
Open MPI for Cray XE/XK Systems
Manjunath Gorentla Venkata, Richard L. Graham

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN
{manjugv, rlgraham}@ornl.gov

Nathan T. Hjelm, Samuel K. Gutierrez
High Performance Computing Division, HPC-3

Los Alamos National Laboratory
Los Alamos, NM

{hjelmn, samuel}@lanl.gov

Abstract—Open MPI provides an implementation of the MPI
standard supporting communication over a range of high-
performance network interfaces. Recently, Oak Ridge National
Laboratory (ORNL) and Los Alamos National Laboratory
(LANL) collaborated on creating a port of Open MPI for Gemini,
the network interface for Cray XE and XK systems. In this paper,
we present our design and implementation of Open MPI’s point-
to-point and collective operations for Gemini, and techniques we
employ to provide good scaling and performance characteristics.
The point-to-point operations are implemented within a new byte
transfer layer (BTL) component that provides protocols that are
optimized for small, medium, and long messages. An XPMEM
BTL was also implemented for use in all intra-node communi-
cation. The collective operations are implemented within a new
basic collectives (BCOL) module within Cheetah, a framework
in Open MPI for implementing hierarchical collectives.

The micro-benchmark results show that Open MPI’s point-to-
point performance characteristics are similar to that of the native
MPI’s. The collective operation evaluation results show that the
atomic operation-based Barrier outperforms the message-based
Barrier by 39%, thus demonstrating the potential of using atomic
operations for implementing further collective operations.

Keywords-Open MPI; Cray; Gemini; uGNI; Generic Network
Interface; Cheetah; collectives; XPMEM

I. INTRODUCTION

Open MPI is an open-source MPI implementation of the
MPI-2 specification that is developed and maintained by col-
laborators from academia, industry, and national laboratories
[1]. Open MPI provides thread safety and concurrency as
well as network and process fault tolerance. It also supports
network heterogeneity and various high-performance network
interfaces, including InfiniBand, Cray SeaStar, and Myrinet.
Current versions of Open MPI, however, lack support for the
Gemini System Interconnect [2], which is a newly introduced
network interface for the Cray XE and XK system families.

This paper presents extensions for Open MPI to support
Cielo, a 142,304 core XE6 capability-class platform for the
Advanced Simulation and Computing (ASC) Program, and
Titan, a 299,008 core XK6 that is slated to be Oak Ridge
Leadership Computing Facility’s next flagship system. Two
new BTLs were created for the XE/XK port: ugni, which
leverages the uGNI interface, and vader, which leverages
XPMEM [3] - a Linux kernel module that enables a process
to map the memory of another process into its virtual address
space. Currently, vader is used exclusively for intra-node
message transfers and ugni is used exclusively for inter-node

message transfers. An extension was added to the Cheetah
framework, a hierarchical collectives framework in Open MPI,
to support collectives for the Gemini network interface [4].
Only minor modifications were needed in the Open Run-Time
Environment (ORTE) to complete this port.

The rest of the paper is organized as follows. Section II
provides a brief description of the Gemini Network Interface
and Open MPI. Sections III and IV provide a detailed de-
scription of the enhanced shared-memory BTL and the uGNI
BTL, respectively. Section V provides a description of the
Cheetah framework and the extensions to support collectives
for the Gemini network. Section VI outlines the performance
evaluation and presents some micro-benchmark performance
results. Section VII provides an analysis of the performance
characterists of this port. Section VIII concludes with future
work.

II. BACKGROUND

A. Gemini Network Interface

The Gemini System Interconnect is the network used by
the Cray XE and XK system families and is the successor
to the SeaStar* network interconnect found in XT systems.
A 3D torus network is built from Gemini application-specific
integrated circuits (ASICs) that provide 2 network interface
controllers (NICs) and a 48-port router [2]. Two Opteron nodes
are connected to a Gemini that provides 10 torus connections
- 8 divvied evenly between X and Z and 2 in Y, as shown in
Figure 1. Link bandwidths are 4.68 to 9.375 GB/s per direction
[2].

