Hardware Locality (hwloc)
1.10.1

Generated by Doxygen 1.8.8

Mon Jan 26 2015 10:38:04






Contents

1

4

5

6

Hardware Locality

1.1 Introduction . . . . . . L e e
1.2 Installation . . . . . . . . e e e
1.3 CLIExamples . . . . . . . . e
1.4 Programming Interface . . . . . . . . L

1.4.1  Portability . . . . . . e

1.42 APIExample . . . . . . . e
1.5 Questionsand Bugs . . . . . . . . e
1.6 History /Credits . . . . . . . . e e
1.7 FurtherReading . . . . . . . . . e e e e e

Terms and Definitions

Command-Line Tools

3.1 Istopo and Istopo-no-graphics . . . . . . . ..
3.2 hwloc-bind . . . . . e e
3.3 hwloc-calc . . . . . . e
3.4 hwloc-info . . . . . e e
3.5 hwloc-distrib . . . . . e
3.6 hwIOC-PS . . . . . e e
3.7 hwloc-gather-topology . . . . . . . . . e
3.8 hwloc-distances . . . . . . . .
3.9 hwloc-annotate . . . . . . . L
3.10 hwloc-diff and hwloc-patch . . . . . . . . . . . .
3.11 hwloc-compress-dir . . . . . . . . . e e e
3.12 hwloc-assembler . . . . . . L e e
3.13 hwloc-assembler-remote . . . . . . . ...

Environment Variables

CPU and Memory Binding Overview

1/0 Devices

—_

0 N W N

11
13
14
14

15

19
19
19
19
20
20
20
20
20
20
20
20
21
21

23

25

27



iv CONTENTS
6.1 Enablingandrequirements . . . . . . . .. 27
6.2 l/Oobjecthierarchy . . . . . . . . 27
6.3 Softwaredevices . . . . . . . e 28
6.4 Consulting /O devicesandbinding . . . . . . . . . . L 28
6.5 Examples . . . . .. e 29

7 Multi-node Topologies 31
7.1 Multi-node Objects Specifities . . . . . . . . . . . e 31
7.2 Assembling topologies with command-linetools . . . . . .. . ... ... ... .. ... ... .. 32
7.3 Assembling topologies with the programminginterface . . . . . . . ... .. ... ... ... ... 32
7.4 Example of assembly with the programming interface . . . . . . . . ... ... Lo 32

8 Object attributes 35
8.1 Normalattributes . . . . . . . . . 35
8.2 Customstringinfos . . . . . . . L 35

9 Importing and exporting topologies from/to XML files 37
9.1 libxml2 and minimalistic XML backends . . . . . . . . . ..o 37
9.2 XML import error management . . . . . . ... e e e 38

10 Synthetic topologies 39
10.1 Synthetic descriptionstring . . . . . . . . . L 39
10.2 Loading a synthetictopology . . . . . . . . . . e 40
10.3 Exporting a topology as a syntheticstring . . . . . . . . . ... o oL Lo 40

11 Interoperability With Other Software 41

12 Thread Safety 43

13 Components and plugins 45
13.1 Components enabled by default . . . . . . . . . . . . . . 45
13.2 Selecting which componentstouse . . . . . . . . . . . . . 45
13.3 Loading components fromplugins . . . . . . . . . . L 46
13.4 Adding new discovery components and plugins . . . . . . . . ... oo 46

13.4.1 Basics of discovery components . . . . . . . ... 46
13.4.2 Registering a new discovery component . . . . . . . . ... e 46
13.5 Existing components and plugins . . . . . . . . ... 47

14 Embedding hwloc in Other Software 49
14.1 Using hwloc’s M4 Embedding Capabilities . . . . . . . . . . . . ... . oo, 49
14.2 Example Embeddinghwloc . . . . . . . . . . . L 51

15 Frequently Asked Questions 53
15.1 | do not want hwloc to rediscover my enormous machine topology every time | rerun a process 53

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



CONTENTS v
15.2 How many topologies may | use in my program? . . . . . . . . . . ... 53
15.3 How to avoid memory waste when manipulating multiple similar topologies? . . . . . . . ... .. 53
15.4 Why isIstopo slow? . . . . . . . L e e 54
15.5 What should | do when hwloc reports "operating system" warnings? . . . . . . . . . ... ... .. 54
15.6 Does hwloc require privileged access? . . . . . . . . . o e 54
15.7 hwloc only has a one-dimensional view of the architecture, it ignores distances . . . . . . . . . .. 55
15.8 How may | ignore symmetric multithreading, hyper-threading, ... 2 . . . . . . . . . . . .. .. ... 55
15.9 What happens if my topology is asymmetric? . . . . . . . . . . .. 56
15.10How do | annotate the topology with private notes? . . . . . . . . . . . .. .. ... ... ..... 56
15.11Why does Valgrind complain about hwloc memory leaks? . . . . . . . .. .. .. ... ... ... 56
15.12How do | handle ABI breaks and APl upgrades? . . . . . . . . . .« . i 57
15.13How do | build hwloc for BlueGene/Q? . . . . . . . . . . . . e 57
15.14How to get useful topology information on NetBSD? . . . . . . . . . . . . ... ... ... 57

16 Module Index 59
16.1 Modules . . . . . . e e e e e e 59

17 Data Structure Index 61
17.1 Data Structures . . . . . . . L e 61

18 Module Documentation 63
18.1 APLVersion . . . . . . e e e e e e e e e e 63

18.1.1 Detailed Description . . . . . . . . L 63
18.1.2 Macro Definition Documentation . . . . . . . . . .. .. L L 63
18.1.2.1 HWLOC_API_VERSION . . . . . . . . e 63

18.1.22 HWLOC_COMPONENT_ABI . . . . . . . o i 63

18.1.3 Function Documentation . . . . . . . . . ... 63
18.1.3.1 hwloc_get_api_version. . . . . . . ... L 63

18.2 Object Sets (hwloc_cpuset_tand hwloc_nodeset t) . . . . . . . . .. .. .. ... ... ..... 64
18.2.1 Detailed Description . . . . . . . . 64
18.2.2 Typedef Documentation . . . . . . . . . . . . . . 64
18.2.2.1 hwloc_const_cpuset .t . . . . . . . . . . 64

18.2.2.2 hwloc const nodeset t . . . . . . . . . . ... ... ... 64

18.2.2.3 hwloc_cpuset t . . . . . . . . e 64

18.2.2.4 hwloc_nodeset t . . . . . . . . . . e 64

18.3 Object Types . . . . . . . o o e e e e e e e 65
18.3.1 Detailed Description . . . . . . . .. 65
18.3.2 Typedef Documentation . . . . . . . . . . . . .. 65
18.3.2.1 hwloc_obj_bridge type t . . . . . . . L 65

18.8.2.2 hwloc_obj_cache_type t. . . . . . . . .. 65

18.3.2.3 hwloc_obj_osdev_type_t. . . . . . . . .. 65

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



CONTENTS

18.3.3 Enumeration Type Documentation . . . . . . . . . . . . . ... ... 65
18.3.3.1 hwloc_compare_types_e . . . . . . . . . e 65
18.3.3.2 hwloc_obj_bridge type_ e . . . . . . .. L 66
18.3.3.3 hwloc_obj _cache type e . . . . . . . . ..o 66
18.3.3.4 hwloc_obj_osdev_type_e . . . . . . . .. 66
18.8.3.5 hwloc_obj_type t . . . . . . . 66

18.3.4 Function Documentation . . . . . . . . . .. 67
18.3.4.1 hwloc_compare_types . . . . . . . . . .. 67

18.4 Object Structure and Attributes . . . . . . . . . . L L 68

18.4.1 Detailed Description . . . . . . . . 68

18.4.2 Typedef Documentation . . . . . . . . . . . . . 68
18.4.21 hwloc_obj_t . . . . . . .. 68

18.5 Topology Creation and Destruction . . . . . . . . . . . . . . . 69

18.5.1 Detailed Description . . . . . . . . 69

18.5.2 Typedef Documentation . . . . . . . . . . . . L 69
18.5.2.1 hwloc_topology t . . . . . . . . 69

18.5.3 Function Documentation . . . . . . . . . .. 69
18.5.3.1 hwloc_topology_check . . . . . . . . . .. 69
18.5.3.2 hwloc_topology destroy . . . . . . . . . .. 69
18.5.3.3 hwloc_topology_init . . . . . . . . .. 69
18.5.3.4 hwloc_topology load . . . . . . . . . . . 70

18.6 Topology Detection Configurationand Query . . . . . . . . . . . . . . o i 71

18.6.1 Detailed Description . . . . . . . . . 71

18.6.2 Enumeration Type Documentation . . . . . . . . . . . . . ... ... 72
18.6.2.1 hwloc_topology flags_ e . . . . . . . . . . . 72

18.6.3 Function Documentation . . . . . . . .. .. 72
18.6.3.1 hwloc_topology _get flags . . . . . . . . . . . o 72
18.6.3.2 hwloc_topology_get_support . . . . . . . ... 72
18.6.3.3 hwloc_topology_get userdata . . . . . . . .. ... ..o 72
18.6.3.4 hwloc_topology_ignore_all_keep_structure . . . . . . .. . ... ... ... .. 73
18.6.3.5 hwloc_topology_ignore_type . . . . . . . . .. 73
18.6.3.6 hwloc_topology_ignore_type_keep_structure . . . . . . . ... ... L. 73
18.6.3.7 hwloc_topology_is_thissystem . . . . . . . . . ..o 73
18.6.3.8 hwloc_topology_set custom . . . . . . . ... .o 73
18.6.3.9 hwloc_topology_set distance_matrix . . . . . . ... ..o oL 73
18.6.3.10 hwloc_topology_set flags . . . . . . . . . . . . . L Lo 74
18.6.3.11 hwloc_topology_set fsroot. . . . . . . . . . . . . . . Lo 74
18.6.3.12 hwloc_topology_set pid . . . . . . . . . . . . 74
18.6.3.13 hwloc_topology_set synthetic . . . . . . . . . . ... ... . 75
18.6.3.14 hwloc_topology_set userdata . . . . . . . . . . .. .. ... ... ... 75

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



CONTENTS vii
18.6.3.15 hwloc_topology_set xml . . . . . . . . . . .. . 75
18.6.3.16 hwloc_topology_set xmlbuffer . . . . . . . . . . . .. ... . oL 75

18.7 Object levels, depths andtypes . . . . . . . . . . . . 77
18.7.1 Detailed Description . . . . . . . .. 77
18.7.2 Enumeration Type Documentation . . . . . . . . . . . . ... 77

18.7.2.1 hwloc_get_type_depth_e . . . . . . . . . 77
18.7.3 Function Documentation . . . . . . . . . .. 77
18.7.3.1 hwloc_get_depth_type . . . . . . . . . . 77
18.7.3.2 hwloc_get_nbobjs_by depth . . . . . . .. ... .. oo 78
18.7.3.3 hwloc_get_nbobjs_by type . . . . . . .. 78
18.7.3.4 hwloc_get next obj by depth . . . . . . .. . . ... Lo 78
18.7.3.5 hwloc_get_next obj by type . . . . . .. ... ..o oo 78
18.7.3.6 hwloc_get_obj by depth . . . . . .. ... .. ... 78
18.7.3.7 hwloc_get_obj by type . . . . . . . ... 78
18.7.3.8 hwloc_get root_obj . . . . . . . . L 78
18.7.3.9 hwloc_get_type_depth . . . . . . . . . .. 78
18.7.3.10 hwloc_get_type_or _above depth . . . . . . . .. .. .. ... ... ... 79
18.7.3.11 hwloc_get_type_or below_depth . . . . . . . .. ... ... ... ... ..., 79
18.7.3.12 hwloc_topology_get depth . . . . . . . . . . . . ... 79

18.8 Manipulating Object Type, Sets and Attributesas Strings . . . . . . . . . . . . .. ... ... ... 80
18.8.1 Detailed Description . . . . . . . .. 80
18.8.2 Function Documentation . . . . . . . . . .. 80

18.8.2.1 hwloc_obj_add info . . . . . .. . ... 80
18.8.2.2 hwloc_obj_attr_snprintf . . . . . . ... 80
18.8.2.3 hwloc_obj_cpuset_snprintf . . . . . . . ..o 80
18.8.2.4 hwloc_obj_get_info by name . . . . . . ... ..o L oL 81
18.8.2.5 hwloc_obj_type_snprintf . . . . . . ..o 81
18.8.2.6 hwloc_obj_type_sscanf . . . . . . . . . ... 81
18.8.2.7 hwloc_obj_type_string . . . . . . . . . 81

18.9 CPUDINAING . . . . . . o o e e 82
18.9.1 Detailed Description . . . . . . . . 82
18.9.2 Enumeration Type Documentation . . . . . . . . . . . . .. ... .. 83

18.9.2.1 hwloc_cpubind_flags_t. . . . . . . . . . . 83
18.9.3 Function Documentation . . . . . . . . . .. 83
18.9.3.1 hwloc_get_cpubind . . . . . ... L 83
18.9.3.2 hwloc_get_last cpu_location . . . . . .. ... ... Lo 83
18.9.3.3 hwloc_get_proc_cpubind . . . . . ... 84
18.9.3.4 hwloc_get_proc_last cpu_location . . . ... . ... ... 84
18.9.3.5 hwloc_get_thread_cpubind . . . . . . . ... ..o L oo 84
18.9.3.6 hwloc_set_cpubind. . . . . . . . ... 84

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



viii CONTENTS

18.9.3.7 hwloc_set_proc_cpubind . . . . . . . . .. 84
18.9.3.8 hwloc_set_thread_cpubind . . . . . . . . ..o 85
18.10Memory binding . . . . . . . . L e e e e e e 86
18.10.1 Detailed Description . . . . . . . . . . e 86
18.10.2 Enumeration Type Documentation . . . . . . . . . . . . . . ... ... . 87
18.10.2.1 hwloc_membind flags_t . . . . . . . . . . . . . L 87
18.10.2.2 hwloc_membind_policy_t . . . . . . . . . . . . .. 88
18.10.3 Function Documentation . . . . . . . . . .. .. 88
18.10.3.1 hwloc_alloc. . . . . . . . . . . . e 88
18.10.3.2 hwloc_alloc membind . . . . . . . . . . .. . . ... 89
18.10.3.3 hwloc_alloc membind nodeset . . . . . . . . . . . . ... ... ........ 89
18.10.3.4 hwloc_alloc_membind_policy . . . . . . .. . . ... .. . .. 89
18.10.3.5 hwloc_alloc_membind_policy_nodeset . . . . . . . . ... ... ... ..... 89
18.10.3.6 hwloc_free . . . . . . . . . . e 89
18.10.3.7 hwloc_get_area_membind . . . . . . . . . . . ..o oo 90
18.10.3.8 hwloc_get_area_membind_nodeset . . . . . . . . . . ... ... ... 90
18.10.3.9 hwloc_get_membind . . . . . . . . . . .. 90
18.10.3.1Chwloc_get_membind_nodeset . . . . . . . . . . . . ..o 91
18.10.3.11thwloc_get_proc_membind . . . . . . . . . . . ..o o 91
18.10.3.12hwloc_get_proc_membind_nodeset . . . . . . . . . . .. .o L. 92
18.10.3.13hwloc_set area_ membind . . . . . . . . . . . . . ... . 92
18.10.3.14hwloc_set area_membind nodeset . . . . . . . . . . . . .. .. ... ..... 92
18.10.3.15hwloc_set_ membind . . . . . . . . Lo 92
18.10.3.16hwloc_set membind nodeset . . . . . . . . . . . . . . . .. ... ... ..., 93
18.10.3.17hwloc_set_proc_membind . . . . . . . . . ..o 93
18.10.3.18&hwloc_set_proc_membind_nodeset . . . . . . . . . . ... ... ... 93
18.11Modifying a loaded Topology . . . . . . . . . o o e e e e e 94
18.11.1 Detailed Description . . . . . . . . . e 94
18.11.2 Enumeration Type Documentation . . . . . . . . . . . . .. ... . L 94
18.11.2.1 hwloc_restrict_flags_e . . . . . . . . . . . . . 94
18.11.3 Function Documentation . . . . . . . . . . . .. . 94
18.11.3.1 hwloc_topology_dup . . . . . . . . . . . 94
18.11.3.2 hwloc_topology_insert_misc_object by cpuset . . . . . . . . .. ... .. ... 94
18.11.3.3 hwloc_topology_insert_misc_object_by parent . . . . . . . ... ... ... .. 95
18.11.3.4 hwloc_topology _restrict . . . . . . . . . . .. . 95
18.12Building Custom Topologies . . . . . . . . . . . . 96
18.12.1 Detailed Description . . . . . . . . . . L 96
18.12.2 Function Documentation . . . . . . . . . .. 96
18.12.2.1 hwloc_custom_insert_group_object_by parent . . . . . . . ... ... ... .. 96
18.12.2.2 hwloc_custom_insert_topology . . . . . . . . . .. . ... ... 96

