@ National
Laboratories

Exceptional

service
in the
national

interest

Open MPI Data Transfer

Brian W. Barrett

Scalable System Software
Sandia National Laboratories
bwbarre@sandia.gov

December 3, 2012

SAND Number: 2012-10326P

VYA T =35

U.S. DEPARTMENT OF
ENERGY VA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline... rh) pe_

= |ntroduction
= MPI Communication models

= Open MPI Overview
= Foundational Components
= Communication in Open MPI
= Communication deep-dive

= Future plans
= BTL relocation
= Fault tolerance
= Threads

Thanks! rh) teiea

= Many of these slides / diagrams borrowed from previous
Open MPI talks. A number of people deserve thanks:
= George Bosilca, University of Tennessee
= Ralph Castain, Greenplum
= Galen Shipman, Oak Ridge
= Jeff Squyres, Cisco

Outline...)

= |ntroduction
= MPI Communication models
= Open MPI Overview

= Foundational Components
= Communication in Open MPI
= Communication deep-dive

= Future plans
= BTL relocation

= Fault tolerance
= Threads

Sandia
’11 National _
Laboratories

Point-to-point Communication

= MPI provides ordered, tagged messaging with wildcards

= QOrdered: messages sent from rank A to rank B on the same
communicator (channel) and tag are FIFO ordered

= Tagged: In addition to channel semantics, messages have tags which
are used to select a message during receive operaions

= Wildcards: Both the source of the message and tag can be wildcarded
to enable more flexible receive operaions

= MPI allows unexpected messages
* |Implementation handles buffering (this is hard!)

= Send and receive have blocking and non-blocking variants

Sandia
m National
Laboratories

Collective communication

= Common collective operations in scientific computing
= Barrier
= Broadcast
= All-to-all
= Gather/Allgather
= Scatter
= Reduce/Allreduce (global sum, product, min, max, etc.)

= Blocking and non-blocking variants

One-sided

Put, get, atomic, fetch atomic operations

MPI-2 fixed remote accessible segment
= Expanded slightly in MPI-3
= Remote addressing is an offset into the segment

Explicit synchronization of memory spaces
= Active or passive target synchronization

Well defined memory model (which is a talk all its own...)

Sandia
National _
Laboratories

Outline...)

= |ntroduction
= MPI Communication models

= Open MPI Overview
= Foundational Components
= Communication in Open MPI
= Communication deep-dive

= Future plans
= BTL relocation

= Fault tolerance
= Threads

Sandia
Il'l National
Laboratories

High-level overview

User application

Support
\ Interfaces

S

N~

< <
%) %)
< <
= =
04 o
))
a a

Sandia
’11 National _
Laboratories

Process Naming

= ORTE process name (orte_process_name_t)
= Structure which can be compared
= Values important, not the structure itself

= OMPI process (ompi_proc_t)
= MPI information for every connected process
= Never copied; always passed by pointer (pointers comparable!)

= Multiple useful pieces of information
Pointers to opaque communication structures
Architecture information for remote process
Datatype convertor
Processor Affinity flags

= ORTE interfaces use ORTE process name, most OMPI
functions use OMPI process

Sandia
m National
Laboratories

MPI Communicator

= Virtual communication channel
= Communicator structure encapsulates channel

= Useful MPI structures:
= cid: channel identifier (system makes sure a given communicator has a
single, unique cid)
= Local and remote groups: set of ranks (endpoints) in the
communicator

= Collective modules and data
= PML communicator opaque pointer

MPI Groups L

= A set of nodes indexed by their rank (pointers to their process
structure).

= All the functions required to create sub-groups from other
groups:
= Union, inclusion, exclusion, intersection, difference
= Range inclusion and range exclusion.

= Holds the (ordered) list of OMPI proc structures related to the
group

Sandia
m National
Laboratories

To review...

) '/ Proc A
TL SroupA J B Proc B
= Proc C
) a Proc D

Communicator C 2 Group B f
- Proc E

Each OMPI process has an associated ORTE process name

Progress Engine

= opal_progress() triggers callbacks to registered functions

= Event library for complicated progression

= triggers for file descriptors (like select, but with callbacks)

= Timer callbacks

= Signal callbacks (not in signal handler context!)