The Generic Network Interface (GNI) [5] exposes low-level,
user-space communication services through uGNI, which
helps facilitate the effective utilization of the underlying
Gemini hardware. In particular, GNI exposes an interface that
provides two mechanisms for initiating remote direct memory
access (RDMA) transactions: Fast Memory Access (FMA) and
Block Transfer Engine (BTE).

FMA transactions come in several forms. Short message
(SMSG) and Shared Message Queue (MSGQ) are both used
to transfer point-to-point short messages, but differ in mem-
ory resource requirements and performance characteristics.
In particular, SMSG provides the lowest latency and the
highest short messaging rates, but suffers from higher memory
requirements due to dedicated buffers, called Mailboxes, which
are allocated on a per-peer and per-connection basis. MSGQ



uses SMSG facilities for message transfers, but shares the
Mailbox information required for an SMSG connection with
all job instances located within the same node [5]. Sharing
resources in this manner allows MSGQ to scale in the number
of nodes, rather than in the number of peers, but does, however,
come at the cost of additional performance overhead [6]. FMA
DM (Distributed Memory) is used to execute PUT, GET, and
atomic memory operations (AMOs).

BTE is best suited for large, asynchronous message trans-
fers. Once the transfer is initiated, up to 4 GB of data can be
transfered by the Gemini hardware without CPU involvement
[2].

Detailed descriptions surrounding the usage and design of
GNI can be found in [5] and [6].

B. Open MPI

Open MPI’s design and implementation revolves around
the concept of a modular component architecture (MCA).
Within Open MPI, functionality is provided by self-contained
software modules with well-defined interfaces. The commu-
nication infrastructure that we chose to leverage in this port
is comprised of three major frameworks: the point-to-point
management layer (PML), the BTL management layer (BML)
and, the BTL. The PML layer provides MPI semantics, the
BML layer is responsible for multiplexing MPI messages, and
the BTL layer is responsible for transferring data between
communication endpoints. More details regarding Open MPI’s
architecture can be found in [1].

C. Related Work

The uGNI BTL’s design is very similar to that of MPICH2’s
uGNI network module, which also provides MPI support for
Cray XE and XK systems. The module uses an eager protocol
for small and medium message transfers and a rendezvous
protocol for large message transfers [6]. For message sizes
greater than the SMSG message limit, MPICH2 uses the BTE
PUT and GET protocols. Open MPI, however, uses FMA PUT,
which does not require memory registration, and BTE PUT,
which does not have a 4-byte alignment restriction for data

Fig. 1. High-level cartoon showing 4 Opteron nodes connected by 2 Gemini
ASICs. The X,Y, and Z axes are depicted as Red, Green, and Blue arrows,
respectively.

buffers, for message sizes greater than the SMSG message
limit. Futhermore, Open MPI uses AMOs for implementing
Barrier collective operations. At this time, we are not aware
of MPICH2 using AMOs for any of its collective operations.
Open MPI and MPICH2 both use shared-memory-based eager
protocols for small, intra-node message transfers and a ren-
dezvous protocol based on SGI’s XPMEM for large message
transfers [6]. In addition, unlike MPICH2’s uGNI network
module, the uGNI BTL is an open-source implementation that
leverages the Gemini Network Interface.

III. ENHANCED SHARED-MEMORY BTL

In this section we will outline the design and implementa-
tion of vader, the enhanced shared-memory BTL that was im-
plemented for this port. We start with an overview of XPMEM,
and conclude with a high-level discussion surrounding the
design and implementation of vader.

A. XPMEM

XPMEM is a Linux kernel module and user-level li-
brary that enables a process to map the memory of an-
other process into its virtual address space [3]. XPMEM
exposes a small application programming interface (API) that
is comprised of 7 routines: xpmem version, xpmem make,
xpmem remove, xpmem get, xpmem release, xpmem attach,
and xpmem detach. XPMEM setup is a relatively simple,
three-phase process that requires process A to export a region
of its virtual address space, via xpmem make, to a cooperating
process B. The cooperating process then attaches to the
exported region by calling xpmem get and then xpmem attach.
Once this process is complete, A’s exported memory region is
directly accessible to B. That is, B can perform single-copy
transfers within that region via direct loads and stores, thus
avoiding costs related to more traditional copy-in/copy-out
(CICO) schemes that require data associated with a transfer
to be copied twice – a copy into a shared memory region
by the sender and a copy out of the shared memory region
by the receiver. Attached regions are permitted to contain
“holes,” that is, virtual memory regions that are not allocated.
A segmentation fault will occur if a process mapping a region
tries to access unallocated memory in that region.