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



CONTENTS ix

18.13Exporting Topologies to XML . . . . . . . . . . . . e e e e 97
18.13.1 Detailed Description . . . . . . . . . 97
18.13.2 Function Documentation . . . . . . . . . .. 97

18.13.2.1 hwloc_export_obj_userdata . . . . . . . .. . ... .. oL 97
18.13.2.2 hwloc_export_obj_userdata_base64 . . . . . .. .. .. .. ... .. ..... 97
18.13.2.3 hwloc_free_xmlbuffer . . . . . . . . . . . . .. ... . 97
18.13.2.4 hwloc_topology_export_xml . . . . . . . . . . . 98
18.13.2.5 hwloc_topology_export_xmlbuffer . . . . . .. .. .. ... ... L. 98
18.13.2.6 hwloc_topology_set userdata_export_callback . . . . . . . ... ... ... .. 98
18.13.2.7 hwloc_topology_set_userdata_import_callback . . . . . . .. .. ... .. ... 99

18.14Exporting Topologies to Synthetic . . . . . . . . . . . . . 100
18.14.1 Detailed Description . . . . . . . . . . 100
18.14.2 Enumeration Type Documentation . . . . . . . . . . . . . ..o 100

18.14.2.1 hwloc_topology_export_synthetic_flags e . . ... ... ... ... ... ... 100
18.14.3 Function Documentation . . . . . . . . . . . . 100
18.14.3.1 hwloc_topology_export_synthetic . . . . . .. .. .. ... ... ... .. ... 100

18.15Finding Objects inside a CPU set . . . . . . . . . . . . 101
18.15.1 Detailed Description . . . . . . . . . . L 101
18.15.2 Function Documentation . . . . . . . . . .. 101

18.15.2.1 hwloc_get_first_largest_obj_inside_cpuset . . . . . . .. .. .. .. ... ... 101
18.15.2.2 hwloc_get_largest_objs_inside_cpuset . . . . . . . . . ... ... .. ... .. 101
18.15.2.3 hwloc_get_nbobjs_inside_cpuset by depth. . . . . . . .. ... ... .. ... 102
18.15.2.4 hwloc_get_nbobjs_inside_cpuset by type . . .. .. ... ... ... .. ... 102
18.15.2.5 hwloc_get_next_obj_inside_cpuset by depth . . . . . .. .. .. .. ... ... 102
18.15.2.6 hwloc_get_next_obj_inside_cpuset by type . . . .. ... ... ... .. ... 102
18.15.2.7 hwloc_get_obj_index_inside_cpuset . . . . . . . . . . .. . . ... .. ... .. 102
18.15.2.8 hwloc_get_obj_inside_cpuset_by depth . . . . . . . .. . ... ... ... .. 103
18.15.2.9 hwloc_get_obj_inside_cpuset_by type . . . . . .. ... ... ... ... .. 103

18.16Finding Objects covering atleast CPUset . . . . . . . . . . . . . . . . . ... 104
18.16.1 Detailed Description . . . . . . . . . . 104
18.16.2 Function Documentation . . . . . . . . . . ... 104

18.16.2.1 hwloc_get_child_covering_cpuset . . . . . . . . . . . ... .. ... 104
18.16.2.2 hwloc_get_next_obj_covering_cpuset_by depth . . . . ... .. ... .. ... 104
18.16.2.3 hwloc_get_next_obj_covering_cpuset_ by type . . . . . . . ... ... ... .. 104
18.16.2.4 hwloc_get_obj_covering_cpuset . . . . . . . . . . .. ... oL 105

18.17Looking at Ancestor and Child Objects . . . . . . . . . . . . . . . 106
18.17.1 Detailed Description . . . . . . . . . . L 106
18.17.2 Function Documentation . . . . . . . . . .. . 106

18.17.2.1 hwloc_get_ancestor_obj_by depth . . . . . . . ... ... ... ... ... 106
18.17.2.2 hwloc_get_ancestor_obj_by type . . . . . . . . .. . ... 106

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



CONTENTS

18.17.2.3 hwloc_get_common_ancestor obj. . . . . . . . . . . ... ... ... 106

18.17.2.4 hwloc_get_next_child . . . . . . . . . .. 106

18.17.2.5 hwloc_obj_is_in_subtree . . . . . . . . . . .. . 106
18.18Looking at Cache Objects . . . . . . . . . . . 107
18.18.1 Detailed Description . . . . . . . . . e e 107
18.18.2 Function Documentation . . . . . . . . . . L 107
18.18.2.1 hwloc_get_cache_covering_cpuset . . . . . . . . . . .. . ... ... ... .. 107

18.18.2.2 hwloc_get_cache_type depth . . . . . . . . . . . .. ... ... L. 107

18.18.2.3 hwloc_get_shared_cache_covering_obj . . . . . . .. ... ... ... ..... 107

18.19Finding objects, miscellaneous helpers . . . . . . . . . . . Lo 108
18.19.1 Detailed Description . . . . . . . . . . 108
18.19.2 Function Documentation . . . . . . . . . ... 108
18.19.2.1 hwloc_get_closest_objs . . . . . . . . . . .. 108

18.19.2.2 hwloc_get_numanode_obj_by_os_index . . . . ... ... ... ... ..... 108

18.19.2.3 hwloc_get_obj_below_array_by type . . . . . . . .. ... ... ... ... .. 108

18.19.2.4 hwloc_get_obj_below_by type . . . . .. .. .. ... .. ... 109

18.19.2.5 hwloc_get_pu_obj by os_index . . . . . . . . . . .. ... L. 109
18.20Distributing items over atopology . . . . . . . . . . 110
18.20.1 Detailed Description . . . . . . . . . . 110
18.20.2 Enumeration Type Documentation . . . . . . . . . . . . .. .. ... o 110
18.20.2.1 hwloc_distrib_flags_e . . . . . . . . . .. L 110

18.20.3 Function Documentation . . . . . . . . . .. L 110
18.20.3.1 hwloc_distrib . . . . . . . . . L 110

18.21CPU and node sets of entire topologies . . . . . . . . . . . . . 111
18.21.1 Detailed Description . . . . . . . . . . 111
18.21.2 Function Documentation . . . . . . . . . .. L 111
18.21.2.1 hwloc_topology_get_allowed_cpuset . . . . . . . .. ... ... ... ... .. 111

18.21.2.2 hwloc_topology_get_allowed_nodeset . . . . . .. .. ... ... ... .... 111

18.21.2.3 hwloc_topology_get_complete_cpuset . . . . . . .. ... .. ... ... ... 111

18.21.2.4 hwloc_topology_get complete_nodeset . . . . . . . . ... ... ... ..... 112

18.21.2.5 hwloc_topology_get_online_cpuset . . . . . . . . . . .. .. ... .. 112

18.21.2.6 hwloc_topology_get_topology cpuset . . . . . . . .. .. . ... ... ... .. 112

18.21.2.7 hwloc_topology_get_topology nodeset . . . . . . . ... ... ... .. .... 113
18.22Converting between CPU setsandnode sets . . . . . . . . . . . . . . .. ... 114
18.22.1 Detailed Description . . . . . . . . . . 114
18.22.2 Function Documentation . . . . . . . . . . 114
18.22.2.1 hwloc_cpuset_from_nodeset . . . . . . . . . .. ..o 114

18.22.2.2 hwloc_cpuset_from_nodeset_strict . . . . . . . ... ... .o oL 114

18.22.2.3 hwloc_cpuset_to_nodeset . . . . . . . . . . ..o 114

18.22.2.4 hwloc_cpuset_to_nodeset_strict . . . . . . . . .. .. ... L. 115

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



CONTENTS i

18.23Manipulating Distances . . . . . . . . . L 116
18.23.1 Detailed Description . . . . . . . . . 116
18.23.2 Function Documentation . . . . . . . . . .. L 116

18.23.2.1 hwloc_get_distance_matrix_covering_obj by depth . . . . . .. ... ... .. 116
18.23.2.2 hwloc_get_latency . . . . . . . . . . . L 116
18.23.2.3 hwloc_get_whole_distance_matrix_by depth . . . . . ... ... ... .. ... 116
18.23.2.4 hwloc_get_whole_distance_matrix_by type . . . . . . . . . ... ... ... .. 117

18.24Finding /O objects . . . . . . . L 118
18.24.1 Detailed Description . . . . . . . . . e e 118
18.24.2 Function Documentation . . . . . . . . . . L 118

18.24.2.1 hwloc_bridge_covers_pcibus . . . . . . . . . ..o o 118
18.24.2.2 hwloc_get_hostbridge_by pcibus . . . . . . . .. .. ... oL 118
18.24.2.3 hwloc_get_next_bridge . . . . . . . . .. .o 118
18.24.2.4 hwloc_get_next_ osdev . . . . . . . . . . . L 118
18.24.2.5 hwloc_get_next_pcidev . . . . . . . . . .. 118
18.24.2.6 hwloc_get_non_io_ancestor_obj. . . . . . . . . .. ... Lo oL, 119
18.24.2.7 hwloc_get_pcidev_by busid . . . . . . .. .. ..o 119
18.24.2.8 hwloc_get_pcidev_by_busidstring . . . . . . . . .. ... oL 119

18.25The bitmap APl . . . . . . e e e e 120
18.25.1 Detailed Description . . . . . . . . . . 121
18.25.2 Macro Definition Documentation . . . . . . . . . ... Lo 121

18.25.2.1 hwloc_bitmap_foreach_begin . . . . . . . . . . . . ..o 121
18.25.2.2 hwloc_bitmap_foreach_end . . . . . . . . . . ... .o oL 121
18.25.3 Typedef Documentation . . . . . . . . . . . .. 121
18.25.3.1 hwloc_bitmap_t . . . . . . . . . . 121
18.25.3.2 hwloc_const_bitmap_t . . . . . . . . . . ... o 122
18.25.4 Function Documentation . . . . . . . . . .. 122
18.25.4.1 hwloc_bitmap_allbut . . . . . . . . . . .. .. 122
18.25.4.2 hwloc_bitmap_alloc . . . . . . . . . . . 122
18.25.4.3 hwloc_bitmap_alloc_full . . . . . . .. . .. . . ... 122
18.25.4.4 hwloc_bitmap_and . . . . . . . . . .. L 122
18.25.4.5 hwloc_bitmap_andnot . . . . . . . . . . . .. 122
18.25.4.6 hwloc_bitmap_asprintf . . . . . . . . . ... o 122
18.25.4.7 hwloc_bitmap_clr . . . . . . . . . 122
18.25.4.8 hwloc_bitmap_clr_range . . . . . . . . . . ..o 122
18.25.4.9 hwloc_bitmap_compare . . . . . . . . . ... 123
18.25.4.1Chwloc_bitmap_compare_first . . . . . . . . . ..o 123
18.25.4.11thwloc_bitmap_copy . . . . . . . . . . 123
18.25.4.12hwloc_bitmap_dup . . . . . . . . . . 123
18.25.4.1%hwloc_bitmap_fill . . . . . . . . . .o 123

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



xii CONTENTS
18.25.4.14hwloc_bitmap_first . . . . . . . . . .. 123
18.25.4.15hwloc_bitmap_free . . . . . . . . . oL 123
18.25.4.16hwloc_bitmap_from_ith_ulong . . . . . . . . . . . . ..o oL 123
18.25.4.17hwloc_bitmap_from_ulong . . . . . . . . . ..o 123
18.25.4.1&hwloc_bitmap_intersects . . . . . . . . . . ..o 123
18.25.4.1%wloc_bitmap_isequal . . . . . . . . . . 124
18.25.4.2Chwloc_bitmap_isfull . . . . . . . . ... 124
18.25.4.21hwloc_bitmap_isincluded . . . . . . . . . ..o 124
18.25.4.2%hwloc_bitmap_isset . . . . . . . . . . 124
18.25.4.2%hwloc_bitmap_iszero . . . . . . . . . . e 124
18.25.4.24hwloc_bitmap_last . . . . . . . . . L 124
18.25.4.25wloc_bitmap_list_asprintf . . . . . . . .. ..o 124
18.25.4.26hwloc_bitmap_list_snprintf . . . . . . . . .. o o 124
18.25.4.27hwloc_bitmap_list_sscanf . . . . . . . . . .. o 124
18.25.4.28hwloc_bitmap_next . . . . . . . . L 125
18.25.4.2%Nwloc_bitmap_not . . . . . . . .. 125
18.25.4.30hwloc_bitmap_only . . . . . . . . . . 125
18.25.4.3thwloc_bitmap_or . . . . . . . . . L 125
18.25.4.32hwloc_bitmap_set . . . . . . . . .. 125
18.25.4.3hwloc_bitmap_set_ith_ulong . . . . . . . .. ..o 125
18.25.4.34hwloc_bitmap_set range . . . . . . . .. L 125
18.25.4.35wloc_bitmap_singlify . . . . . . . .. 125
18.25.4.36hwloc_bitmap_snprintf . . . . . . . . .o 125
18.25.4.37hwloc_bitmap_sscanf . . . . . . . . . .. Lo 126
18.25.4.3&hwloc_bitmap_taskset_asprintf . . . . . . .. ..o oo 126
18.25.4.3%wloc_bitmap_taskset_snprintf . . . . . ... .o oo oo oL 126
18.25.4.4Chwloc_bitmap_taskset_sscanf . . . . . . . . . . ..o oL 126
18.25.4.41hwloc_bitmap_to_ith_ulong . . . . . . . . .. .. .o 126
18.25.4.42hwloc_bitmap_to_ulong . . . . . . . . .. 126
18.25.4.4%wloc_bitmap_weight . . . . . . . . . 126
18.25.4.44hwloc_bitmap_xor . . . . . . .. 126
18.25.4.45 wloc_bitmap_zero . . . . . . . . 127