= Event library can run in own thread

opal_progress()

MPI-10
progress

MPI Pt-2-pt
progress

™

progress

Sandia
National _
Laboratories

MPI Datatypes L

= MPI provides datatype engine for describing communication
buffers for all communication options
= Heterogeneous datatype conversion
= Build transformation engines (matrix transpose)
= Pack/unpack strided data

= Central data type engine provides DDT processing semantics
= Two layers:

= Datatype engine for users to describe buffer layout
= Convertor engine for communication buffer packing

= Unfortunately, can’t ignore convertors entirely...

Datatypes: Predefined

Sandia
National _
Laboratories

MPI_Datatype C datatype Fortran datatype
MPI_CHAR signed char CHARACTER
MPI_SHORT signed short int INTEGER*2
MPI_INT signed int INTEGER
MPI_LONG signed long int
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short
MPI_UNSIGNED unsigned int
MPI1_UNSIGNED_LONG unsigned long int
MPI1_FLOAT float REAL
MPI1_DOUBLE double DOUBLE PRECISION

MPI_LONG_DOUBLE

long double

DOUBLE PRECISION*8

National

Datatypes: User-defined) .

= Applications can define unique datatypes
= Composition of other datatypes
= MPI functions provided for common patterns
= Contiguous

= Vector
= |ndexed

= Always reduces to a type map of pre-defined datatypes

National

Datatypes: Vectors) .

= Replication of a datatype into locations that consist of equally
spaced blocks

= MPI_Type_vector(7, 2, 3, oldtype, newtype)

Sandia
m National
Laboratories

Datatypes: Convertor

= Created based on 2 architectures: local and remote.

= Once the data-type is attached is can compute the local and
remote size

= Can convert the data segment by segment: iovec conversion
= For performance reasons there is no room for recursivity

Sandia
m National
Laboratories

Datatypes: Convertor

= Creating a convertor is a costly operation
= Should be avoided in the critical path
= Master convertor
= Then clone it or copy it (!)

= Once we have a initialized convertor we can prepare it by attaching
the data and count

= Specialized preparation: pack and unpack

= Position in the data: another costly operation
= Problem with the data boundaries ...

National

Datatypes: Convertor) .

= Once correctly setup
= Pack
= Unpack

Checksum computation
= CRC
Predefined data-type boundaries problem

= Convertor personalization
= Memory allocation function
= Using NULL pointers

Datatypes: Convertor) e

= Sender = Receiver
= Create the convertor = Create the convertor
and set it to position 0 and set it to position 0
= Until the end call = Until the end call
ompi_convertor_pack in ompi_convertor_unpack
a loop in a loop
= Release the convertor = Release the convertor

Easyisn’tit ?!

Datatypes: Convertor) .

" |n fact the receive is more difficult
= Additional constraints
= Fragments not received in the expected order
" Fragments not received (dropped packets)
= Fragments corrupted
= Fragments stop in the middle of a predefined data-type ...

= Do we look for performance ?

MPI Requests .

= Used for:
= Communications (point-to-point, one sided)
= MPII/O
= Generalized requests

= Fortran indexes

= Created only if required
= Removed when the request is freed internally

Sandia
m National
Laboratories

Requests: Overview

" |nheritance
= Share the data between layers

= OMPI store general information
= The PML base request store the user level information

= The specific PML request store all other information required

by this specific implementation of the PML.

Requests: Life cycle

Sandia
m National
Laboratories

A

A

R INVALID
3
u’=| *V\
O
q!_) tart
INACTIVE s "
req_c el re

ACTIVE

req free

CANCELLED

cel

req_free

Outline...)