B. XPMEM BTL – Vader

vader is implemented as a new BTL component within
Open MPI. vader’s design and implementation is heavily in-
fluenced by the single-copy, RDMA-like capabilities provided
by XPMEM. The need for a higher bandwidth, lower latency
BTL for intra-node communication on XE/XK systems was
the impetus behind the implementation of this kernel-assisted
shared-memory BTL.

vader implements both SEND and RDMA transfer pro-
tocols. The SEND protocol is patterned after the Nemesis
protocol [7] used by MPICH. Small message (< 256 bytes)
latencies are improved through the use of lock-free, per-peer
receive queues. For larger, contiguous messages using either
the SEND or RDMA protocol, only the pointer to the user



buffer is passed to the receiving process. The receiving process
uses XPMEM to map the necessary pages into its memory
space and the data is given directly to the receiving PML.

Due to the costly nature of xpmem attach and xpmem make,
special design considerations were made in order to reduce
the amount of times these routines were invoked. During
vader’s component initialization, all participating processes
export their entire address space via exactly one call to
xpmem make. Each process then makes a call to xpmem get to
obtain an access permit ID (apid) for each local peer. vader
makes calls to xpmem attach to access memory regions in
peer processes, as needed. To reduce the overhead associated
with the xpmem attach call, vader attaches to a minimum of 2
MB at a time and caches the attached regions in a registration
cache for reuse in subsequent transfers.

IV. UGNI BTL

The uGNI BTL provides point-to-point communication
through the BTL Send(), Put(), and Get() functions. This
functionality is provided using three protocols: short message,
eager get, and long message. A high-level overview of these
protocols is provided in the following subsections.

A. Short Message Protocol

The short message protocol handles calls to BTL Send() with
messages smaller than the SMSG send limit, which is config-
urable at invocation time by the btl ugni smsg send limit
MCA parameter. As is the case with the MPICH2 implemen-
tation [6], this parameter is set to autoselect (0) by default,
which sets to the SMSG limit based on the number of MPI
tasks. A table of the uGNI BTL’s current SMSG limits can be
found in Table I.

Number of MPI Tasks SMSG Limit
[2, 256) 8192

[256, 1024) 1024
[1024, 16384) 512

16384+ 256

TABLE I

When using the short message protocol, BTL Send() trans-
fers the message header/data using GNI SmsgSendWTag()
with a tag of MCA BTL UGNI TAG SEND. SMSG handles
the delivery of the message to the remote mailbox and, on
successful completion, notifies the uGNI BTL through the
endpoint’s local completion queue.

B. Initialization and Connection Setup

The default behavior of the uGNI BTL is to bind uGNI end-
points and allocate SMSG mailbox resources on an on-demand
basis. We chose this approach so that the memory overhead
would be representative of the communication characteristics
of the application. This approach, however, comes at the cost
of some additional overhead when first communicating with
a peer. Due to limitations in registration resources, Mailboxes
are allocated in 2 MB blocks up to the maximum size needed.

C. Eager Get Protocol

The eager get protocol handles calls to BTL Send() with
messages larger than the SMSG limit, but smaller than the
eager limit specified by the btl ugni eager limit MCA
parameter. This protocol requires that the message is first
copied into a registered buffer. By default, the uGNI BTL
allocates a pool of 16 send/receive buffers in increments of 16
up to a maximum of 64. The default behavior can be changed
by setting the btl ugni eager num, btl ugni eager inc,
and btl ugni eager max parameters at invocation.

