over
Myrinet. Comparison with LA-MPI.

Figures 3 and 4 show the results of striping a single message over both Gigabit
Ethernet and Myrinet using TEG. The single NIC Gigabit Ethernet and Myrinet are also
included for reference. The results alway fall between the single NIC Gigabit Ethernet at
the low end, and the single NIC Myrinet data at the upper end. This appears to indicate
that adding a Gigabit Ethernet NIC to a system with a single Myrinet NIC can result
in degraded performance. In contrast, adding a Myrinet NIC to a system with a single
Gigabit Ethernet NIC appears to improve performance. Future work will investigate
possible explanations for the observed behavior.

Finally, Figure 5 shows the effect of varying the size of the first message fragment on
the bandwidth profile of Open MPI/TEG. As one would expect, the asymptotic behavior
is independent of the size of the first message fragment. First fragments smaller than
128 KBytes don’t require enough processing at the destination to hide the latency of
the rendezvous protocol. The early transmission of the rendezvous ACK allows for this
overlap to take place.

3 Summary

We have presented the results of running latency and bandwidth test with Open MPI
with TCP/IP over Gigabit Ethernet and Myrinet. These results are compared with those
obtained running LA-MPI, LAM/MPI, FT-MPI, and MPICH2, and show leading la-
tency results when using non-blocking MPI semantics, and middle of the pack results
with still to be optimized blocking MPI semantics. Open MPI’s single bandwidths are
better than those obtained with these same MPI’s.

In addition multi-NIC bandwidth data is obtained with Open MPI. These band-
widths are about 30% better than the single NIC data over Myrinet, and about 10%
better than those obtained by LA-MPI. Using Open MPI to send part of a message



 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 100000  1e+06  1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

"10-gige-90-myri.out"
"25-gige-75-myri.out"
"50-gige-50-myri.out"
"75-gige-25-myri.out"
"90-gige-10-myri.out"
"50-myri-50-myri.out"

"100-gige-1nic.out"
"100-myri-1nic.out"

Fig. 3. Message striping across GigE and Myrinet with round-robin scheduling of first
fragments across both interfaces and weighted scheduling of remaining data

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 100000  1e+06  1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

"10-gige-90-myri.out"
"25-gige-75-myri.out"
"50-gige-50-myri.out"
"75-gige-25-myri.out"
"90-gige-10-myri.out"
"50-myri-50-myri.out"

"100-gige-1nic.out"
"100-myri-1nic.out"

Fig. 4. Message striping across GigE and Myrinet with first fragments delivered via
Myrinet and weighted scheduling of remaining data



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1  10  100  1000  10000  100000  1e+06  1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

"open-mpi-32K.out"
"open-mpi-64K.out"
"open-mpi-96K.out"

"open-mpi-128K.out"
"open-mpi-256K.out"

"tcp.out"

(a)

Fig. 5. Comparison of bandwidth as a function of first message fragment size for Open
MPI/TEG

over networks with different characteristics (Gigabit Ethernet and Myrinet, in this case)
needs further study at this early stage of Open MPI development.

4 Acknowledgments

This work was supported by a grant from the Lilly Endowment, National Science Foun-
dation grants 0116050, EIA-0202048, EIA-9972889, and ANI-0330620, and Depart-
ment of Energy Contract DE-FG02-02ER25536. Los Alamos National Laboratory is
operated by the University of California for the National Nuclear Security Adminis-
tration of the United States Department of Energy under contract W-7405-ENG-36.
Project support was provided through ASCI/PSE and the Los Alamos Computer Sci-
ence Institute, and the Center for Information Technology Research (CITR) of the Uni-
versity of Tennessee.

References

1. G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster Environment for MPI. InProceed-
ings of Supercomputing Symposium, pages 379–386, 1994.

2. Graham E. Fagg, Edgar Gabriel, Zizhong Chen, Thara Angskun, George Bosilca, Antonin
Bukovski, and Jack J. Dongarra. Fault tolerant communication library and applications for
high perofrmance. InLos Alamos Computer Science Institute Symposium, Santa Fee, NM,
October 27-29 2003.

3. E. Garbriel, G.E. Fagg, G. Bosilica, T. Angskun, J. J. Dongarra J.M. Squyres, V. Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, R.H. Castain, D.J. Daniel, R.L. Graham, and T.S.
Woodall. Open mpi: Goals, concept, and design of a next generation mpi implementation. In
Proceedings, 11th European PVM/MPI Users’ Group Meeting, 2004.



4. A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir, T. Skjellum, and
M. Snir. MPI-2: Extending the Message-Passing Interface. InEuro-Par ’96 Parallel Process-
ing, pages 128–135. Springer Verlag, 1996.

5. R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnich, C. E. Rasmussen, L. D.
Risinger, and M. W. Sukalksi. A network-failure-tolerant message-passing system for teras-
cale clusters.International Journal of Parallel Programming, 31(4), August 2003.

6. Message Passing Interface Forum. MPI: A Message Passing Interface. InProc. of Supercom-
puting ’93, pages 878–883. IEEE Computer Society Press, November 1993.

7. Mpich2, argonne.http://www-unix.mcs.anl.gov/mpi/mpich2/ .
8. Q.O. Snell, A.R. Mikler, and J.L. Gustafson. NetPIPE: A Network Protocol Independent

Performace Evaluator. InIASTED International Conference on Intelligent Information Man-
agement and Systems, June 1996.

9. T.S. Woodall, R.L. Graham, R.H. Castain, D.J. Daniel, M.W. Sukalsi, G.E. Fagg, E. Garbriel,
G. Bosilica, T. Angskun, J. J. Dongarra, J.M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
and A. Lumsdaine. Teg: A high-performance, scalable, multi-network point-to-point com-
munications methodology. InProceedings, 11th European PVM/MPI Users’ Group Meeting,
2004.

http://www-unix.mcs.anl.gov/mpi/mpich2/

	Open MPI's TEG Point-to-Point Communications Methodology: Comparison to Existing Implementations
	 T.S. Woodall , R.L. Graham , R.H. Castain , D.J. Daniel , M.W. Sukalski ,  G.E. Fagg , E. Gabriel , G. Bosilca , T. Angskun , J.J. Dongarra ,  J.M. Squyres , V. Sahay , P. Kambadur , B. Barrett , A. Lumsdaine  