= |ntroduction
= MPI Communication models

= Open MPI Overview
= Foundational Components
= Communication in Open MPI
= Communication deep-dive

= Future plans
= BTL relocation

= Fault tolerance
= Threads

MPI Layer L

= Not a component
= Located in <topdir>/ompi/mpi
= C, F77, F90 and C++ specific support/bindings are located in
corresponding subdirectories
= Example source file: topdir/ompi/mpi/c/isend.c
= MPI_Isend - calls PML level through a “helper” macro

= PML provides support for the asynchronous send

= In general PML level provides all messaging semantics required for MPI
point-to-point

Sandia
National _
Laboratories

=
=3
=

P2P Component Frameworks T2

Sandia
m National
Laboratories

" Provides MPI Point-to-point semantics
= Standard
= Buffered
= Ready
= Synchronous

= Message Progression
= Request Completion and Notification (via request objects)

Sandia
m National
P IVI L Laboratories

= |nternal MPI messaging protocols
= Eager send
= Rendezvous

= Support for various types of interconnect
= Send/Recv
= RDMA
= Hybrids

PML: Interfaces iL

= pml_add_procs - peer resource discovery (via BML)

= pml_del procs - clean up peer resources (via BML)

= pml_enable - initialize communication structures

= pml_progress - progress BTLS (via BML)

= pml|_add _comm - add PML data structures to the communicator

Sandia
National _
Laboratories

= pml_del comm - remove PML data structures from communicator

= pml_irecv_init - Initialize persistent receive request
= pml_irecv - Asynchronous receive

= pml_isend_init - Initialize persistent send request

= pml_isend - Asynchronous send

= pml_iprobe - Probe receive queues for match

.... Mirrors MPI interfaces

Sandia
ﬂ'l National
Laboratories

= Framework located in topdir/ompi/pml
* |nterfaces defined in topdir/ompi/pml/pml.h

= 2 Components currently available in this framework

= OB1
Software MPI matching
Multi-device (striping, device-per-endpoint, etc.)
Utilize BTLs for device-level communication
= CM
Offload MPI matching
Single device
Utilize MTLs for device-level communication

= OB1 found in <topdir>/ompi/pml/ob1l

Sandia
m National
Laboratories

BML

= BML - BTL Management Layer

= Provides a thin multiplexing layer over the BTL’s (inline functions)

= Manages peer resource discovery, allowing multiple upper layers to
use the BTLs
= Allows for simple round robin scheduling across the available BTL's

Sandia
m National
Laboratories

= Byte Transfer Layer
= Provides abstraction over the underlying interconnect

= Asimple tag based interface for communication similar to
active messaging

= Provides facilities for RDMA operations including preparing
memory registrations

= Supports both Put and Get RDMA operations
" Provides completion callback functions

BTL: Interfaces)t

= btl add_procs - discover peer resources and setup endpoints
to the peer

= btl del procs - remove resources allocated to remote peer
= btl register - register a active message callback

= btl alloc - allocate a descriptor

= btl free - free a descriptor

= btl prepare_src- prepare a source descriptor

= btl prepare_dst - prepare a destination descriptor

= btl send - send a descriptor to an endpoint

= btl put - put a descriptor to an endpoint (RDMA write)

= btl get - get a descriptor from an endpoint (RDMA read)

BTL: Descriptor) .

= The BTL descriptor contains a list of source/destination
segments, completion callback function and callback data

mca_btl_base_descriptor t mcgaztrl_base_segment_t
des_src seg_'en

des _src_cnt ﬁﬁ%n

des_dst 1 p

des _dst_cnt *

des_cbfunc zzyg[Z]

des_cbdata ke¥8[4]

des_context }sog. key

BTL: Devices rh) pe_

= Supported

= openib — Open Fabrics (reliable connection)

= self —send to self semantics

= sm —shared memory

= smcuda — shared memory with CUDA support

= tcp

= ugni— Cray Gemini/Aries

= vader — shared memory using XPMEM/Cross-mapping
= Unsupported

= mx— Myrinet Express

= sctp

= wv—Windows VERBS

Sandia
Mpool) i

= Mpool - Memory Pool

= Provides memory management functions
= Allocate
= Deallocate
= Register
= Deregister

= May be used by various other components

= BTL - on demand registration and pre-allocated fragments

= PML - allows pml to make protocol decisions based whether the user’s
buffer is registered with an mpool

= MPI - provides a simple sollution for MPI_Alloc_mem

Rcache rh) i

= Rcache - Registration Cache

= Provides memory registration caching functions
= Find
= |nsert
= Delete

= Currently used by memory pools to cache memory registrations for
RDMA capable interconnects

= |mplemented as a Red Black Tree in the RB Component although a
variety of caching techniques could be used by simply adding another
Rcache Component.