When using the eager get protocol, the sending pro-
cess sends all the information necessary to complete
an RDMA transaction using GNI SmsgSendWTag() with
a tag of MCA BTL UGNI INIT GET. The receiving
process allocates a registered buffer from its receive
pool and starts either an FMA or BTE GET transac-
tion. On completion, the receiving process notifies the
sender by calling GNI SmsgSendWTag() with a tag of
MCA BTL UGNI TAG RDMA COMPLETE.

D. Long Message Protocol

Long message support is provided through the BTL Put()
and Get() functions. These functions mostly correspond to
GNI PostRdma() with post type GNI POST RDMA PUT or
GNI POST RDMA GET, respectively (or their FMA equiv-
alents). The only exception is the case where a BTE/FMA
GET operation can not be completed due to size or alignment
restrictions.

When a BTE/FMA GET operation can not be com-
pleted, we fallback on BTE/FMA PUT. In this case, the
receiving process signals the sending process to switch to
RDMA PUT by calling GNI SmsgSendWTag() with a tag
of MCA BTL UGNI TAG PUT INIT. The sending process
follows the normal RDMA PUT path. On completion, the
sender notifies the receiver by calling GNI SmsgSendWTag()
with a tag of MCA BTL UGNI TAG RDMA COMPLETE.
The current implementation of the PUT fallback path requires
the overhead of two extra SMSG messages.

E. Memory Registration

To reduce the overhead associated with memory registration,
the uGNI BTL makes use of an RDMA registration pool
provided within Open MPI. This registration cache stores
unused registrations in a least recently used (LRU) list. Cached
registrations can either be reused for future transactions or
released when resources are exhausted. To avoid deadlock due
to resource starvation, we chose to limit the maximum number
of registrations a process can hold in its LRU to a fraction of
available registrations. The limit is based on the number of
active MPI processes on a compute node.

V. COLLECTIVE OPERATIONS FOR GEMINI

A. Cheetah

Cheetah is a framework for building hierarchical collectives
and is implemented as a framework within Open MPI. In
Cheetah, the hierarchical collective operations are expressed



OMPI

BCOL SBGP COLL

U
M
A

IBO
FFLO

AD

PTPC
O
LL

U
M
A

SO
C
KET

IBN
ET

P2P

M
L

D
EFAU

LT

Cheetah 

Open MPI 

uG
N
I

Fig. 2. Cheetah frameworks and components within Open MPI.

as a group of independently progressing collective primitives,
where each collective primitive is optimized for a specific
communication hierarchy.

The design of the framework is driven by the goal to provide
collective operation implementations tailored to specific com-
munication hardware, while also retaining the re-usability of
the collective implementation. In Cheetah, this is achieved by
decoupling the collective operation implementation from the
topological organization of the processes. A brief description
of the framework is provided in this section and a more
detailed description of the framework and its design principles
can be found in [4].

Figure 2 shows Cheetah’s frameworks and its components.
The Cheetah framework is implemented within Open MPI
and is comprised of two component frameworks and a single
COLL component. In particular, the Basic Collectives (BCOL)
and subgrouping (SBGP) frameworks, and the messaging
layer (ML) component. BCOL is a component framework
for implementing collective primitives that are specialized
for communication hierarchies. The current implementation
supports BASESMUMA for shared memory, IBOFFLOAD for
Mellanox’s CORE-Direct, and P2P for other networks that are
supported by Open MPI. SBGP is a framework for imple-
menting subgroups, i.e., partitioning processes into subgroups
based on the communication hierarchy shared between them.
Currently, the Cheetah framework supports subgrouping over
CPU sockets (SOCKET subgroup), shared memory (UMA
subgroup), Mellanox’s InfiniBand CORE-Direct networks (IB-
NET), and other networks (P2P subgroup). ML components
combine collective primitives to implement an MPI collective
operation. For example, an MPI Broadcast() operation can
be implemented by combining a shared-memory broadcast
primitive (BASESMUMA BCOL and UMA subgroup) and
a network broadcast primitive (PTPCOLL BCOL and P2P
subgroup).

uGNI BCOL: To take advantage of Gemini’s atomic opera-

tions for collectives, we implemented uGNI BCOL and took
advantage of the P2P subgroup in Cheetah. The P2P subgroup
groups all processes sharing the Gemini communication do-
main into a single P2P subgroup. The collective primitives in
the uGNI BCOL are defined over this subgroup. Currently,
this BCOL supports only the Barrier collective primitive.