18.26Topology differences . . . . . . . . L e e e e e e e 128
18.26.1 Detailed Description . . . . . . . . . . 128
18.26.2 Typedef Documentation . . . . . . . . . .. L 129

18.26.2.1 hwloc_topology_diff obj_attr type t. . . . . . .. .. .. ... ... ... .. 129
18.26.2.2 hwloc_topology_diff t . . . . . . .. . .. o 129
18.26.2.3 hwloc_topology_diff type t . . . . . . . . . . ..o 129
18.26.3 Enumeration Type Documentation . . . . . . . . . . .. ..o oL 129
18.26.3.1 hwloc_topology_diff apply_flags. e . . . . . . ... . ... ... ... ..... 129

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



CONTENTS xiii

18.26.3.2 hwloc_topology_diff obj_attr type e . . . . . . .. ... ... ... ... .. 129

18.26.3.3 hwloc_topology_diff type e . . . . . . . . . . .o 129

18.26.4 Function Documentation . . . . . . . . . .. L 130
18.26.4.1 hwloc_topology_diff apply . . . . . . . . . . . ... 130

18.26.4.2 hwloc_topology_diff build . . . . . .. .. ... ... .. 130

18.26.4.3 hwloc_topology_diff destroy . . . . . . . . . . . . oo 130

18.26.4.4 hwloc_topology_diff export. xml . . . . . . . . . . ... ... oL 131

18.26.4.5 hwloc_topology_diff export_xmlbuffer . . . . . .. .. ... ... ... .. ... 131

18.26.4.6 hwloc_topology_diff load_xml . . . . . .. .. .. .. ... .. ... 131

18.26.4.7 hwloc_topology_diff load_xmlbuffer . . . . . . .. ... .. .. ... ... ... 131
18.27Components and Plugins: Discovery components . . . . . . . . . . . . .o 132
18.27.1 Detailed Description . . . . . . . . . . 132
18.27.2 Typedef Documentation . . . . . . . . . . .. L 132
18.27.2.1 hwloc_disc_component_type_t . . . . . . . . . . . ... oL 132

18.27.3 Enumeration Type Documentation . . . . . . . . . . . . ... o 132
18.27.3.1 hwloc_disc_component_type_e . . . . . . . . . . . .. oo 132
18.28Components and Plugins: Discovery backends . . . . . . . . . . ... .. ... oL 133
18.28.1 Detailed Description . . . . . . . . . . L 133
18.28.2 Enumeration Type Documentation . . . . . . . . . . . . .. ... 133
18.28.2.1 hwloc_backend_flag_e. . . . . . . . . . . . . Lo 133

18.28.3 Function Documentation . . . . . . . . . . L 133
18.28.3.1 hwloc_backend alloc . . . . . . . .. . ... .. ... 133

18.28.3.2 hwloc_backend enable . . . . . . . . . ... oL 133

18.28.3.3 hwloc_backends_get obj cpuset . . . . . .. .. .. ... .. 133

18.28.3.4 hwloc_backends_notify_new_object . . . . . . . . ... ... oL 134
18.29Components and Plugins: Generic components . . . . . . . . . . . ..o o e 135
18.29.1 Detailed Description . . . . . . . . . . 135
18.29.2 Typedef Documentation . . . . . . . . . . . .. 135
18.29.2.1 hwloc_component_type_t . . . . . . . . . ..o 135

18.29.3 Enumeration Type Documentation . . . . . . . . . . .. ... L L 135
18.29.3.1 hwloc_component_type_e . . . . . . . . . . . Lo 135
18.30Components and Plugins: Core functions to be used by components . . . . . .. ... ... ... 136
18.30.1 Detailed Description . . . . . . . . . . L 136
18.30.2 Typedef Documentation . . . . . . . . . . .. 136
18.30.2.1 hwloc_report_error_t . . . . . . . . L 136

18.30.3 Function Documentation . . . . . . . . . . 136
18.30.3.1 hwloc__insert_object by _cpuset . . . .. .. ... ... ... 136

18.30.3.2 hwloc_alloc_setup_object . . . . . . . . . . . .o o oo 136

18.30.3.3 hwloc _fill_object_sets . . . . . . . . . .. . 136

18.30.3.4 hwloc_hide_errors . . . . . . . . . e 136

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Xiv CONTENTS

18.30.3.5 hwloc_insert_object_by cpuset . . . . . . .. .. .. ... ... 137

18.30.3.6 hwloc_insert_object_by _parent . . . . . . .. ... . ... Lo 137

18.30.3.7 hwloc_plugin_check_namespace . . . . ... ... ... ... ... ...... 137

18.30.3.8 hwloc_report_os_error . . . . . . . . . e 137
18.31Components and Plugins: PCI functions to be used by components . . . . . . ... ... ... .. 138
18.31.1 Detailed Description . . . . . . . . . . 138
18.31.2 Function Documentation . . . . . . . . . .. 138
18.31.2.1 hwloc_insert_pci_device_list. . . . . . . .. . . ... .. oL, 138

18.31.2.2 hwloc_pci_find_cap . . . . . . . . . . e 138

18.31.2.3 hwloc_pci_find_linkspeed . . . . . . . . . ..o 138

18.31.2.4 hwloc_pci_prepare_bridge . . . . . . . . . . . .o 138
18.32Linux-specific helpers . . . . . . . . e e e 139
18.32.1 Detailed Description . . . . . . . . . e e e 139
18.32.2 Function Documentation . . . . . . . . . L 139
18.32.2.1 hwloc_linux_get_tid_cpubind . . . . . . .. . . ... o 139

18.32.2.2 hwloc_linux_get_tid_last_cpu_location . . . . . . .. ... ... ... ... .. 139

18.32.2.3 hwloc_linux_parse_cpumap_file . . . . . . . . .. ..o 139

18.32.2.4 hwloc_linux_set_tid_cpubind . . . . . .. . ... o Lo 139
18.33Interoperability with Linux libnuma unsigned longmasks . . . . . . . . .. .. .. ... ... ... 140
18.33.1 Detailed Description . . . . . . . . . . 140
18.33.2 Function Documentation . . . . . . . . . . L 140
18.33.2.1 hwloc_cpuset_from_linux_libnuma_ulongs . . . . . . . . ... ... ... ... 140

18.33.2.2 hwloc_cpuset_to_linux_libnuma_ulongs . . . . . . . . .. . ... oL, 140

18.33.2.3 hwloc_nodeset_from_linux_libnuma_ulongs . . . . . . . .. .. ... .. ... 140

18.33.2.4 hwloc_nodeset_to_linux_libnuma_ulongs . . . . . . . ... ... ... ... .. 141
18.34Interoperability with Linux libnuma bitmask . . . . . . . . . . .. . ... . o 142
18.34.1 Detailed Description . . . . . . . . . . 142
18.34.2 Function Documentation . . . . . . . . . . L 142
18.34.2.1 hwloc_cpuset_from_linux_libnuma_bitmask . . . . . . ... ... ... .. ... 142

18.34.2.2 hwloc_cpuset_to_linux_libnuma_bitmask . . . . . . . ... ... ... ... .. 142

18.34.2.3 hwloc_nodeset_from_linux_libnuma_bitmask . . . . . .. . ... ... ... .. 142

18.34.2.4 hwloc_nodeset to_linux_libnuma_bitmask . . . . . ... . ... ... ... .. 143
18.35Interoperability with glibc sched affinity . . . . . . . ... .. .. o oo o 144
18.35.1 Detailed Description . . . . . . . . . 144
18.35.2 Function Documentation . . . . . . . . . .. L 144
18.35.2.1 hwloc_cpuset_from_glibc_sched_affinity . . . . . .. ... ... ... .. ... 144

18.35.2.2 hwloc_cpuset_to_glibc_sched_affinity . . . . . . . ... ... ... 144
18.36Interoperability with OpenCL . . . . . . . . . . . . e 145
18.36.1 Detailed Description . . . . . . . . . . 145
18.36.2 Function Documentation . . . . . . . . . . 145

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



CONTENTS XV

18.36.2.1 hwloc_opencl_get device cpuset . . . . . . . . . .. ... ... 145

18.36.2.2 hwloc_opencl_get device_osdev . . . . . . . . . .. ... oL 145

18.36.2.3 hwloc_opencl_get _device_osdev_by index . . . . . . ... ... ... ..... 145
18.37Interoperability with the CUDA Driver APl . . . . . . . . . . o 147
18.37.1 Detailed Description . . . . . . . . . e e 147
18.37.2 Function Documentation . . . . . . . . . . L 147
18.37.2.1 hwloc_cuda_get device cpuset . . . . . . . . . . . . ... ... 147

18.37.2.2 hwloc_cuda_get_device_osdev . . . . . . . . . .. .. 147

18.37.2.3 hwloc_cuda_get device_osdev_by index . . . . . .. ... ... ... ..... 147

18.37.2.4 hwloc_cuda_get device_pci_ids . . . . . . . . . . .. oo 148

18.37.2.5 hwloc_cuda_get device pcidev . . . . . . . . . . ..o 148
18.38Interoperability with the CUDA Runtime APl . . . . . . . . . .. . . 149
18.38.1 Detailed Description . . . . . . . . . e 149
18.38.2 Function Documentation . . . . . . . . . L L 149
18.38.2.1 hwloc_cudart_get_device_cpuset . . . . . . . . . . . ... L. 149

18.38.2.2 hwloc_cudart_get_device_osdev_by index . . . . . . ... ... ... ... .. 149

18.38.2.3 hwloc_cudart_get_device_pci_ids . . . . . . . . . ... ..o 149

18.38.2.4 hwloc_cudart_get_device_pcidev . . . . . . . . . ..o 150
18.39Interoperability with the NVIDIA Management Library . . . . . . . . . . . .. ... ... ... 151
18.39.1 Detailed Description . . . . . . . . . . 151
18.39.2 Function Documentation . . . . . . . . . . L 151
18.39.2.1 hwloc_nvml_get_device_cpuset . . . . . . . . . . ... 151

18.39.2.2 hwloc_nvml_get device_osdev . . . . . . . . . .. ... L. 151

18.39.2.3 hwloc_nvml_get_device_osdev_by index . . . . . .. ... ... ... ..... 151
18.40Interoperability with OpenGL displays . . . . . . . . . . . . e 153
18.40.1 Detailed Description . . . . . . . . . e 153
18.40.2 Function Documentation . . . . . . . . . .. L 153
18.40.2.1 hwloc_gl_get_display by osdev. . . . . . . . ... .. ... ... ... .. 153

18.40.2.2 hwloc_gl_get_display_osdev_by name . . . . . . .. ... ... ... ..... 153

18.40.2.3 hwloc_gl_get_display_osdev_by_port_device . . . . . .. . ... ... ... .. 153
18.41Interoperability with Intel Xeon Phi (MIC) . . . . . . . . . . . . o 155
18.41.1 Detailed Description . . . . . . . . . e 155
18.41.2 Function Documentation . . . . . . . . . .. 155
18.41.2.1 hwloc_intel_mic_get _device_cpuset . . . . . . . . . . .. . ... .. 155

18.41.2.2 hwloc_intel_mic_get_device_osdev_by index . . . . . .. . ... ... ... .. 155
18.42Interoperability with OpenFabrics . . . . . . . . . . . . . 156
18.42.1 Detailed Description . . . . . . . . . . L 156
18.42.2 Function Documentation . . . . . . . . . .. 156
18.42.2.1 hwloc_ibv_get_device_cpuset . . . . . . . . . . ... oL 156

18.42.2.2 hwloc_ibv_get_device_osdev . . . . . . . . . .o 156

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



xvi CONTENTS

18.42.2.3 hwloc_ibv_get_device_osdev_by name . . . . . . .. .. ... ... ... 156
18.43Interoperability with Myrinet Express . . . . . . . . . . . oL 157
18.43.1 Detailed Description . . . . . . . . . e 157
18.43.2 Function Documentation . . . . . . . . . . . 157
18.43.2.1 hwloc_mx_board_get_device_cpuset . . . . . . . . . ... ... ... ... 157

18.43.2.2 hwloc_mx_endpoint_get device_cpuset . . . . . . . ... ... ... ... .. 157

19 Data Structure Documentation 159
19.1 hwloc_backend Struct Reference . . . . . . . . . . . . . . . .. e 159
19.1.1 Detailed Description . . . . . . . . e 159
19.1.2 Field Documentation . . . . . . . . . . . . e 159
19.1.2.1 disable . . . . . . . e 159

19.1.2.2 discover . . . . . .. 159

19.1.23 flags . . . . . . e 160

19.1.24 get obj cpuset. . . . . . . . L 160

19.1.25 is_custom . . . . . L e 160

19.1.2.6 is_thissystem . . . . . . . . . L 160

19.1.2.7 notify_new_object . . . . . . . ... 160

19.1.2.8 private_ data . . . . . . . .. 160

19.2 hwloc_obj_attr_u::hwloc_bridge_attr_s Struct Reference . . . . . . . . . . .. .. ... ... ... 160
19.2.1 Detailed Description . . . . . . . . 161
19.2.2 Field Documentation . . . . . . . . . . . . 161
19.2.2.1 depth . . . . . . 161

19.2.2.2 domain . . . . . . e e 161

19.2.2.3 downstream . . . . . . .. 161

19.2.2.4 downstream_type . . . . . . . . e 161

19.2.25 PCi . . o o o 161

19.22.6 PCI . . o o 161

19.2.2.7 secondary_bus. . . . . . . .. 161

19.2.2.8 subordinate bus . . . . . . . ... 161

19.2.2.9 wupstream . . . . . . . L 161

19.2.2.10 upstream_type . . . . . . . . e 161

19.3 hwloc_obj_attr_u::hwloc_cache_attr_s Struct Reference . . . . . . . . . ... ... ... ... .. 161
19.3.1 Detailed Description . . . . . . . . . e e 161
19.3.2 Field Documentation . . . . . . . . . . . e 162
19.3.2.1 associativity . . . . . . .. 162

19.3.2.2 depth . . . . . . e 162

19.3.23 linesize . . . . . . . . 162

19.3.24 size . . . . . e 162

19.3.25 type . . . . 162

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



CONTENTS XVii

19.4 hwloc_component Struct Reference . . . . . . . . . . .. L 162
19.4.1 Detailed Description . . . . . . . . 162
19.4.2 Field Documentation . . . . . . . . . . . . 162

19.4.21 abi . . . . . 162
19.4.22 data . . . . . .. 163
19.4.2.3 finalize . . . . . . . . e 163
19.4.24 flags . . . . . . . e e e 163
19.4.25 init . . ... 163
19.4.2.6 type . . . . 163

19.5 hwloc_disc_component Struct Reference . . . . . . . . . . . . .. o 163
19.5.1 Detailed Description . . . . . . . . 164
19.5.2 Field Documentation . . . . . . . . . . . . .. 164

19.5.2.1 excludes . . . . . . . 164
19.5.2.2 instantiate . . . . . . .. 164
19.5.23 name . . . . . . e e 164
19.5.2.4 priority . . . . .. e 164
19.5.25 type . . . . 164

19.6 hwloc_distances_s Struct Reference . . . . . . . . . . . . . ... 164
19.6.1 Detailed Description . . . . . . . . e 165
19.6.2 Field Documentation . . . . . . . . . . . . ... 165

19.6.2.1 latency . . . . . . . . e 165
19.6.2.2 latency_base . . . . . . . . L 165
19.6.2.3 latency_max . . . . . . . . L 165
19.6.24 nbobjs . . . . .. L 165
19.6.2.5 relative_depth . . . . . . . . . . 165