=
=3
=

P2P Component Frameworks T2

Outline...)

= |ntroduction
= MPI Communication models

= Open MPI Overview
= Foundational Components
= Communication in Open MPI
= Communication deep-dive

= Future plans
= BTL relocation

= Fault tolerance
= Threads

Example: OB1 PML/ Open IB BTL @&

= QOpen IB:

Provides support for Infiniband HCAs and many RDMA over Ethernet
devices

Uses RC based communication
Send/Recv including inline data
SRQ support

RDMA support (read/write)
Small message RDMA

Startup

= Decide which PML being used
= |nitialize BTLs/MTLs as needed

= Resource discovery
= Create BTL modules for each endpoint
= |nitialize channel creation mechanism, if needed

= Modex: scalable data share

" |nitialize peer informaiton
= MPI_Init builds OMPI process structure array
= Calls add procs on the PML passing in the process list
= PML calls add_procs on the BML

Call add procs on each BTL passing the list of process structures

Sandia
National _
Laboratories

Sandia
m National _
Laboratories

Startup: Peer Reachability

= For each peer the BTL creates an endpoint data structure
which will represent a potential connection to the peer and

caches the peers addressing information

= After the BTL endpoint is created the BML creates a data
structure to cache the BTL endpoint and module used to

reach a peer

= The BML caches an array of these data structures grouping
them by BTL functionality
= btl_eager - used for eager frags (low latency)
= btl _send - send/receive capable
= btl_rdma - RDMA capable

Startup: OpenlB Discovery h) ..

= Prior to add procs the modex distributes all the peers addressing
information to every process

= BTL will query peer resources (Number of ports/lids from cached
modex data)

= BTL endpoint is created, matching the BTL module’s port/subnet
with the peer’s.

= Note that a connection is not yet established and will be wired up
on the first message sent to the peer via the endpoint

= A mirror of the ompi_proc_t structure is created at the BTL level
= Caches information from the OMPI proc
= Stores port information

= Stores an array of endpoints to the peer used in establishing connections
based on port/subnet

Data Structures

A single proc per
per peer

ompi_proc_t

proc_name
proc_arch

A bml_btl per module

mca_bml_base bt t
(bml_btl)

A single openib proc per
peer stores

mca_btl openib _proc t

roc_convertor

1
mca_bml_base_endpoint_t
(bml_endpoint)

btl

btl_endpoint
btl_alloc()

btl_free()

btl_send()
btl_prepare_src/dst()
btl_put/get()
btl_progress()

proc_ompi
proc_guid
proc_ports
proc_port_count
proc_endpoint

btl_proc (ompi_proc_t)
btl_eager][]
btl_send[]

btl_mpool

1
mca_btl_openib_module_t |

btl rdmﬂ I

A BML endpoint per peer

port_info
ibv_device
ibv_dev_context
ib_cq_hp
ib_cq_lp
ib_port_attr
send_free_eager
send_free_max
send_free_frag
....etc...

mca_btl_openib_endpoint_t |

endpoint_btl
endpoint_proc
lcl_gp_hp
lcl_qp_lp
lcl_gp_attr_hp
lcl_qgp_attr_Ip
sd_tokens_hp
subnet

A BTL module per
active PORT

...elc...
"

A BTL endpoint per
peer "Connection" (QPs)

Sandia
National
Laboratories

Sandia
ﬂ'l National
e n Laboratories

= MPI call

= Does any parameter validation (if enabled)
= Calls the PML interface

= PML interface includes blocking, non-blocking, and persistent
interfaces

= Essentially MPI call, but without parameter validation

= Don’t reduce to the base case (persistent, non-blocking) for
performance reasons

= We'll start with a blocking send call, entering OB1.