B. Barrier Collective Operation

MPI Barrier() is a collective operation that synchronizes all
processes in a given communicator. The uGNI Cheetah Barrier,
which implements MPI Barrier(), is implemented using the
uGNI BCOL collective primitive over the P2P subgroup. The
uGNI BCOL Barrier collective primitive, called atomic Barrier
hereafter, uses a Fan-in/Fan-out algorithm and leverages the
atomic operations provided by the uGNI library. For both the
fan-in and fan-out phase, we use an n-ary tree, where the radix
of tree can be varied. The processes participating in the atomic
Barrier are either designated as a root process, interior process,
or a leaf process.

In the fan-in phase, the leaf processes update a counter on
their interior, or parent process, using an atomic add operation.
An atomic operation is invoked on the Gemini network by
posting a descriptor using the GNI PostFMA() primitive. The
interior processes, after receiving updates from all of their
respective children, update their respective parent processes.
The root process, after receiving updates from its children,
then switches to the fan-out phase. In the fan-out phase of the
algorithm, the root process updates it children’s counters and
exits, thus completing the barrier. The interior processes, after
receiving the update from their respective parents, update their
children’s counters, and exit the Barrier. The leaf processes,
after receiving the update from their respective parents, exit
the Barrier.

VI. EVALUATION

This section describes the test beds used for the evaluation
of our work. It then presents some point-to-point performance
results for the vader and ugni BTLs and preliminary Barrier
collective performance of the uGNI BCOL.

A. System Description

To evaluate the performance of the uGNI BTL and the
uGNI BCOL, we used Cielo and Enhanced Jaguar (Jaguar
with Interlagos processors and the Gemini Network Interface).

Cielo is a Cray XE6 located at LANL. The system has 322
service nodes and 8,894 compute nodes totaling 142,304 CPU
cores. Each compute node has two 2.4 Ghz AMD Opteron
Magny-Cours CPUs and 32 GB memory. It uses the Gemini
network interface for network communication.

Enhanced Jaguar is a Cray XK6 located in the National
Center for Computational Sciences (NCCS) at ORNL. It has
18,688 compute nodes, each containing one 2.2 GHz AMD
Opteron Interlagos processor along with 32 GB of memory.
Each AMD Opteron processor has 16 compute cores and 3
levels of cache memory. Out of the 18,688 compute nodes, 960
nodes also have a single NVIDIA graphical processing unit



1 10 100 1000 10000 100000 1x106

Message Length (Bytes)

1

10

100

1000

La
te

nc
y 

(M
ic

ro
se

co
nd

s)

Latency: Native MPI - 2 Processes
Multi Latency: Native MPI - 16 Processes
Latency: Open MPI - 2 Processes
Multi Latency: Open MPI - 16 Processes

OSU Latency: Shared-Memory - Open MPI versus Native MPI 

Fig. 3. Log-log plot showing shared-memory latencies for 2 and 16 processes
reported by OSU’s MPI micro-benchmark suite. Latency measured with
osu latency and multi latency measured with osu multi lat.

(GPU). Like Cielo, this system also uses the Gemini network
interface for network communication.

B. Benchmarks

Point-to-point latency: We used the osu latency and
osu multi lat micro-benchmarks from the OSU benchmark
suite [8] to evaluate the latency characteristics of both vader
and ugni. osu latency measures message transfer latency
by exchanging a ping-pong message between a pair of MPI
processes and reports the average, one-way latency of a mes-
sage transfer. osu multi lat measures the one-way latency
of message transfers between a pair of MPI processes, while
multiple pairs of MPI processes are exchanging ping-pong
messages.