19.7 hwloc_obj_attr_u::hwloc_group_attr_s Struct Reference . . . . . . . . . .. . ... ... ... .. 166
19.7.1 Detailed Description . . . . . . . . e 166
19.7.2 Field Documentation . . . . . . . . . . . . e e 166

19.7.21 depth . . . . . . e 166

19.8 hwloc_obj Struct Reference . . . . . . . . . . . L 166
19.8.1 Detailed Description . . . . . . . . . 167
19.8.2 Field Documentation . . . . . . . . . . . . e 167

19.8.2.1 allowed cpuset . . . . . . . . . . 167
19.8.2.2 allowed_nodeset . . . . . . . . .. 167
19.8.2.3 arity . . . . .. 167
19.8.2.4 attr . . . . . 167
19.8.25 children. . . . . . . e 167
19.8.2.6 complete_cpuset . . . . . . .. 168
19.8.2.7 complete_nodeset . . . . . . . ... 168
19.8.2.8 cpuset . . . . . ... 168

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



xviii CONTENTS
19.8.2.9 depth . . . . . . . L 168
19.8.210 distances . . . . . . L. 168
19.8.2.11 distances_count . . . . . . . . L. L e 168
19.8.212first_child . . . . . . . . 168
19.8.2.13infos . . . . . 169
19.8.2.14 infos_count . . . . . . ... e e e 169
19.8.2.15 last_child . . . . . . . . . 169
19.8.2.16 logical_index . . . . . . . . e 169
19.8.2.17 MeMOry . . . . . . e e 169
19.8.218 name . . . . . . . 169
19.8.2.19 next_cousin . . . . .. L 169
19.8.2.20 next_sibling . . . . . . .. 169
19.8.2.21 nodeset . . . . . . L 169
19.8.2.22 online_cpuset . . . . . . ... 170
19.8.2.23 os_index . . . . . . L. e e e 170
19.8.2.24 os_level . . . . . L L 170
19.8.2.25 parent . . . . . . 170
19.8.2.26 Prev_COUSIN . . . . . . . o 170
19.8.2.27 prev_sibling . . . . . . 170
19.8.2.28 sibling_rank . . . . . .. 170
19.8.2.29 symmetric_subtree . . . . . . . . L. 170
19.8.2.30 type . . . . e e e 170
19.8.2.31 userdata . . . . . . .. 170

19.9 hwloc_obj_attr uUnion Reference . . . . . . . . . . . . . . 171
Detailed Description . . . . . . . .. 171

19.9.2 Field Documentation . . . . . . . . . . . e 171
19.9.21 bridge . . . . . e 171

19.9.22 cache. . . . . . . . 171

19.9.2.3 group . . . . . e e e e 171

19.9.24 0SdeV . . . . . . . e e 171

19.9.25 pcidev . . . . . e 171
19.10hwloc_obj_info_s Struct Reference . . . . . . . . . . . . . 171
19.10.1 Detailed Description . . . . . . . . . . L 172
19.10.2 Field Documentation . . . . . . . . . . . e 172
19.10.2.1 name . . . . . L e e e 172

19.10.22 value . . . . . 172
19.11hwloc_obj_memory_s::hwloc_obj_memory_page_type_s Struct Reference . . . . . . .. ... .. 172
19.11.1 Detailed Description . . . . . . . . . . 172
19.11.2 Field Documentation . . . . . . . . . . . . . 172
19.11.2 0 count . . . . L 172

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



CONTENTS Xix
19.11.228ize . . . . 172
19.12hwloc_obj_memory_s Struct Reference . . . . . . . . . . . . o 173
19.12.1 Detailed Description . . . . . . . . . e 173
19.12.2 Field Documentation . . . . . . . . . . . e 173
19.12.2.1 local_memory . . . . . . . e 173

19.12.2.2 page_types . . . . . . . . e e e 173

19.12.2.3 page_types_len . . . . . . e 173

19.12.2.4 total_memory . . . . . . e 173
19.13hwloc_obj_attr_u::hwloc_osdev_attr s Struct Reference . . . . . . . . . . .. .. ... ... ... 173
19.13.1 Detailed Description . . . . . . . . . 174
19.13.2 Field Documentation . . . . . . . . . . . 174
19.13.21 type . . . . 174
19.14hwloc_obj_attr_u::hwloc_pcidev_attr_s Struct Reference . . . . . . . . . . .. .. ... ... ... 174
19.14.1 Detailed Description . . . . . . . . . . L 174
19.14.2 Field Documentation . . . . . . . . . . . . 174
191421 bus . . . . . . 174

19.14.22 class_id . . . . . . . e e 174

19.14.23 dev . . . . . e e 174

19.14.24 device_id . . . . . . . . L e 174
19.1425domain . . . . . . L. 174

191426 func . . . . 174

19.14.2.7 linkspeed . . . . . . . . L 174

19.14.2.8 revision . . . . . . . L e e 174

19.14.2.9 subdevice_id . . . . . . . ... e 175
19.14.210subvendor id . . . . . . . .. e e 175
19.14.211vendor_id . . . . . L. L e 175
19.15hwloc_topology_cpubind_support Struct Reference . . . . . . . . . . .. ... ... ... ... 175
19.15.1 Detailed Description . . . . . . . . . e e 175
19.15.2 Field Documentation . . . . . . . . . . .. 175
19.15.2.1 get_proc_cpubind . . . . . ... 175

19.15.2.2 get_proc_last_cpu_location . . . . .. . .. ..o 175

19.15.2.3 get_thisproc_cpubind . . . . . . ... L 175

19.15.2.4 get_thisproc_last_cpu_location . . . . . . .. ... ..o 175

19.15.2.5 get_thisthread_cpubind . . . . . . . . . ... oo 176

19.15.2.6 get_thisthread_last_cpu_location . . . . .. . . ... ... ... 0. 176

19.15.2.7 get_thread_cpubind . . . . . . . . .. 176

19.156.2.8 set_proc_cpubind . . . . . ... L 176

19.15.2.9 set_thisproc_cpubind . . . . . . . ... oL 176
19.15.2.10set_thisthread_cpubind . . . . . . . . . . .. Lo 176
19.15.2.11set_thread_cpubind . . . . . . . . . . . 176

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



XX CONTENTS

19.16hwloc_topology_diff u::hwloc_topology diff_generic_s Struct Reference . . . . . . . .. .. ... 176
19.16.1 Field Documentation . . . . . . . . . . . . 176
19.16.1.1 next . . . o L e e 176
19.16.1.2type . . . . . e 176
19.17hwloc_topology_diff obj_attr_u::hwloc_topology_diff obj_attr_generic_s Struct Reference . . . . . 177
19.17.1 Field Documentation . . . . . . . . . . .. 177
191740 8YPE . o o o e 177
19.18hwloc_topology_diff u::hwloc_topology diff_obj_attr s Struct Reference . . . . . .. .. .. ... 177
19.18.1 Field Documentation . . . . . . . . . . . . e 177
191811 diff . . L 177

19.18.1.2 next . . . . e e e 177

19.18.1.3 obj_depth . . . . . . .. 177

19.18.1.4 obj_index . . . . . .. 177

194815 1YPE .« o o e 177
19.19hwloc_topology_diff obj attr_u::hwloc_topology_diff obj_attr_string_s Struct Reference . . . . . . 178
19.19.1 Detailed Description . . . . . . . . . . 178
19.19.2 Field Documentation . . . . . . . . . . . . e 178
19.19.21 name . . . . L e e e e 178

19.19.22 newvalue . . . . . . L 178

19.19.23 oldvalue . . . . . . . 178

19.19.24 type . . . . 178
19.20hwloc_topology_diff_obj_attr_u Union Reference . . . . . . . . . . . . . ... ... ... .. 178
19.20.1 Detailed Description . . . . . . . . . . 179
19.20.2 Field Documentation . . . . . . . . . . .. e e 179
19.20.2.1 gENENIC . . .« .« o o o e e e 179

19.20.2.2 SIrNG . . . . o o e 179

19.20.2.3 UintB4 . . . . L L L 179
19.21hwloc_topology_diff obj_attr_u::hwloc_topology_diff obj_attr_uint64_s Struct Reference . . . . . . 179
19.21.1 Detailed Description . . . . . . . . 179
19.21.2 Field Documentation . . . . . . . . . .. L 179
19.21.210ndex . . . . . L 179

19.21.22 newvalue . . . . . . . 179

19.21.23 oldvalue . . . . . . . . L e e 179

192124 YPE .« o v o e 179
19.22hwloc_topology_diff u::hwloc_topology diff_too_complex_s Struct Reference . . . . .. .. . .. 180
19.22.1 Field Documentation . . . . . . . . . . . e e 180
19.22.1.1 next . . . L e e e e e 180

19.221.2 0bj depth . . . . . . 180

19.221.3 obj_index . . . . . . . L 180

19.22.1.4 type . . . . 180

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



CONTENTS XXi

19.23hwloc_topology_diff_u Union Reference . . . . . . . . . . . . . . .. ... 180
19.23.1 Detailed Description . . . . . . . . e 180
19.23.2 Field Documentation . . . . . . . . . . .. e 181

19.23.2.1 generiC . . . . . . . e e e 181
19.23.22 0bj_attr . . . . . . L 181
19.23.2.3 too_complex . . . . . . . e 181

19.24hwloc_topology_discovery_support Struct Reference . . . . . . . . . . .. .. ... 181
19.24.1 Detailed Description . . . . . . . . . . 181
19.24.2 Field Documentation . . . . . . . . . .. 181

192421 pU . . . L 181

19.25hwloc_topology_membind_support Struct Reference . . . . . . . . . . . .. ... oL 181
19.25.1 Detailed Description . . . . . . . . e 182
19.25.2 Field Documentation . . . . . . . . . .. 182

19.25.2.1 alloc_membind . . . . . . . . .. e e 182
19.25.2.2 bind_membind . . . . . .. .. 182
19.25.2.3 firsttouch_membind . . . . . . . . ... 182
19.25.2.4 get_area_membind . . . . . . .. 182
19.25.2.5 get_proc_membind . . . . .. . 182
19.25.2.6 get_thisproc_ membind . . . . . . . . ... o 182
19.25.2.7 get_thisthread_membind . . . . . . . . . .. ..o oo oo 182
19.25.2.8 interleave_membind . . . . . . . . . L e 182
19.25.2.9 migrate_membind . . . . . .. .. 182
19.25.2.1nexttouch_membind . . . . . . . . . . . . ... o 183
19.25.2.11replicate_membind . . . . . . . . . L 183
19.25.2.1%et_area_membind . . . . . .. L 183
19.25.2.1%et_proc_membind . . . . . .. .. 183
19.25.2.14set_thisproc_membind . . . . . . . ... Lo Lo 183
19.25.2.15set_thisthread_membind . . . . . . . . . . . . . . .. ... .. ... 183

19.26hwloc_topology_support Struct Reference . . . . . . . . . . .. o Lo 183
19.26.1 Detailed Description . . . . . . . . . . L 183
19.26.2 Field Documentation . . . . . . . . . . . . 184

19.26.2.1 cpubind . . . . . . ... e 184
19.26.2.2 diSCOVEIY . . . . . . o e 184
19.26.2.3 membind . . . . . .. e 184

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen






Chapter 1

Hardware Locality

Portable abstraction of hierarchical architectures for high-performance computing

1.1 Introduction

hwloc provides command line tools and a C API to obtain the hierarchical map of key computing elements, such as:
NUMA memory nodes, shared caches, processor sockets, processor cores, processing units (logical processors or
"threads") and even I/O devices. hwloc also gathers various attributes such as cache and memory information, and
is portable across a variety of different operating systems and platforms. Additionally it may assemble the topologies
of multiple machines into a single one so as to let applications consult the topology of an entire fabric or cluster at
once.

hwloc primarily aims at helping high-performance computing (HPC) applications, but is also applicable to any project
seeking to exploit code and/or data locality on modern computing platforms.

Note that the hwloc project represents the merger of the libtopology project from inria and the Portable Linux
Processor Affinity (PLPA) sub-project from Open MPI. Both of these prior projects are now deprecated. The first
hwloc release was essentially a "re-branding" of the libtopology code base, but with both a few genuinely new
features and a few PLPA-like features added in. Prior releases of hwloc included documentation about switching
from PLPA to hwloc; this documentation has been dropped on the assumption that everyone who was using PLPA
has already switched to hwloc.

hwloc supports the following operating systems:

* Linux (including old kernels not having sysfs topology information, with knowledge of cpusets, offline CPUs,
ScaleMP vSMP, NumaScale NumaConnect, and Kerrighed support)

 Solaris

« AIX

« Darwin/ OS X

» FreeBSD and its variants (such as kFreeBSD/GNU)
+ NetBSD

» OSF/1 (a.k.a., True4)

« HP-UX

* Microsoft Windows

+ IBM BlueGene/Q Compute Node Kernel (CNK)



2 Hardware Locality

Since it uses standard Operating System information, hwloc’s support is mostly independant from the processor
type (x86, powerpc, ...) and just relies on the Operating System support. The only exception to this is kFreeBSD,
which does not support topology information, and hwloc thus uses an x86-only CPUID-based backend (which can
be used for other OSes too, see the Components and plugins section).

To check whether hwloc works on a particular machine, just try to build itand run 1 stopo or 1stopo-no—-graphics.
If some things do not look right (e.g. bogus or missing cache information), see Questions and Bugs below.

hwloc only reports the number of processors on unsupported operating systems; no topology information is avail-
able.

For development and debugging purposes, hwloc also offers the ability to work on "fake" topologies:

» Symmetrical tree of resources generated from a list of level arities

» Remote machine simulation through the gathering of Linux sysfs topology files

hwloc can display the topology in a human-readable format, either in graphical mode (X11), or by exporting in one
of several different formats, including: plain text, PDF, PNG, and FIG (see CLI Examples below). Note that some of
the export formats require additional support libraries.

hwloc offers a programming interface for manipulating topologies and objects. It also brings a powerful CPU bitmap
API that is used to describe topology objects location on physical/logical processors. See the Programming Interface
below. It may also be used to binding applications onto certain cores or memory nodes. Several utility programs
are also provided to ease command-line manipulation of topology objects, binding of processes, and so on.

Perl bindings are available from Bernd Kallies on CPAN.

Python bindings are available from Guy Streeter:

e Fedora RPM and tarball.

* git tree (html).

1.2 Installation

hwloc (http://www.open-mpi.org/projects/hwloc/) is available under the BSD license. It is hosted
as a sub-project of the overall Open MPI project (http://www.open-mpi.org/). Note that hwloc does not
require any functionality from Open MPI — it is a wholly separate (and much smaller!) project and code base. It just
happens to be hosted as part of the overall Open MPI project.

Nightly development snapshots are available on the web site. Additionally, the code can be directly cloned from Git:

shell$ git clone https://github.com/open-mpi/hwloc.git
shell$ cd hwloc
shell$ ./autogen.sh

Note that GNU Autoconf >=2.63, Automake >=1.10 and Libtool >=2.2.6 are required when building from a Git
clone.

Installation by itself is the fairly common GNU-based process:

shell$ ./configure —--prefix=...
shell$ make
shell$ make install

The hwloc command-line tool "Istopo" produces human-readable topology maps, as mentioned above. It can also
export maps to the "fig" file format. Support for PDF, Postscript, and PNG exporting is provided if the "Cairo"
development package (usually cairo—-devel or 1ibcairo2-dev) can be found in "Istopo" when hwloc is
configured and build.