Send: Request Init) e

" mca_pml_obl send()
= Allocate a send request (from PML free list)

= |nitialize the send request
= Lookup ompi_proc_t associated with the dest

" Create (copy) and initialize the converter for this request

= Note that a converter is cached for the peer on the pml proc structure
based on peer architecture and user datatype

= Start the send request

Sandia
ﬂ'l National _
Laboratories

Send: Request Start

" Find a BTL to use
= BML endpoint cached on ompi_proc_t structure
= BML endpoint contains list of available BTLs to that peer

= Select next available (round-robin)
= BML_BTL structure returned; interface to BTL is through thin
shim layer in BML.

= Small messages are scheduled via
mca_pml|_obl send request _start copy

Send: Eager (short)).

= The PML will allocate a send descriptor by calling
mca_bml base_alloc

= specifying the amount of the message to send (up to eager limit) plus
reserve for headers

= The send descriptor is allocated by the BTL from a free list
= An Mpool associated with the BTL is used to grow the free list if
necessary (may use pre-registered memory)

= The converter is then used to pack the user data into the send
descriptor

= Header information is populated including the tag value (for
active message callback)

Send: Eager (Continued) L

= A callback is set on the descriptor and the send request is set
as callback data

= The descriptor is ready for sending mca_bml_base send is
called

= On sender side completion, the descriptor’s callback function
is called along with the callback data (send request)

= The callback is a PML function which returns the send request
and frees the descriptor

Send: BTL rh) owt

" mca_bml base send calls the BTL level send, passing in the
endpoint and module

= |f this is the first descriptor to the peer

Queue the descriptor at the BTL
Initialize the QP locally

Send the QP information to the peer via the OOB (triggers the recv
callback registered with the OOB)

On receipt of the peers QP information finish establishing the QP
Connection

Send any queued fragments to the peer

BTL sends are un-ordered but reliable

Sandia
’11 National _
Laboratories

Receive: Posting

= MPI_Recv calls the PML recv (mca_pml _ob1 recv)
= Allocate a recv request (from global free list)
= |nitialize the recv request
= Lookup ompi_proc_t associated with the dest
= Unlike the send request, the recv request does not initialize a
converter for the request until the recv is matched

= Start the recv request
= Check the unexpected recv list for the match
= |f not found post it to the right list for matching later

Sandia
'11 National _
Laboratories

Receive: Fragments

= Messages are received via the progress engine

= For polling progress mca_bml_r2 progress is registered as a
progress function and is called via opal_progress

= mca_bml_r2_progress loops through the BTL s and calls a
component level progress function
= Receiving data is BTL specific

= After receipt of the data BTL progress will lookup and invoke
the active message callback based on the tag value specified
in the message header passing in the descriptor

National

Receive: Active Message Callback .

= Recall the active message callback was registered earlier

= PML OB1 uses a single active message callback:
mca_pml_obl recv _frag callback

= The callback is specific to the type of send that was initiated

= for small eager messages the receiver will attempt to find a match by
calling mca_pml_ob1 recv_frag _match

= |f the message is matched

= Copy and initialize a converter for the request

= Note that a converter is cached for the peer on the pml proc structure
based on peer architecture and user datatype

= mca_pml_obl recv_request_match is called

= Otherwise the data is buffered and the match is posted to the
unexpected list

National

Receive: Unpack) .

= Assuming the receive is matched

= With the converter now initialized the data is unpacked into
the user’ s buffer

= A small message (less than eager limit) is now complete and
the receive request is signaled complete at the MPI level

= The PML level resources are then released and the request
returned to the global free list
= For non-blocking receives the request is not freed until MPI_Test or
MPI_Wait
= Note that the BTL descriptor is only valid for the life of the
active message callback so the descriptor must be unpacked
into the user’ s buffer or buffered at the PML level

Sandia
’11 National _
Laboratories

Long Messages

= Unexpected messages make long transfer tricky
= Generally use a RTS/CTS protocol