Point-to-point bandwidth: To evaluate the bandwidth char-
acteristics of both vader and ugni, we used the osu bibw
and osu mbw mr benchmarks from the OSU benchmark
suite. osu bibw measures the maximum aggregate bandwidth
achieved by a pair of MPI processes. The processes here send a
fixed number of messages and wait for the reply. The reported
results are an average of multiple iterations of this exchange.
osu mbw mr measures the maximum aggregate bandwidth
achieved by a pair of MPI processes while multiple pairs of
MPI processes in the network are doing a similar message
exchange.

Barrier latency: To evaluate the performance of the Barrier
operation, we ran MPI Barrier() in a tight loop and measured
its execution time. The performance reported is an average
latency.

C. uGNI BTL - Point-to-Point Performance Characteristics

Intra-node Performance: Figure 3 and 4 show the intra-

1 10 100 1000 10000 100000 1x106

Message Length (Bytes)

10

100

1000

10000

100000

Ba
nd

w
id

th
 (M

B/
s)

Bidirectional Bandwidth: Native MPI - 2 Processes
Multiple Bandwidth: Native MPI - 16 Processes
Bidirectional Bandwidth: Open MPI - 2 Processes
Multiple Bandwidth: Open MPI - 16 Processes

OSU Bandwidth: Shared-Memory - Open MPI versus Native MPI 

Fig. 4. Log-log plot showing shared-memory bandwidths for 2 and 16
processes reported by OSU’s MPI micro-benchmark suite. Bidirectional
bandwidth measured with osu bibw and multiple bandwidth measured with
osu mbw mr.

node latency and bandwidth characteristics of both Open MPI
(vader) and the native MPI (Cray MPT). For this experiment,
all MPI processes were configured to be on the same compute
node with each process pinned to a single CPU core.

Figure 3 shows the latency of Open MPI and the native
MPI when 2 and 16 processes are participating in a ping-
pong message exchange while message sizes are increased.
In the 2 process configuration, the reported 1 byte message
latency for both MPI implementations is 0.52 usecs. At 1 kB,
Open MPI’s message latency is 0.76 usecs, which is 82%
better than the native MPI’s latency. At a 4 MB message size,
Open MPI’s message latency is 1.076 msecs compared to the
native MPI’s latency of 1.079 msecs. At 16 processes, the 1
byte message latency of Open MPI is 0.69 usecs compared to
native MPI’s 0.7 usecs. At 1 kB, Open MPI’s message latency
is 1.03 usecs compared to native MPI’s 1.91 usecs. For a 4
MB message exchange, Open MPI’s message latency is 2.6
msecs, which is 31% worse than native MPI’s performance.

Figure 4 shows the bandwidth of Open MPI and the native
MPI when 2 and 16 processes are participating in a message
exchange. At 2 processes, Open MPI achieves a maximum
bidirectional bandwidth of 15 GB/s at 100 kB and the native
MPI achieves a maximum bidirectional bandwidth of 13
GB/sec at 32 kB. At 16 processes, Open MPI and the native
MPI achieve a maximum bidirectional bandwidth of 66.3 GB/s
and 65.7 GB/s, respectively, for 32 kB messages.

Inter-node Performance: Figure 5 and 6 show the inter-
node latency and bandwidth characteristics of both Open MPI
and the native MPI. For this experiment, each MPI process is
configured to be on a different node.

Figure 5 shows the latency characteristics of Open MPI



1 10 100 1000 10000 100000 1x106

Message Length (Bytes)

1

10

100

1000

La
te

nc
y 

(M
ic

ro
se

co
nd

s)

Latency: Native MPI - 2 Processes (1 Process per Node)
Multi Latency: Native MPI - 8 Processes (1 Process per Node)
Latency: Open MPI - 2 Processes (1 Process per Node)
Multi Latency: Open MPI - 8 Processes (1 Process per Node)

OSU Latency: uGNI - Open MPI versus Native MPI 

Fig. 5. Log-log plot showing uGNI latencies for 2 and 8 processes reported
by OSU’s MPI micro-benchmark suite. Latency measured with osu latency
and multi latency measured with osu multi lat.