The hwloc core may also benefit from the following development packages:

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen


http://search.cpan.org/~bka/Sys-Hwloc-0.10/
http://people.redhat.com/streeter/
git://git.fedorahosted.org/python-hwloc.git
http://git.fedorahosted.org/git/python-hwloc.git
http://www.open-mpi.org/projects/hwloc/
http://www.open-mpi.org/

1.3 CLI Examples 3

+ libnuma for memory binding and migration support on Linux (numactl-devel or libnuma-dev pack-
age).

» hwloc can use one of two different libraries for full I/O device discovery:

1. libpciaccess (BSD). The relevant development package is usually libpciaccess-devel or
libpciaccess—dev.

On Linux, PCI discovery may still be performed even if none of the above libraries can be used.

+ the AMD OpenCL implementation for OpenCL device discovery.

the NVIDIA CUDA Toolkit for CUDA device discovery.

the NVIDIA Tesla Development Kit for NVML device discovery.

+ the NV-CONTROL X extension library (NVCtrl) for NVIDIA display discovery.

libxml2 for full XML import/export support (otherwise, the internal minimalistic parser will only be able to import
XML files that were exported by the same hwloc release). See Importing and exporting topologies from/to
XML files for details. The relevant development package is usually 1ibxml2-devel or libxml2-dev.

libtool's Itdl library for dynamic plugin loading. The relevant development package is usually
libtool-1tdl-devel orlibltdl-dev.

PCIl and XML support may be statically built inside the main hwloc library, or as separate dynamically-loaded plugins
(see the Components and plugins section).

Note that because of the possibility of GPL taint, the pciutils library 1ibpci will not be used (remember that
hwloc is BSD-licensed).

Also note that if you install supplemental libraries in non-standard locations, hwloc’s configure script may not be
able to find them without some help. You may need to specify additional CPPFLAGS, LDFLAGS, or PKG_CONFI«
G_PATH values on the configure command line.

For example, if libpciaccess was installed into /opt/pciaccess, hwloc’s configure script may not find it be default. Try
adding PKG_CONFIG_PATH to the ./configure command line, like this:

./configure PKG_CONFIG_PATH=/opt/pciaccess/lib/pkgconfig ...

1.3 CLIExamples

On a 4-socket 2-core machine with hyperthreading, the 1 st opo tool may show the following graphical output:

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Machine
Socket P#0 Socket P#1
L3 (4096KE) L3 (4096KE)
L2 (1024KEB) L2 (1024KE) LZ (1024KE) L2 (1024KE)
L1 (1EKE) L1 i16KE) L1 (1eKE]) L1 (1E6KE)
Core P#0 Core P#1 Core P#0 Core P#1
PU P#0 PU P#4 PUP#1 PU P#5
PU P#B PL P#12 PU P#3 PU P#13
Socket P#2 Socket P#3
L3 (4096KEB) L3 (4096KE)
L2 (1024KB) L2 (1024KB) LZ (1024KB) L2 (1024KB)
L1 ({16KB) L1 (16KB) L1 (16KE) L1 (16KE)
Core P#0 Core P#1 Core P#0D Core P#L
PU P#2 PL P#& PU P#3 PU PET
PU P#E10 PL P#14 PUP#11 PU P#E15

Hardware Locality

Here’s the equivalent output in textual form:

Machine (16GB)
Socket L#0 + L3 L#0
L2 L#0
PU L#0
PU L#1
L2 L#1l

(4096KB)
(1024KB) + L1 L#0 (16KB) + Core L#0
(P#0)
(P#8)
(1024KB) + L1 L#1
PU L#2 (P#4)
PU L#3 (P#12)
Socket L#1 + L3 L#1
L2 L#2
PU L#4
PU L#5
L2 L#3

(16KB) + Core L#l

(4096KB)
(1024KB) + L1 L#2 (16KB) + Core L#2
(P#1)
(P#9)
(1024KB) + L1 L#3
PU L#6 (P#5)
PU L#7 (P#13)
Socket L#2 + L3 L#2
L2 L#4
PU L#8
PU L#9 (P#10)
L2 L#5 (1024KB) + L1 L#5
PU L#10 (P#6)
PU L#11 (P#14)
Socket L#3 + L3 L#3
L2 L#6

(16KB) + Core L#3

(4096KB)
(1024KB) + L1 L#4 (16KB) + Core L#4
(P#2)

(16KB) + Core L#5

(4096KB)

(1024KB) + L1 L#6 (16KB) + Core L#6
PU L#12 (P#3)
PU L#13 (P#11)

L2 L#7 (1024KB) + L1 L#7
PU L#14 (P#7)
PU L#15 (P#15)

(16KB) + Core L#7

Finally, here’s the equivalent output in XML. Long lines were artificially broken for document clarity (in the real
output, each XML tag is on a single line), and only socket #0 is shown for brevity:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE topology SYSTEM "hwloc.dtd">

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



1.3 CLI Examples

<topology>
<object type="Machine" os_index="0" cpuset="0x0000ffff"
complete_cpuset="0x0000ffff" online_cpuset="0x0000f£f£ff"
allowed_cpuset="0x0000ffff"

dmi_board_vendor="Dell Computer Corporation" dmi_board_name="0RD318"

local_memory="16648183808">
<page_type size="4096" count="4064498"/>
<page_type size="2097152" count="0"/>
<object type="Socket" os_index="0" cpuset="0x00001111" ... >
<object type="Cache" cpuset="0x00001111"
cache_size="4194304" depth="3" cache_linesize="64">
<object type="Cache" cpuset="0x00000101"
cache_size="1048576" depth="2" cache_linesize="64">
<object type="Cache" cpuset="0x00000101"
cache_size="16384" depth="1" cache_linesize="64">
<object type="Core" os_index="0" ... >
<object type="PU" os_index="0" cpuset="0x00000001"

complete_cpuset="0x00000001" online_cpuset="0x00000001"

allowed_cpuset="0x00000001"/>
<object type="PU" os_index="8" cpuset="0x00000100"

complete_cpuset="0x00000100" online_cpuset="0x00000100"

allowed_cpuset="0x00000100"/>
</object>
</object>
</object>
<object type="Cache" cpuset="0x00001010"
cache_size="1048576" depth="2" cache_linesize="64">
<object type="Cache" cpuset="0x00001010"
cache_size="16384" depth="1" cache_linesize="64">
<object type="Core" os_index="1" cpuset="0x00001010"
<object type="PU" os_index="4" cpuset="0x00000010"

complete_cpuset="0x00000010" online_cpuset="0x00000010"

allowed_cpuset="0x00000010"/>
<object type="PU" os_index="12" cpuset="0x00001000"

complete_cpuset="0x00001000" online_cpuset="0x00001000"

allowed_cpuset="0x00001000"/>
</object>
</object>
</object>
</object>
</object>
<!-— ...other sockets listed here ... —-—>
</object>
</topology>

On a 4-socket 2-core Opteron NUMA machine, the 1stopo tool may show the following graphical output:

Machine (326B)

| NUMANode F#0 (8150ME) | | MUMANode P#1 (8192MEB] | | MUMAMNode F#2 (8192ME)

| MUMAMNode P#3 (8192ME)

Socket P#0 Socket P#1 Socket P#2 Socket P#3
| L2 (1024KE) | | L2 (1024KE) | | L2 (1024KE) | | L2 (1024KE) | | L2 (1024KB) | | L2 (1024KE) | | L2 (1024KE) | | L2 (1024KE) |
| L1(G4KE) | | L1(64KE) | | L1 (64KB) | | L1 (64KE] | | L1 (G4KE) | | L1(G4KE) | | L1 (64KB) | | L1 (64KB) |
Core P#0 Core P#1 Core P#0 Core P#1 Caore P#0 Core P#1 Core P#0 Core P#1
| PUP&0D | | PUP#1 | | PUP#2 | | FUP#3 | - - PU

Here’s the equivalent output in textual form:

Machine (32GB)
NUMANode L#0 (P#0 8190MB) + Socket L#0
L2 L#0 (1024KB) + L1 L#0 (64KB) + Core L#0 + PU L#0 (P#0)
L2 L#1 (1024KB) + L1 L#1 (64KB) + Core L#1 + PU L#1 (P#1)
NUMANode L#1 (P#1 8192MB) + Socket L#1
L2 L#2 (1024KB) + L1 L#2 (64KB) + Core L#2 + PU L#2 (P#2)
L2 L#3 (1024KB) + L1 L#3 (64KB) + Core L#3 + PU L#3 (P#3)

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen




Hardware Locality

NUMANode
L2 L#4
L2 L#5

NUMANode
L2 L#6
L2 L#7

L#2 (P#2 8192MB) + Socket L#2
(1024KB) + L1 L#4 (64KB) + Core
(1024KB) + L1 L#5 (64KB) + Core
L#3 (P#3 8192MB) + Socket L#3
(1024KB) + L1 L#6 (64KB) + Core
(1024KB) + L1 L#7 (64KB) + Core

L#4
L#5

L#6
L#7

PU L#4
PU L#5

PU L#6
PU L#7

And here’s the equivalent output in XML. Similar to above, line breaks were added and only PU #0 is shown for

brevity:

<?xml vers
<!DOCTYPE
<topology>

ion="1.0" encoding="UTF-8"7?>
topology SYSTEM "hwloc.dtd">

<object type="Machine" os_index="0" cpuset="0x000000£ff"

complete_cpuset="0x000000ff" online_cpuset="0x000000£ff"

allowed_cpuset="0x000000£ff" nodeset="0x000000ff"

complete_nodeset="0x000000ff" allowed_nodeset="0x000000ff"
dmi_board_vendor="TYAN Computer Corp" dmi_board name="54881 ">

<page_type size="4096" count="0"/>

<page_
<objec
no
<pag
<pag

type size="2097152" count="0"/>
t type="NUMANode" os_index="0"
deset="0x00000001"

e_type size="4096" count="1834516"/>

e_type size="2097152" count="0"/>

cpuset="0x00000003"
local_memory="7514177536">

<object type="Socket" os_index="0" cpuset="0x00000003"

<object type="Cache"

<object type="Cache"

cpuset="0x00000001"

cache_size="1048576" depth="2" cache_linesize="64">
cpuset="0x00000001"
cache_size="65536" depth="1" cache_linesize="64">

<object type="Core" os_index="0"

<object type="PU" os_index="0"
complete_cpuset="0x00000001" online_cpuset="0x00000001"
allowed_cpuset="0x00000001" nodeset="0x00000001"
complete_nodeset="0x00000001" allowed_nodeset="0x00000001"/>

</object>
</object>

</object>
<!-- ...more objects listed here ... —-->
</topology>

On a 2-socket quad-core Xeon (pre-Nehalem, with 2 dual-core dies into each socket):

Machine (16GE)
Sacket P#0
| LZ (4096KE) | | L2 (4096KE) |
| L1 (32KB) | | L1(32KBE) | | L1(32KE) | | L1 (32KE) |
Core P#0 Core P#1 Core P#2 Core P#3
| PU P&0 | | PU P#4 | | PUP#2 | | PU P&E |
Socket P#1
| L2 (4096KB) | | L2 (4096KE) |
| L1 (22KB) | | L1{22KE) | | L1i32KE) | | L1 (22KE) |
Core P#0 Core PEL Core P#2 Core P#3
| PUP#1 | | PU P#3 | | PUP#3 | | PU P&ET |

Here’s the same output in textual form:

Machine (16GB)
Socket L#0

L2 L#0

(4096KB)

L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)
L1 L#1 (32KB) + Core L#1 + PU L#1 (P#4)

>
cpuset="0x00000001"

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



1.4 Programming Interface 7

L2 L#1 (4096KB)
L1l L#2 (32KB) + Core L#2 + PU L#2 (P#2)
L1l L#3 (32KB) + Core L#3 + PU L#3 (P#6)

Socket L#1

L2 L#2 (4096KB
L1 L#4 (32KB
L1l L#5 (32KB

L2 L#3 (4096KB
L1 L#6 (32KB
L1 L#7 (32KB

+ Core L#4 + PU L#4 (P#1)
+ Core L#5 + PU L#5 (P#5)

)
)
)
)
) + Core L#6 + PU L#6 (P#3)
) + Core L#7 + PU L#7 (P#7)

And the same output in XML (line breaks added, only PU #0 shown):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE topology SYSTEM "hwloc.dtd">
<topology>
<object type="Machine" os_index="0" cpuset="0x000000ff"
complete_cpuset="0x000000ff" online_cpuset="0x000000£f£"
allowed_cpuset="0x000000ff" dmi_board_vendor="Dell Inc."
dmi_board_name="0NR282" local_memory="16865292288">
<page_type size="4096" count="4117503"/>
<page_type size="2097152" count="0"/>
<object type="Socket" os_index="0" cpuset="0x00000055" ... >
<object type="Cache" cpuset="0x00000011"
cache_size="4194304" depth="2" cache_linesize="64">
<object type="Cache" cpuset="0x00000001"
cache_size="32768" depth="1" cache_linesize="64">
<object type="Core" os_index="0" ... >
<object type="PU" os_index="0" cpuset="0x00000001"
complete_cpuset="0x00000001" online_cpuset="0x00000001"
allowed_cpuset="0x00000001"/>
</object>
</object>
<object type="Cache" cpuset="0x00000010"
cache_size="32768" depth="1" cache_linesize="64">
<object type="Core" os_index="1" ... >
<object type="PU" os_index="4" cpuset="0x00000010"
complete_cpuset="0x00000010" online_cpuset="0x00000010"
allowed_cpuset="0x00000010"/>

</object>
</object>
</object>
<!-- ...more objects listed here ... -->
</topology>

1.4 Programming Interface

The basic interface is available in hwloc.h. Some higher-level functions are available in hwloc/helper.h to reduce
the need to manually manipulate objects and follow links between them. Documentation for all these is provided
later in this document. Developers may also want to look at hwloc/inlines.h which contains the actual inline code of
some hwloc.h routines, and at this document, which provides good higher-level topology traversal examples.

To precisely define the vocabulary used by hwloc, a Terms and Definitions section is available and should probably
be read first.

Each hwloc object contains a cpuset describing the list of processing units that it contains. These bitmaps
may be used for CPU binding and Memory binding. hwloc offers an extensive bitmap manipulation interface in
hwloc/bitmap.h.

Moreover, hwloc also comes with additional helpers for interoperability with several commonly used environments.
See the Interoperability With Other Software section for details.

The complete API documentation is available in a full set of HTML pages, man pages, and self-contained PDF files
(formatted for both both US letter and A4 formats) in the source tarball in doc/doxygen-doc/.

NOTE: If you are building the documentation from a Git clone, you will need to have Doxygen and pdflatex installed
— the documentation will be built during the normal "make" process. The documentation is installed during "make
install" to $prefix/share/doc/hwloc/ and your systems default man page tree (under $prefix, of course).

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



8 Hardware Locality

1.4.1 Portability

As shown in CLI Examples, hwloc can obtain information on a wide variety of hardware topologies. However, some
platforms and/or operating system versions will only report a subset of this information. For example, on an PP«
C64-based system with 32 cores (each with 2 hardware threads) running a default 2.6.18-based kernel from RHEL
5.4, hwloc is only able to glean information about NUMA nodes and processor units (PUs). No information about
caches, sockets, or cores is available.