= Many options for the payload transfer:
= CTS can actually be an RDMA get
= CTS can cause sender to do one or more RDMA put
= CTS can cause the sender to do a number of active message sends

= Choice depends on many factors:
= Capabilities of BTL (no RDMA get in TCP)
= Re-use of buffer (pinning can be expensive)

Long: RDMA Put (pinned)

[_Sender] (—icelver

Match :

prepare_dst ()

ACK Match + RDMA PUT Jﬁ
=
prepare_src ()

RDMA Write

put_completion ()

RDMA FIN put_corhpletlon 0

Sandia
National
Laboratories

Long: RDMA Get (pinned)

T [__Receiver]

|
prepare_src ()

| match (0

:

|

|

i prepare_dst ()

: RDMA READ

lé

| RDMA

| READ rget_completion ()

rget_completion ()

Sandia
National
Laboratories

Sandia
m National
Laboratories

Long: Pipeline Protocol

= For contiguous data

= Messages larger than BTL max send size

= Qverlaps memory registration with RDMA operations

= Uses Mpool to register memory in chunks (BTL max RDMA
size)

" |nitiate multiple RDMA operations at once (up to BTL pipeline
depth)

MPI Message l
Eager Data I LSenleecv Data RDMA Pipeline Data
RDMA RDMA RDMA RDMA RDMA

RDMA Offset -
I— Eager Limit . l— Eager Limit Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5

|_ Max RDMA _||_ Max RDMA J|_ Max RDMA Jl_ Max RDMA _]|_ Max RDMA |
Size Size Size Size Size

National

Long: Pipeline Start .

= Start just like a short eager message

MPI Message
Eager Data

Eager Limit J

T ;T T

ma;ch ()

i

National

Long: Pipeline Match) e

= On match of RNDV header

= Generate a RNDV ACK to the peer with the RDMA offset

= RDMA offset is the minimum of the MIN_RDMA_SIZE of the RDMA
devices available on the receiver

= Onreceipt of the RNDV ACK the source:

= The source schedules up to the RDMA offset using send/recv
semantics

= This helps cover the cost of initializing the pipeline on the receive side

National

Long: Pipeline “Priming” Send) .

MPI Message

Eager Data Send/Recv Data

RDMA Offset -
Eager Limit

Eager Limit

match + eager data H
>

match ()

ACK match

g

Send/Recv Data
w
®
a
o
; 2
O

Long: Pipeline RDMA Schedule) .

MPI Message J

Eager Data Send/Recv Data RDMA Pipeline Data

RDMA RDMA RDMA RDMA RDMA
Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5

RDMA Offset -
Eager Limit

Eager Limit J

|_ Max RDMA _]|_ Max RDMA JL Max RDMA J|_ Max RDMA _||_ Max RDMA |
Size Size Size Size Size

match + eager data :

match ()

)
1
)
]
'
! ACK match
< — o

)

' prepare(frag 1)

)

: READY Frag 1

I

)

E prepare(frag 2)

' Pipeline
| READY Frag 2 Depth
)

I

. prepare(frag 3)

E READY Frag 3

| =

) R
I

)

I

)

I

I

Long: Pipelined RDMA transfer .

MPI Message

Eager Data Send/Recv Data RDMA Pipeline Data

RDMA RDMA RDMA RDMA RDMA
Fragment 1 Fragment 2 Fragment 3 Fragment 4 Fragment 5

RDMA Offset -
Eager Limit

Eager Limit J

|_ Max RDMA _||_ Max RDMA _|[Max RDMA _]|_ Max RDMA _||_ Max RDMA |
Size Size Size Size Size

)
prepare(frag 1)
READY Frag 1

mepar%ag 1)

RDMA_Write(frag 1)

@%}

Poll{ RDMA Completion)

Fi
release(frag 1) .