1 10 100 1000 10000 100000 1x106

Message Length (Bytes)

1

10

100

1000

10000

Ba
nd

w
id

th
 (M

B/
s)

Bidirectional Bandwidth: Native MPI - 2 Processes (1 Process per Node)
Multiple Bandwidth: Native MPI - 8 Processes (1 Process per Node)
Bidirectional Bandwidth: Open MPI - 2 Processes (1 Process per Node)
Multiple Bandwidth: Native MPI - 8 Processes (1 Process per Node)

OSU Bandwidth: uGNI - Open MPI versus Native MPI 

Fig. 6. Log-log plot showing uGNI bandwidths for 2 and 8 processes reported
by OSU’s MPI micro-benchmark suite. Bidirectional bandwidth measured
with osu bibw and multiple bandwidth measured with osu mbw mr.

and the native MPI when 2 and 8 processes are participating
in the ping-pong message exchange while message sizes are
increased. At 2 processes, the 1 byte message latency of Open
MPI is 1.56 usecs compared to the native MPI’s 1.52 usecs.
At the 1 kB message size, Open MPI message latency is 4.81
usecs which is 47% worse than the native MPI’s latency. At 4
MBs, Open MPI’s message latency is 896 usecs, which is 5%

10 20 30 40 50 60
Number of MPI Processes

4

6

8

10

12

14

16

18

La
te

nc
y 

(M
ic

ro
se

co
nd

s)

Cheetah uGNI (Atomic)
Cheetah p2p

Fig. 7. Graph showing the performance of the Cheetah uGNI Barrier
compared to the Cheetah p2p Barrier as a function of problem size.

better than the native MPI’s message latency. At 8 processes,
1 byte, 1kB, and 4 MB message latencies of Open MPI are
1.46 usecs, 4.51 usecs, and 726.37 usecs, respectively. The
1 byte and 4 MB message latencies of the native MPI are 6%
and 11 % worse than Open MPI’s message latency. The 1 kB
message latency of the native MPI is 47% better than Open
MPI’s.

Figure 6 shows the bandwidth characteristics of both MPI
implementations when 2 and 8 processes are participating in a
message exchange while message sizes are increased. With 2
processes, Open MPI and the native MPI achieve a maximum
bandwidth of 6.8 GB/s and 6.7 GB/s, respectively, at a 4 MB
message size. At 8 processes, Open MPI achieves a maximum
bandwidth of 11.7 GB/s at a 4 MB message size and the native
MPI reaches a maximum bandwidth of 11.7 GB/s at a 2 MB
message size and drops to 9.6 GB/s at 4 MBs.

D. uGNI BCOL - Barrier Performance Characteristics

Figure 7 shows the performance of Barrier as the number
of MPI processes are increased. For this experiment, each
MPI process was configured to be on a different node. The
figure shows the performance of two Barrier implementations.
The first is Cheetah uGNI’s Barrier performance curve using
a Fan-in/Fan-out algorithm with a radix of 4 implemented
using atomic operations. The second is Cheetah p2p’s Barrier
performance curve using the uGNI BTL.

At 64 processes, the latency of Cheetah uGNI’s (atomic)
Barrier is 13.36 usecs, which is better than the Cheetah p2p
Barrier performance by 39%.

VII. ANALYSIS

The point-to-point performance characteristics of both im-
plementations are very similar. The intra-node latency of Open



MPI and the native MPI for 1 byte messages is similar, but
for 1 kB messages, Open MPI’s latency is better than native
MPI’s latency by 82%. At a 4 MB message size, however,
the native MPI’s latency is better than Open MPI’s by 31%.
This latency trend also holds for the multi-process message
exchange. At 2 processes, Open MPI’s intra-node bandwidth
is 15 % better than the native MPI’s bandwidth.

The 1 byte, inter-node latency of both implementations is
similar, but for 1 kB messages, Open MPI’s latency is worse
than native MPI’s latency by 47%. Furthermore, Open MPI’s 4
MB latency is better than the native MPI’s latency by 5%. This
latency trend also holds for multi-process message exchanges.

The uGNI BCOL’s Barrier performance clearly shows the
advantage of using atomic operations for synchronization and
small data collective operations. It outperforms Cheetah’s p2p
Barrier by 39%, which uses the SMSG protocol for exchanging
synchronization information.