Similarly, Operating System have varying support for CPU and memory binding, e.g. while some Operating Sys-
tems provide interfaces for all kinds of CPU and memory bindings, some others provide only interfaces for a limited
number of kinds of CPU and memory binding, and some do not provide any binding interface at all. Hwloc’s binding
functions would then simply return the ENOSYS error (Function not implemented), meaning that the underlying
Operating System does not provide any interface for them. CPU binding and Memory binding provide more infor-
mation on which hwloc binding functions should be preferred because interfaces for them are usually available on
the supported Operating Systems.

Here’s the graphical output from Istopo on this platform when Simultaneous Multi-Threading (SMT) is enabled:

Machine (123GB)
| NUMANode #0 (30GB) I
| PU #0 | | PU #1 | | PU #2 | | PU #3 | | PU #4 | | PU #5 | | PU #6 | | PU #7 | | PU #8 | | PU #9 | | PU #10 | | PU #11 | | PU #12 | | PU #13 | | PU #14 | | PU #15 |
| NUMANode #1 (31GB) I
| PU #16 | | PU #17 | | PU #18 | | PU #19 | | PU #20 | | PU #21 | | PU #22 | | PU #23 | | PU #24 | | PU #25 | | PU #26 | | PU #27 | | PU #28 | | PU #29 | | PU #30 | | PU #31 |
| NUMANode #2 (31GB) I
| PU #32 | | PU #33 | | PU #34 | | PU #35 | | PU #36 | | PU #37 | | PU #38 | | PU #39 | | PU #40 | | PU #41 | | PU #42 | | PU #43 | | PU #44 | | PU #45 | | PU #46 | | PU #47 |
| NUMANode #3 (31GB) I
| PU #48 | | PU #49 | | PU #50 | | PU #51 | | PU #52 | | PU #53 | | PU #54 | | PU #55 | | PU #56 | | PU #57 | | PU #58 | | PU #59 | | PU #60 | | PU #61 | | PU #62 | | PU #63 |

And here’s the graphical output from Istopo on this platform when SMT is disabled:

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



1.4 Programming Interface 9

Machine (123GB)

NUMANode #0 (30GB)

PU #0 PU #1 PU #2 PU #3 PU #4 PU #5 PU #6 PU #7

NUMANode #1 (31GB)

PU #8 PU #9 PU #10 PU #11 PU #12 PU #13 PU #14 PU #15

NUMANode #2 (31GB)

PU #16 PU #17 PU #18 PU #19 PU #20 PU #21 PU #22 PU #23

NUMANode #3 (31GB)

PU #24 PU #25 PU #26 PU #27 PU #28 PU #29 PU #30 PU #31

Notice that hwloc only sees half the PUs when SMT is disabled. PU #15, for example, seems to change location
from NUMA node #0 to #1. In reality, no PUs "moved" — they were simply re-numbered when hwloc only saw half
as many. Hence, PU #15 in the SMT-disabled picture probably corresponds to PU #30 in the SMT-enabled picture.

This same "PUs have disappeared" effect can be seen on other platforms — even platforms / OSs that provide much
more information than the above PPC64 system. This is an unfortunate side-effect of how operating systems report
information to hwloc.

Note that upgrading the Linux kernel on the same PPC64 system mentioned above to 2.6.34, hwloc is able to
discover all the topology information. The following picture shows the entire topology layout when SMT is enabled:

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



10

Hardware Locality

Machine (123GB)

| NUMANode #0 (30GB)

Socket #0

Socket #1

Socket #2

Socket #3

| L3 #0 (32MB) l

| L3 #1 (32MB) l

| L3 #2 (32MB) l

| L3 #3 (32MB) l

| L2 #0 (4096KB) l

| L2 #1 (4096KB) l

| L2 #2 (4096KB) l

| L2 #3 (4096KB) l

| L1 #0 (64KB) l | L1 #1 (64KB) l | L1 #2 (64KB) l | L1 #3 (64KB) l | L1 #4 (64KB) l | L1 #5 (64KB) l | L1 #6 (64KB) l | L1 #7 (64KB) l
Core #0 Core #1 Core #2 Core #3 Core #4 Core #5 Core #6 Core #7
PU #0 PU #2 PU #4 PU #6 PU #8 PU #10 PU #12 PU #14
PU #1 PU #3 PU #5 PU #7 PU #9 PU #11 PU #13 PU #15
| NUMANode #1 (31GB)
Socket #4 Socket #5 Socket #6 Socket #7
| L3 #4 (32MB) l | L3 #5 (32MB) l | L3 #6 (32MB) l | L3 #7 (32MB) l

| L2 #4 (4096KB) l

| L2 #5 (4096KB) l

| L2 #6 (4096KB) l

| L2 #7 (4096KB) l

| L1 #8 (64KB) l | L1 #9 (64KB) l | L1 #10 (64KB) l | L1 #11 (64KB) l | L1 #12 (64KB) l | L1 #13 (64KB) l | L1 #14 (64KB) l | L1 #15 (64KB) l
Core #8 Core #9 Core #10 Core #11 Core #12 Core #13 Core #14 Core #15
PU #16 PU #18 PU #20 PU #22 PU #24 PU #26 PU #28 PU #30
PU #17 PU #19 PU #21 PU #23 PU #25 PU #27 PU #29 PU #31
| NUMANode #2 (31GB)
Socket #8 Socket #9 Socket #10 Socket #11

| L3 #8 (32MB) l

| L3 #9 (32MB) l

| L3 #10 (32MB) l

| L3 #11 (32MB) l

| L2 #8 (4096KB) l

| L2 #9 (4096KB) l

| L2 #10 (4096KB) l

| L2 #11 (4096KB) l

| L1 #16 (64KB) l | L1 #17 (64KB) l

| L1 #18 (64KB) l | L1 #19 (64KB) l

| L1 #20 (64KB) l | L1 #21 (64KB) l

| L1 #22 (64KB) l | L1 #23 (64KB) l

Core #16 Core #17 Core #18 Core #19 Core #20 Core #21 Core #22 Core #23
PU #32 PU #34 PU #36 PU #38 PU #40 PU #42 PU #44 PU #46
PU #33 PU #35 PU #37 PU #39 PU #41 PU #43 PU #45 PU #47
| NUMANode #3 (31GB)
Socket #12 Socket #13 Socket #14 Socket #15
| L3 #12 (32MB) l | L3 #13 (32MB) l | L3 #14 (32MB) l | L3 #15 (32MB) l
| L2 #12 (4096KB) l | L2 #13 (4096KB) l | L2 #14 (4096KB) l | L2 #15 (4096KB) l
| L1 #24 (64KB) l | L1 #25 (64KB) l | L1 #26 (64KB) l | L1 #27 (64KB) l | L1 #28 (64KB) l | L1 #29 (64KB) l | L1 #30 (64KB) l | L1 #31 (64KB) l
Core #24 Core #25 Core #26 Core #27 Core #28 Core #29 Core #30 Core #31
PU #48 PU #50 PU #52 PU #54 PU #56 PU #58 PU #60 PU #62
PU #49 PU #51 PU #53 PU #55 PU #57 PU #59 PU #61 PU #63

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen




1.4 Programming Interface 11

Developers using the hwloc APl or XML output for portable applications should therefore be extremely careful to
not make any assumptions about the structure of data that is returned. For example, per the above reported PPC
topology, it is not safe to assume that PUs will always be descendants of cores.

Additionally, future hardware may insert new topology elements that are not available in this version of hwloc. Long-
lived applications that are meant to span multiple different hardware platforms should also be careful about making
structure assumptions. For example, there may someday be an element "lower" than a PU, or perhaps a new
element may exist between a core and a PU.

1.4.2 APl Example

The following small C example (named “hwloc-hello.c”) prints the topology of the machine and bring the process
to the first logical processor of the second core of the machine. More examples are available in the doc/examples/
directory of the source tree.

~

Example hwloc API program.

See other examples under doc/examples/ in the source tree
for more details.

*

*

*

*

*

« Copyright ©® 2009-2014 Inria. All rights reserved.

« Copyright © 2009-2011 Université Bordeaux 1

* Copyright © 2009-2010 Cisco Systems, Inc. All rights reserved.
* See COPYING in top-level directory.

*
*
*

hwloc-hello.c
/

#include <hwloc.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>

static void print_children (hwloc_topology_t topology,
hwloc_obj_t obj,
int depth)

char string[128];
unsigned 1i;

hwloc_obj_snprintf (string, sizeof (string), topology, obj, "#", 0);
printf("%*s%s\n", 2xdepth, "", string);
for (1 = 0; 1 < obj->arity; i++) {
print_children(topology, obj->children[i], depth + 1);
}
}

int main(void)

{
int depth;
unsigned i, n;
unsigned long size;
int levels;
char string[128];
int topodepth;
hwloc_topology_t topology;
hwloc_cpuset_t cpuset;
hwloc_obj_t obj;

/+ Allocate and initialize topology object. =/
hwloc_topology_init (&topology);

/* ... Optionally, put detection configuration here to ignore
some objects types, define a synthetic topology, etc....

The default is to detect all the objects of the machine that
the caller is allowed to access. See Configure Topology
Detection. */

/+ Perform the topology detection. */
hwloc_topology_load (topology) ;

/% Optionally, get some additional topology information
in case we need the topology depth later. x/
topodepth = hwloc_topology_get_depth (topology) ;

/*****************************************************************
* First example:
* Walk the topology with an array style, from level 0 (always

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Hardware Locality

* the system level) to the lowest level (always the proc level).
*****************************************************************/
for (depth = 0; depth < topodepth; depth++) {
printf ("«x* Objects at level %d\n", depth);
for (1 = 0; 1 < hwloc_get_nbobjs_by_depth(topology, depth);
i++) |
hwloc_obj_snprintf(string, sizeof(string), topology,
hwloc_get_obj_by_depth(topology, depth, 1),
"#", 0);
printf ("Index %u: %s\n", i, string);

}

/*****************************************************************
* Second example:
« Walk the topology with a tree style.
*****************************************************************/

printf ("sx+ Printing overall tree\n");

print_children(topology, hwloc_get_root_obj(topology), 0);

/*****************************************************************
« Third example:
* Print the number of sockets.
*********k******k*********************************************k**/
depth = hwloc_get_type_depth (topology, HWLOC_OBJ_SOCKET) ;
if (depth == HWLOC_TYPE_DEPTH_UNKNOWN) {
printf ("++xx The number of sockets is unknown\n");
} else {
printf ("x+x %u socket(s)\n",
hwloc_get_nbobjs_by_depth (topology, depth));
}

/*****************************************************************
* Fourth example:
« Compute the amount of cache that the first logical processor
* has above it.
*****************************************************************/

levels = 0;
size = 0;
for (obj = hwloc_get_obj_by_type (topology, HWLOC_OBJ_PU, O0);
obj;
obj = obj->parent)
i f (obj->type == HWLOC_OBJ_CACHE) {
levels++;

size += obj->attr->cache.size;
}
printf ("sx+ Logical processor 0 has %d caches totaling %1uKB\n",
levels, size / 1024);

/*****************************************************************
« Fifth example:
* Bind to only one thread of the last core of the machine.
*
* First find out where cores are, or else smaller sets of CPUs if
* the OS doesn’t have the notion of a "core".
*****************************************************************/
depth = hwloc_get_type_or_below_depth (topology,
HWLOC_OBJ_CORE) ;

/* Get last core. x/
obj = hwloc_get_obj_by_depth (topology, depth,
hwloc_get_nbobjs_by_depth(topology, depth) - 1);
Lf (obJ) |
/* Get a copy of its cpuset that we may modify. %/
cpuset = hwloc_bitmap_dup (obj->cpuset);

/* Get only one logical processor (in case the core is
SMT/hyperthreaded) . */
hwloc_bitmap_singlify (cpuset);

/* And try to bind ourself there. x/
1f (hwloc_set_cpubind(topology, cpuset, 0)) {
char xstr;
int error = errno;
hwloc_bitmap_asprintf (&str, obj->cpuset);
printf ("Couldn’t bind to cpuset %s: %s\n", str, strerror(error));
free(str);

}

/+ Free our cpuset copy */
hwloc_bitmap_free (cpuset) ;

}

/*****************************************************************
* Sixth example:
«+ Allocate some memory on the last NUMA node, bind some existing
* memory to the last NUMA node.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



1.5 Questions and Bugs 13

********************‘k********************************************/
/* Get last node. /
n = hwloc_get_nbobjs_by_type (topology,
HWLOC_OBJ_NODE) ;
(n) {
void *m;
size = 1024%1024;

obj = hwloc_get_obj_by_type (topology,
HWLOC_OBJ_NODE, n - 1);
m = hwloc_alloc_membind_nodeset (topology, size, obj—>
nodeset,
HWLOC_MEMBIND_DEFAULT, 0);
hwloc_free (topology, m, size);

m = malloc(size);
hwloc_set_area_membind_nodeset (topology, m, size, obj->
nodeset,
HWLOC_MEMBIND_DEFAULT, O0);
free (m);

}

/+ Destroy topology object. */
hwloc_topology_destroy (topology);

return 0;

hwloc provides a pkg-config executable to obtain relevant compiler and linker flags. For example, it can be used
thusly to compile applications that utilize the hwloc library (assuming GNU Make):

CFLAGS += $(pkg-config --cflags hwloc)
LDLIBS += $(pkg-config --1libs hwloc)
cc hwloc-hello.c $(CFLAGS) -o hwloc-hello $(LDLIBS)

On a machine with 4GB of RAM and 2 processor sockets — each socket of which has two processing cores — the
output from running hwloc-hello could be something like the following:

shell$ ./hwloc-hello
*x%x Objects at level 0
Index 0: Machine (3938MB)
*x%x Objects at level 1
Index 0: Socket#0
Index 1: Socket#l
*xx Objects at level 2
Index 0: Core#0
Index 1: Core#l
Index 2: Core#3
Index 3: Core#2
x*% Objects at level 3
Index 0: PU#0
Index 1: PU#1
Index 2: PU#2
Index 3: PU#3
*+%x Printing overall tree
Machine (3938MB)
Socket#0
Core#0
PU#0
Coret#l
PU#1
Socket#1
Core#3
PU#2
Core#2
PU#3
*%x%x 2 socket (s)
shells$

1.5 Questions and Bugs

Questions should be sent to the devel mailing list (ht tp: //www.open-mpi.org/community/lists/hwloc.«
php). Bug reports should be reported in the tracker (https://git.open-mpi.org/trac/hwloc/).

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen


http://www.open-mpi.org/community/lists/hwloc.php
http://www.open-mpi.org/community/lists/hwloc.php
https://git.open-mpi.org/trac/hwloc/

14 Hardware Locality

If hwloc discovers an incorrect topology for your machine, the very first thing you should check is to ensure that you
have the most recent updates installed for your operating system. Indeed, most of hwloc topology discovery relies
on hardware information retrieved through the operation system (e.g., via the /sys virtual filesystem of the Linux
kernel). If upgrading your OS or Linux kernel does not solve your problem, you may also want to ensure that you
are running the most recent version of the BIOS for your machine.

If those things fail, contact us on the mailing list for additional help. Please attach the output of Istopo after having
given the —enable-debug option to ./configure and rebuilt completely, to get debugging output. Also attach the
/proc + /sys tarball generated by the installed script hwloc—gather—-topology when submitting problems
about Linux, or send the output of kstat cpu_info in the Solaris case, or the output of sysctl hw in the
Darwin or BSD cases.