J
release(frag 1)

i

Long: Pipelined (all of it...)

e _J LB |

Sandia
m National
Laboratories

|

match

U"""-"

/

btl_recv_callback

btl_prepare_dst

/

A

ack + rdma offset

btl_send

: btl_alloc : !

| >l |

I | |

I | |

: btl_send : |

: — — match + eager data | btl_recv_callback

| | +

i i :.'< btl_alloc '
| | ma offset i btl_send |
| btl_recv_callback i ack +1d I~ btl_prepare_dst \
b P N !
! -"3:’“;:“’ - ! btl_send !
| se | = 1
L — = fiset btl_prepare_dst

' bll_prepare_src _! ack + rdmao ;< prepar :
: btl_send - e btl_send [
i btl_prepare_src - E btl_recv_callback \;
: btl_send 2 : !
: bl_prepare_src _ |] bil_recv_callback |
| ~ ! ’:
| : ' btl_recv_callback 3'}
! btl_put ! : '
: btl_send \: E E
: btl_put >: : :
: btl_send ! : |
| | |
| » >
: .
! |
| |
! |
I "
! |
| |
| |
! |
| |
! !

Outline...

= |ntroduction
= MPI Communication models
= Open MPI Overview

= Foundational Components
= Communication in Open MPI
= Communication deep-dive

= Future plans
= BTL relocation

= Fault tolerance
= Threads

Sandia
National
Laboratories

BTL Migration) .

= Desire to move BTLs from OMPI to OPAL
= |ncrease ability to reuse BTLs
= Requires moving mpool and rcache as well
= Possibly need to move BML?

= Challenges

= Modex needs to be replaced
Keep scalability for large job launch
Provide ability to bootstrap through launch

= How to handle end endpoint caching?
= Rational way to handle callback indexing?

= Number of institutions looking at this

Outline...)

= |ntroduction
= MPI Communication models
= Open MPI Overview

= Foundational Components
= Communication in Open MPI
= Communication deep-dive

= Future plans
= BTL relocation
= Fault tolerance
= Threads

Sandia
ﬂ'l National _
Laboratories

Fault Tolerance

= Big area of research for HPC

= Areas of research in Open MPI
= Handle BTL failure in multi-path situations (BFO) (unmaintained)
= Checkpoint / restart (System level & app assisted)
= Run-through failure (U. Tennessee)

" For the most part, BTLs not impacted by FT research
= Need to return errors properly on failure
= Careful what you print!
= No aborting!
= May need timeouts if network doesn’t return failures

Outline...)

= |ntroduction
= MPI Communication models
= Open MPI Overview

= Foundational Components
= Communication in Open MPI
= Communication deep-dive

= Future plans
= BTL relocation

= Fault tolerance
= Threads

Thread Status)

= MPI_THREAD_MULTIPLE: getting better (OpenIB problems)
= Asynchronous progress: Let’s talk on Friday ©
= Let’s walk through some of the thread issues

National

PML Request Completion T .

= Global mutex (ompi_request_lock) protects changes to
request state

* Global condition variable (ompi_request_cond) used to wait
on request completion

= Condition variables provide an abstraction that supports
progression with multiple threading models

PML Locking L

= Multiple threads could be attempting to progress a pending
request

= Utilize a per request counter and atomic operations to prevent
multiple threads from entering scheduling logic

= MPI queues (unexpected,posted receives) are stored on a
PML datastructure associated with the communicator

= Utilize a single per communicator lock that is held during matching

Sandia
National _
Laboratories

BTL Locking) S,

= Per BTL mutex acquired when accessing BTL specific queues/
state

= Atomic operations used to manage token counts (e.g. number
of send tokens available)

" Free lists (ompi_free_list_t) each maintain a mutex to protect
against concurrent access

Progress Thread model T

= BTLs provide asynchronous callbacks
= PML, OSC, etc. respond to asynchronous events

= Theoretically, no difference between callbacks from progress thread
and multiple MPI threads

" Problems:
= Latency, Gap, and Message Rate ©

Progress thread blocking increases latency
Progress thread polling drastically reduces effectiveness
= MPICH model would loosely translate to having two BTL channels:
One which provides no asynch progress (for short messages)
One which provides asynch progress (long Pt-2-pt, one-sided)

Sandia
National _
Laboratories

Sandia
|I'| National
Laboratories