VIII. CONCLUSION AND FUTURE WORK

The micro-benchmark results demonstrate that Open MPI’s
implementation of its point-to-point communications for the
Gemini network interface has good performance characteris-
tics. Point-to-point intra-node and inter-node latency charac-
teristics are similar in both implementations. The intra-node
bandwidth characteristics, however, are better than the native
MPI’s bandwidth characteristics.

Also, the Barrier performance results demonstrate the poten-
tial advantages of using atomic operations for implementing
some collective operations. In the future, we plan to use
the MSGQ protocol for point-to-point communication and
evaluate its effect on performance and scalability. We also
plan to provide better support for switching from GET to
PUT, which will eliminate the need for an extra message - as
required in the current implementation. We plan to evaluate
the performance and scalability characteristics of the atomic
collective operations at higher scale, and also its potential in
implementing other collective operations such as small-data
MPI Reduce() and MPI Allreduce().

ACKNOWLEDGMENT

The authors would like to thank Alliance for Computing at
Extreme Scale (ACES) management and staff for their support.
Work supported by the Advanced Simulation and Computing
program of the U.S. Department of Energy’s NNSA. Los
Alamos National Laboratory is operated by Los Alamos
National Security, LLC for the NNSA. In addition, the authors
would also like to thank the Office of Advanced Scientific
Computing Research’s FASTOS program and the Math/CS
Institute EASI!; U.S. Department of Energy, and partial work
was performed at ORNL, which is managed by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725. This research
used resources of the Center for Computational Sciences at
Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725. LA-UR-12-20472.

REFERENCES

[1] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,” in
Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, September 2004, pp. 97–104.

[2] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system inter-
connect,” in High Performance Interconnects (HOTI), 2010 IEEE 18th
Annual Symposium on, Aug. 2010, pp. 83 –87.

[3] (2011) XPMEM, cross-process memory mapping. [Online]. Available:
http://code.google.com/p/xpmem/

[4] R. Graham, M. G. Venkata, J. Ladd, P. Shamis, I. Rabinovitz, V. Fil-
ipov, and G. Shainer, “Cheetah: A framework for scalable hierarchical
collective operations,” CCGRID 2011, 2011.

[5] Cray Inc., “Using the gni and dmapp apis,” in Cray Software
Document, vol. S-2446-4002, Dec. 2011. [Online]. Available: http:
//docs.cray.com/books/S-2446-4002/S-2446-4002.pdf

[6] H. Pritchard, I. Gorodetsky, and D. Buntinas, “A ugni-based mpich2
nemesis network module for the cray xe,” in Proceedings of the
18th European MPI Users’ Group conference on Recent advances in
the message passing interface, ser. EuroMPI’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 110–119. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2042476.2042490

[7] D. Buntinas, G. Mercier, and W. Gropp, “Design and evaluation of neme-
sis, a scalable, low-latency, message-passing communication subsystem,”
in International Symposium on Cluster Computing and the Grid, 2006,
pp. 530–540.

[8] OSU micro-benchmarks. [Online]. Available: http://mvapich.cse.
ohio-state.edu/benchmarks/

http://code.google.com/p/xpmem/
http://docs.cray.com/books/S-2446-4002/S-2446-4002.pdf
http://docs.cray.com/books/S-2446-4002/S-2446-4002.pdf
http://dl.acm.org/citation.cfm?id=2042476.2042490
http://dl.acm.org/citation.cfm?id=2042476.2042490
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/

	Introduction
	Background
	 Gemini Network Interface
	 Open MPI
	Related Work

	Enhanced Shared-Memory BTL
	XPMEM
	XPMEM BTL – Vader

	uGNI BTL
	Short Message Protocol
	Initialization and Connection Setup
	Eager Get Protocol
	Long Message Protocol
	Memory Registration

	Collective Operations for Gemini
	Cheetah
	Barrier Collective Operation

	Evaluation
	System Description
	Benchmarks
	uGNI BTL - Point-to-Point Performance Characteristics
	uGNI BCOL - Barrier Performance Characteristics

	Analysis
	Conclusion and Future Work
	References