1.6 History / Credits

hwloc is the evolution and merger of the libtopology (http://runtime.bordeaux.inria.fr/libtopology/)
project and the Portable Linux Processor Affinity (PLPA) (http://www.open-mpi.org/projects/plpa/)
project. Because of functional and ideological overlap, these two code bases and ideas were merged and released
under the name "hwloc" as an Open MPI sub-project.

libtopology was initially developed by the inria Runtime Team-Project (http://runtime.bordeaux.«
inria.fr/) (headed by Raymond Namyst (http://dept-info.labri.fr/~namyst/). PLPA was ini-
tially developed by the Open MPI development team as a sub-project. Both are now deprecated in favor of hwloc,
which is distributed as an Open MPI sub-project.

1.7 Further Reading

The documentation chapters include

» Terms and Definitions

« Command-Line Tools

» Environment Variables

+ CPU and Memory Binding Overview
* 1/O Devices

» Multi-node Topologies

» Object attributes

+ Importing and exporting topologies from/to XML files
» Synthetic topologies

* Interoperability With Other Software
» Thread Safety

« Components and plugins

» Embedding hwloc in Other Software

» Frequently Asked Questions

Make sure to have had a look at those too!

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen


http://runtime.bordeaux.inria.fr/libtopology/
http://www.open-mpi.org/projects/plpa/
http://runtime.bordeaux.inria.fr/
http://runtime.bordeaux.inria.fr/
http://dept-info.labri.fr/~namyst/

Chapter 2

Terms and Definitions

Object Interesting kind of part of the system, such as a Core, a Cache, a Memory node, etc. The different types
detected by hwloc are detailed in the hwloc_obj_type_t enumeration.

They are topologically sorted by CPU set into a tree.

CPU set The set of logical processors (or processing units) logically included in an object (if it makes sense).
They are always expressed using physical logical processor numbers (as announced by the OS). They are
implemented as the hwloc_bitmap_t opaque structure. hwloc CPU sets are just masks, they do not have any
relation with an operating system actual binding notion like Linux’ cpusets.

Node set The set of NUMA memory nodes logically included in an object (if it makes sense). They are always
expressed using physical node numbers (as announced by the OS). They are implemented with the hwloc«
_bitmap_t opaque structure. as bitmaps.

Bitmap A possibly-infinite set of bits used for describing sets of objects such as CPUs (CPU sets) or memory
nodes (Node sets). They are implemented with the hwloc_bitmap_t opaque structure.

Parent object The object logically containing the current object, for example because its CPU set includes the
CPU set of the current object.

Ancestor object The parent object, or its own parent object, and so on.

Children object(s) The object (or objects) contained in the current object because their CPU set is included in the
CPU set of the current object.

Arity The number of children of an object.

Sibling objects Objects which have the same parent. They usually have the same type (and hence are cousins,
as well), but they may not if the topology is asymmetric.

Sibling rank Index to uniquely identify objects which have the same parent, and is always in the range [0, parent«
_arity).

Cousin objects Obijects of the same type (and depth) as the current object, even if they do not have the same
parent.

Level Set of objects of the same type and depth. All these objects are cousins.

Depth Nesting level in the object tree, starting from the root object. If the topology is symmetric, the depth of a
child is equal to the parent depth plus one, and an object depth is also equal to the number of parent/child
links between the root object and the given object. If the topology is asymmetric, the difference between
some parent and child depths may be larger than one when some intermediate levels (for instance caches)
are missing in only some parts of the machine.

OS or physical index The index that the operating system (OS) uses to identify the object. This may be com-
pletely arbitrary, non-unique, non-contiguous, not representative of logical proximity, and may depend on the
BIOS configuration. That is why hwloc almost never uses them, only in the default Istopo output (P #x) and
cpuset masks.



16 Terms and Definitions

Logical index Index to uniquely identify objects of the same type and depth, automatically computed by hwloc
according to the topology. It expresses logical proximity in a generic way, i.e. objects which have adjacent
logical indexes are adjacent in the topology. That is why hwloc almost always uses it in its API, since it
expresses logical proximity. They can be shown (as L#x) by 1stopo thanks to the —1 option. This index
is always linear and in the range [0, num_objs_same_type_same_level-1]. Think of it as “cousin rank.” The
ordering is based on topology first, and then on OS CPU numbers, so it is stable across everything except
firmware CPU renumbering. "Logical index" should not be confused with "Logical processor". A "Logical
processor" (which in hwloc we rather call "processing unit" to avoid the confusion) has both a physical index
(as chosen arbitrarily by BIOS/OS) and a logical index (as computed according to logical proximity by hwloc).

Processing unit The smallest processing element that can be represented by a hwloc object. It may be a single-
core processor, a core of a multicore processor, or a single thread in a SMT processor. hwloc’s PU acronym
stands for Processing Unit.

Logical processor Synonym of "Processing unit". "Logical processor" should not be confused with "Logical index
of a processor".

The following diagram can help to understand the vocabulary of the relationships by showing the example of a
machine with two dual core sockets (with no hardware threads); thus, a topology with 4 levels. Each box with
rounded corner corresponds to one hwloc_obj_t, containing the values of the different integer fields (depth, logical«
_index, etc.), and arrows show to which other hwloc_obj_t pointers point to (first_child, parent, etc.). The L2 cache
of the last core is intentionally missing to show how asymmetric topologies are handled.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



17

Cache
level
depth=2

Core
level
depth=3

PU
level
depth=4

Machine
level
depth=0

.depth=0
Jogical_index =0
.os_index = —1
.sibling_rank=0
.arity=2

children[1]
last_child
parent
Socket Socket
level next_sibling .depth=1
depth=1 Jogical_index =0 — Jogical_index = 1
.os_index =0 next_cousin prev_sibling .0os_index = 1
.sibling_rank=0 — .sibling_rank=1
.arity=2 prev_cousin .arity=2
children[0] children[0]

first_child

parent

first_child

parent

Cache
.depth =2

.0s_index =0
.sibling_rank=0
.arity=1

Cache

next_sibling

Jogical_index =0

prev_sibling

next_cousin

prev_cousin

.depth =2

Jogical_index =1

.0s_index = 1
.sibling_rank=1
.arity=1

.depth =2
Jogical_index =2
.0s_index =0
.sibling_rank=0
.arity=1

next_cousin

prev_cousin

next_sibling

children[0] children[0] children[0]
first_child first_child first_child
last_child last_child last_child
parent parent parent parent
Core Core Core \ Core
.depth=3 .depth=3 .depth=3 prev_siblin .depth=3

Jogical_index =0
.0s_index =0
.sibling_rank=0

next_cousin

Jogical_index = 1

.0os_index = 1
.sibling_rank=0

Jogical_index =2
.0s_index =0

next_cousin Sl
.sibling_rank=0

Jogical_index =3

. .0s_index = 1
next_cousin

.sibling_rank=0

Jogical_index =0
.0s_index =0
.sibling_rank=0
.arity=0

next_cousin

Jogical_index = 1
.0s_index =2

.sibling_rank=0

prev_cousin

.arity=0

next_cousin

Jogical_index =2
.0s_index = 1

.sibling_rank=0

prev_cousin

.arity=0

.arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1 prev_cousin | .arity=1
children[0] children[0] children[0] children[0]
first_child first_child first_child first_child
last_child last_child last_child last_child

parent parent parent parent
PU PU PU PU
.depth=4 .depth=4 .depth=4 .depth =4

Jogical_index =3

. .0s_index =3
next_cousin

.sibling_rank=0

prev_cousin

.arity=0

It should be noted that for PU objects, the logical index — as computed linearly by hwloc — is not the same as the
OS index.

See also What happens if my topology is asymmetric? for more details.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen




18

Terms and Definitions

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 3

Command-Line Tools

hwloc comes with an extensive C programming interface and several command line utilities. Each of them is fully
documented in its own manual page; the following is a summary of the available command line tools.

3.1 Istopo and Istopo-no-graphics

Istopo (also known as hwloc-Is) displays the hierarchical topology map of the current system. The output
may be graphical or textual, and can also be exported to numerous file formats such as PDF, PNG, XM«
L, and others. Advanced graphical outputs require the "Cairo" development package (usually cairo-devel
or libcairo2-dev).

Istopo and Istopo-no-graphics accept the same command-line options. However graphical outputs are only available
in Istopo. Textual outputs (those that do not depend on heavy external libraries such as Cairo) are supported in both
Istopo and Istopo-no-graphics.

This command can also display the processes currently bound to a part of the machine (via the —ps option).

Note that Istopo can read XML files and/or alternate chroot filesystems and display topological maps representing
those systems (e.g., use Istopo to output an XML file on one system, and then use Istopo to read in that XML file
and display it on a different system).

3.2 hwloc-bind

hwloc-bind binds processes to specific hardware objects through a flexible syntax. A simple example is binding an
executable to specific cores (or sockets or bitmaps or ...). The hwloc-bind(1) man page provides much more detail
on what is possible.

hwloc-bind can also be used to retrieve the current process’ binding.

3.3 hwloc-calc

hwloc-calc is generally used to create bitmap strings to pass to hwloc-bind. Although hwloc-bind accepts many
forms of object specification (i.e., bitmap strings are one of many forms that hwloc-bind understands), they can be
useful, compact representations in shell scripts, for example.

hwloc-calc generates bitmap strings from given hardware objects with the ability to aggregate them, intersect them,
and more. hwloc-calc generally uses the same syntax than hwloc-bind, but multiple instances may be composed to
generate complex combinations.

Note that hwloc-calc can also generate lists of logical processors or NUMA nodes that are convenient to pass to
some external tools such as taskset or numactl.



20 Command-Line Tools

3.4 hwloc-info

hwloc-info dumps information about the given objects. It is intended to be used with tools such as grep for filtering
certain attribute lines. When no object is specified, hwloc-info prints a summary of the topology.

3.5 hwloc-distrib

hwloc-distrib generates a set of bitmap strings that are uniformly distributed across the machine for the given number
of processes. These strings may be used with hwloc-bind to run processes to maximize their memory bandwidth
by properly distributing them across the machine.

3.6 hwloc-ps

hwloc-ps is a tool to display the bindings of processes that are currently running on the local machine. By default,
hwloc-ps only lists processes that are bound; unbound process (and Linux kernel threads) are not displayed.

3.7 hwloc-gather-topology

hwloc-gather-topology is a Linux-specific tool that saves the relevant topology files of the current machine into a
tarball (and the corresponding Istopo output). These files may be used later (possibly offline) for simulating or
debugging a machine without actually running on it.

3.8 hwloc-distances

hwloc-distances displays all distance matrices attached to the topology. Note that Istopo may also display distance
matrices in its verbose textual output. However Istopo only prints matrices that cover the entire topology while
hwloc-distances also displays matrices that ignore part of the topology.

3.9 hwloc-annotate

hwloc-annotate may add object attributes such as string information (see Custom string infos for details). It reads
an input topology from a XML file and outputs the annotated topology as another XML file.

3.10 hwloc-diff and hwloc-patch

hwloc-diff computes the difference between two topologies and outputs it to another XML file. hwloc-patch reads
such a difference file and applies to another topology.

3.11  hwloc-compress-dir

hwloc-compress-dir compresses an entire directory of XML files by using hwloc-diff to save the differences between
topologies instead of entire topologies.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



3.12 hwloc-assembler 21

3.12 hwloc-assembler

hwloc-assembler combines several XML topology files into a single multi-node XML topology. It may then be used
later as input with hwloc_topology_set_xml() or with the HWLOC_XMLFILE environment variable. See Multi-node
Topologies for details.

3.13 hwloc-assembler-remote

hwloc-assembler-remote is a frontend to hwloc-assembler. It takes care of contacting the given list of remote hosts
(through ssh) and retrieving their topologies as XML before assembling them with hwloc-assembler.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



22

Command-Line Tools

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 4

Environment Variables

The behavior of the hwloc library and tools may be tuned thanks to the following environment variables.

HWLOC_XMLFILE=/path/to/file.xml enforces the discovery from the given XML file as if hwloc_topology_set_«
xml() had been called. This file may have been generated earlier with Istopo file.xml. For convenience, this
backend provides empty binding hooks which just return success. To have hwloc still actually call OS-specific
hooks, HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded file is really
the underlying system. See also Importing and exporting topologies from/to XML files.

HWLOC_XML_VERBOSE=1

HWLOC_SYNTHETIC_VERBOSE=1 enables verbose messages in the XML or synthetic topology backends.
hwloc XML backends (see Importing and exporting topologies from/to XML files) can emit some error mes-
sages to the error output stream. Enabling these verbose messages within hwloc can be useful for un-
derstanding failures to parse input XML topologies. Similarly, enabling verbose messages in the synthetic
topology backend can help understand why the description string is invalid. See also Synthetic topologies.

HWLOC_FSROOT=/path/to/linux/filesystem-root/ switches to reading the topology from the specified Linux
filesystem root instead of the main file-system root, as if hwloc_topology_set_fsroot() had been called. Not
using the main file-system root causes hwloc_topology_is_thissystem() to return 0. For convenience, this
backend provides empty binding hooks which just return success. To have hwloc still actually call OS-specific
hooks, HWLOC_THISSYSTEM should be set 1 in the environment too, to assert that the loaded file is really
the underlying system.

HWLOC_THISSYSTEM=1 enforces the return value of hwloc_topology _is_thissystem(), as if HWLOC_TOPOL«
OGY_FLAG_IS_THISSYSTEM was set with hwloc_topology_set_flags(). It means that it makes hwloc as-
sume that the selected backend provides the topology for the system on which we are running, even if it is not
the OS-specific backend but the XML backend for instance. This means making the binding functions actu-
ally call the OS-specific system calls and really do binding, while the XML backend would otherwise provide
empty hooks just returning success. This can be used for efficiency reasons to first detect the topology once,
save it to an XML file, and quickly reload it later through the XML backend, but still having binding functions
actually do bind.

HWLOC_HIDE_ERRORS=0 enables or disables verbose reporting of errors. The hwloc library may issue warn-
ings to the standard error stream when it detects a problem during topology discovery, for instance if the
operating system (or user) gives contradictory topology information. Setting this environment variable to 1
removes the actual displaying of these error messages.

HWLOC_GROUPING=1 enables or disables objects grouping based on distances. By default, hwloc uses dis-
tance matrices between objects (either read from the OS or given by the user) to find groups of close objects.
These groups are described by adding intermediate Group objects in the topology. Setting this environment
variable to 0 will disable this grouping. This variable supersedes the obsolete HWLOC_IGNORE_DISTAN«
CES variable.



24 Environment Variables

HWLOC_GROUPING_ACCURACY=0.05 relaxes distance comparison during grouping. By default, objects may
be grouped if their distances form a minimal distance graph. When setting this variable to 0.02, these dis-
tances do not have to be strictly equal anymore, they may just be equal with a 2% error. If set to t ry instead
of a numerical value, hwloc will try to group with perfect accuracy (0, the default), then with 0.01, 0.02, 0.05
and finally 0.1. Numbers given in this environment variable should always use a dot as a decimal mark (for
instance 0.01 instead of 0,01).

HWLOC_GROUPING_VERBOSE=0 enables or disables some verbose messages during grouping. If this variable
is set to 1, some debug messages will be displayed during distance-based grouping of objects even if debug
was not specific at configure time. This is useful when trying to find an interesting distance grouping accuracy.

HWLOC_<type>_DISTANCES=index,...:XxY
HWLOC_<type>_DISTANCES=begin-end:XxYx*Z

HWLOC_<type>_DISTANCES=index,...:distance,... sets a distance matrix for objects of the given type and
physical indexes. The type should be given as its case-sensitive stringified value (e.g. NUMANode, Socket,
Cache, Core, PU). If another distance matrix already exists for the given type, either because the user
specified it or because the OS offers it, it will be replaced by the given one.

If the variable value is none, the existing distance matrix for the given type is removed. Otherwise, the
variable value first consists in a list of physical indexes that may be specified as a comma-separated list (e.g.
0,2,4,1,3,5)oras arange of consecutive indexes (0-5). It is followed by a colon and the corresponding
distances:

« If XxY is given, X groups of Y close objects are specified.
» If XxYx*Z is given, X groups of Y groups of Z close objects are specified.

» Otherwise, the comma-separated list of distances should be given. If N objects are considered, the
i*N+j-th value gives the distance from the i-th object to the j-th object. These distance values must use
a dot as a decimal separator.

Note that distances are ignored in multi-node topologies.

HWLOC_PCI_<domain>_<bus>_LOCALCPUS=<cpuset> changes the locality of /O devices behind the
specified PCI hostbridge. If no I/O locality information is available or if the BIOS reports incorrect infor-
mation, it is possible to move a I/O device tree (the entire set of objects behind a host bridge) near a custom
set of processors. domain and bus are the PClI domain and primary bus of the corresponding host bridge.

HWLOC_PLUGINS_PATH=/path/to/hwloc/plugins/:... changes the default search directory for plugins. By de-
fault, $1ibdir/hwloc is used. The variable may contain several colon-separated directories.

HWLOC_PLUGINS_VERBOSE=1 displays verbose information about plugins. List which directories are scanned,
which files are loaded, and which components are successfully loaded.

HWLOC_COMPONENTS=list,of,components forces a list of components to enable or disable. Enable or disable
the given comma-separated list of components (if they do not conflict with each other). Component names
prefixed with — are disabled. Once the end of the list is reached, hwloc falls back to enabling the remaining
components (sorted by priority) that do not conflict with the already enabled ones, and unless explicitly dis-
abled in the list. If stop is met, the enabling loop immediately stops, no more component is enabled. If the
variable is set to an empty string, no specific component is loaded first, all components are loaded in priority
order, this is strictly identical to not specifying any variable. The xml component name may be followed
by a XML file to load (xm1=file.xml). The synthetic component may be followed by a basic synthetic
topology description (synthetic=node:2 pu: 3, see Synthetic topologies). This variable does not take
precedence over the application selecting components with functions such as hwloc_topology_set_xml(). See
Components and plugins for details.

HWLOC_COMPONENTS_VERBOSE=1 displays verbose information about components. Display messages
when components are registered or enabled. This is the recommended way to list the available components
with their priority (all of them are registered at startup).

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 5

CPU and Memory Binding Overview

Some operating systems do not systematically provide separate functions for CPU and memory binding. This means
that CPU binding functions may have have effects on the memory binding policy. Likewise, changing the memory
binding policy may change the CPU binding of the current thread. This is often not a problem for applications, so by
default hwloc will make use of these functions when they provide better binding support.

If the application does not want the CPU binding to change when changing the memory policy, it needs to use the
HWLOC_MEMBIND_NOCPUBIND flag to prevent hwloc from using OS functions which would change the CPU
binding. Additionally, HWLOC_CPUBIND_NOMEMBIND can be passed to CPU binding function to prevent hwloc
from using OS functions would change the memory binding policy. Of course, using these flags will reduce hwloc’s
overall support for binding, so their use is discouraged.

One can avoid using these flags but still closely control both memory and CPU binding by allocating memory,
touching each page in the allocated memory, and then changing the CPU binding. The already-really-allocated
memory will then be "locked" to physical memory and will not be migrated. Thus, even if the memory binding policy
gets changed by the CPU binding order, the already-allocated memory will not change with it. When binding and
allocating further memory, the CPU binding should be performed again in case the memory binding altered the
previously-selected CPU binding.

Not all operating systems support the notion of a "current” memory binding policy for the current process, but
such operating systems often still provide a way to allocate data on a given node set. Conversely, some operating
systems support the notion of a "current" memory binding policy and do not permit allocating data on a specific
node set without changing the current policy and allocate the data. To provide the most powerful coverage of these
facilities, hwloc provides:

« functions that set/get the current memory binding policies (if supported): hwloc_set/get_membind_x() and
hwloc_set/get_proc_membind()

« functions that allocate memory bound to specific node set without changing the current memory binding policy
(if supported): hwloc_alloc_membind() and hwloc_alloc_membind_nodeset().

* helpers which, if needed, change the current memory binding policy of the process in order to obtain memory
binding: hwloc_alloc_membind_policy() and hwloc_alloc_membind_policy nodeset()

An application can thus use the two first sets of functions if it wants to manage separately the global process binding
policy and directed allocation, or use the third set of functions if it does not care about the process memory binding
policy.

See CPU binding and Memory binding for hwloc’s API functions regarding CPU and memory binding, respectively.
There are some examples under doc/examples/ in the source tree.



26

CPU and Memory Binding Overview

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 6

I/O Devices

hwloc usually manipulates processing units and memory but it can also discover I/O devices and report their locality
as well. This is useful for placing I/O intensive applications on cores near the I/O devices they use.

6.1 Enabling and requirements

I/O discovery is disabled by default (except in Istopo) so as not to break legacy application by adding unexpected I/O
objects to the topology. It can be enabled by passing flags such as HWLOC_TOPOLOGY_FLAG_TIO_DEVICES to
hwloc_topology_set_flags() before loading the topology.

Note that 1/O discovery requires significant help from the operating system. The pciaccess library (the development
package is usually 1ibpciaccess—devel or libpciaccess—dev) is needed to fully detect PCl devices and
bridges, and the actual locality of these devices is only currently detected on Linux. Also, some operating systems
require privileges for probing PCI devices, see Does hwloc require privileged access? for details.

On Linux, PCI discovery may still be performed even if 1ibpciaccess cannot be used. But it misses PCl device
names.

6.2 1/0 object hierarchy

When 1/O discovery is enabled and supported, some additional objects (types HWLOC_OBJ_BRIDGE, HWLOC_ «
OBJ_PCI_DEVICE and HWLOC_OBJ_OS_DEVICE) are added to the topology as a child of the object they are
close to. For instance, if a I/O Hub is connected to a socket, the corresponding hwloc bridge object (and its PCI
bridges and devices children) is inserted as a child of the corresponding hwloc socket object.

These new objects have neither CPU sets nor node sets (NULL pointers) because they are not directly usable by the
user applications. Moreover I/O hierarchies may be highly complex (asymmetric trees of bridges). So I/O objects
are placed in specific levels with custom depths. Their lists may still be traversed with regular helpers such as
hwloc_get_next_obj_by_type(). However, hwloc offers some dedicated helpers such as hwloc_get_next_pcidev()
and hwloc_get_next_osdev() for convenience (see Finding I/O objects).

An /O hierarchy is organized as follows: A hostbridge object ( HWLOC_OBJ_BRIDGE object with upstream type
Host and downstream type PCI) is attached below a regular object (usually the entire machine or a NUMA node).
There may be multiple hostbridges in the machine, attached to different places, but all I/O devices are below one
of them. Each hostbridge contains one or several children, either other bridges (usually PCI to PCI) or PCI devices
(HWLOC_OBRJ_PCI_DEVICE). The number of bridges between the hostbridge and a PCl device depends on the
machine and on the topology flags.



28 1/0 Devices

6.3 Software devices

Although each PCI device is uniquely identified by its bus ID (e.g. 0000:01:02.3), the application can hardly find out
which PCI device is actually used when manipulating software handle (such as the eth0 network interface, the sda
hard drive, or the mix4_0 OpenFabrics HCA). Therefore hwloc tries to add software devices (HWLOC_OBJ_0OS_ «
DEVICE, also known as OS devices) below their PCI objects.

hwloc first tries to discover the corresponding names, e.g. eth0, sda or mix4_0, from the operating system. However,
this ability is currently only available on Linux for some classes of devices.

hwloc then tries to discover software devices through additional /0O components using external libraries. For in-
stance proprietary graphics drivers do not offer any OS name, but hwloc may still create one OS object per software
handle when supported. For instance the opencl and cuda components may add some opencl0d0 and cuda0
OS device objects.

Here is a list of OS device objects commonly created by hwloc components when I/O discovery is enabled and
supported.

 Hard disks (HWLOC_OBJ_OSDEV_BLOCK)
— sda (Linux component)

* Network interfaces (HWLOC_OBJ_OSDEV_NETWORK)
— eth0, wilan0, ib0 (Linux component)

» OpenFabrics HCAs (HWLOC_OBJ_OSDEV_OPENFABRICS)
— mix4_0, gib0 (Linux component)

+ GPUs (HWLOC_OBJ_OSDEV_GPU)

— nvmlO for the first NVML device (NVML component, using the NVIDIA Management Library)
— :0.0for the first display (GL component, using the NV-CONTROL X extension library, NVCirl)

» Co-Processors (HWLOC_OBJ_OSDEV_COPROC)

— opencl0do for the first device of the first OpenCL platform, opencl1d3 for the fourth device of the second
OpenCL platform (OpenCL component)

— cuda0 for the first NVIDIA CUDA device (CUDA component, using the NVIDIA CUDA Library)
— mic0 for the first Intel Xeon Phi (MIC) coprocessor (Linux component)

« DMA engine channel (HWLOC_OBJ_OSDEV_DMA)

— dmaOchanO0 (Linux component)

When none of the above strategies is supported and enabled, hwloc cannot place any OS object inside PCI objects.
Note that some PCI devices may contain multiple software devices (see the example below).

See also Interoperability With Other Software for managing these devices without considering them as hwloc ob-
jects.

6.4 Consulting /0 devices and binding

I/0O devices may be consulted by traversing the topology manually (with usual routines such as hwloc_get_obj_by«
_type()) or by using dedicated helpers (such as hwloc_get_pcidev_by_busid(), see Finding I/O objects).

I/O objects do not actually contain any locality information because their CPU sets and node sets are NULL. Their
locality must be retrieved by walking up the object tree (through the parent link) until an non-I/O object is found
(see hwloc_get_non_io_ancestor_obj()). This regular object should have non-NULL CPU sets and node sets which
describe the processing units and memory that are immediately close to the I/O device. For instance the path from

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



6.5 Examples 29

a OS device to its locality may go across a PCI device parent, one or several bridges, up to a a NUMA node with
the same locality.

Command-line tools are also aware of I/O devices. Istopo displays the interesting ones by default (passing —-no-io
disables it).

hwloc-calc and hwloc-bind may manipulate 1/0O devices specified by PCI bus ID or by OS device name.

*+ pci=0000:02:03.0 is replaced by the set of CPUs that are close to the PCIl device whose bus ID is
given.

» os=ethO is replaced by CPUs that are close to the 1/0 device whose software handle is called et hO0.

This enables easy binding of I/0O-intensive applications near the device they use.

6.5 Examples

The following picture shows a dual-socket dual-core host whose PCI bus is connected to the first socket and NUMA
node.

Machine (24GB)

NUMANode P#0 (12GB) NUMANode P#1 (12GB)
0,4 0,2
Socket P#1 1 1 PCl 14e4:163b Socket P#0
L3 (8192KB) eth0 L3 (8192KB)
L2 (256KB) L2 (256KB) 0,2 L2 (256KB) L2 (256KB)
PCl 14e4:163b
L1 (32KB) L1 (32KB) ethl L1 (32KB) L1 (32KB)
Core P#0 Core P#1 0,2 = 0,2 Core P#0 Core P#1
1 PCI 1000:0060
PU P#0 PU P#2 PU P#1 PU P#3
sda
{1 PCI 102b:0532

0,1
PCI 8086:3a20
2,0
PCl 15b3:634a
ib0 ibl
mix4_0

Six interesting PCI devices were discovered. However hwloc found some corresponding software devices (eth0,
eth1, sda, mix4_0, ib0, and ib1) for only four of these physical devices. The other ones (PCI 102b:0532 and PCI
8086:3a20) are an unused IDE controller (no disk attached) and a graphic card (no corresponding software device
reported to the user by the operating system).

On the contrary, it should be noted three different software devices were found for the last PCI device (PC/ 15b3«
:634a). Indeed this OpenFabrics HCA PCI device object contains one one OpenFabrics software device (mix4_0)

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



30 I/O Devices

and two virtual network interface software devices (ib0 and ib7).

PCl link speed is also reported for some bridges and devices because Istopo was privileged when it discovered the
topology.

Here is the corresponding textual output:

Machine (24GB)
NUMANode L#0 (P#0 12GB)
Socket L#0 + L3 L#0 (8192KB)
L2 L#0 (256KB) + L1 L#0 (32KB) + Core L#0 + PU L#0 (P#0)
L2 L#1 (256KB) + L1 L#1 (32KB) + Core L#1 + PU L#1 (P#2)
HostBridge
PCIBridge
PCI 14e4:163b
Net "ethO"
PCI 14e4:163b
Net "ethl"
PCIBridge
PCI 1000:0060
Block "sda"
PCIBridge
PCI 102b:0532
PCI 8086:3a20
PCI 15b3:634a
Net "ibO"
Net "ib1l"
Net "mlx4_0"
NUMANode L#1 (P#1 12GB) + Socket L#1 + L3 L#1 (8192KB)
L2 L#2 (256KB) + L1 L#2 (32KB) + Core L#2 + PU L#2 (P#1)
L2 L#3 (256KB) + L1 L#3 (32KB) + Core L#3 + PU L#3 (P#3)

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 7

Multi-node Topologies

hwloc is usually used for consulting and manipulating single machine topologies. This includes large systems as
long as a single instance of the operating system manages the entire system. However it is sometimes desirable
to have multiple independent hosts inside the same topology, for instance when applying algorithms to an entire
cluster topology. hwloc therefore offers the ability to agregate multiple host topologies into a single global one.

7.1 Multi-node Objects Specifities

A multi-node topology contains several single-node topologies. Those are assembled by making their own root
objects (usually Machine object) children of higher objects. These higher objects include at least the root of the
global topology (usually a System object). Some intermediate objects may also exists, for instance to represent
switches in a large fabric.

There are actually three possible types of objects that have different properties with respect to cpusets, nodesets
and binding. Indeed those cpusets and nodesets were designed for execution and memory binding within a single
operating system. Binding on another system or across several different systems would be meaningless.

Local objects Any object that corresponds to the local machine may be manipulated as usual. Obviously, if the
multi-node topology does not contain the local machine topology, no such local object exists.

Objects from other nodes Any object that comes from inside another node is represented as usual but its cpusets
and nodesets should not be used for binding since binding on another system makes no sense.

Objects above single nodes Any object above single-node topologies does not have any cpuset or nodeset
pointer because binding across multiple systems makes no sense. This includes the glocal root object of
a multi-node topology and possibly some intermediate objects between this global root and the local root of
single-node topologies.

It is important to keep this in mind before binding using multi-node topologies. To make sure binding on an object is
possible, one should first check that its cpuset or nodeset pointer is not NULL. Then, one should check whether the
object is indeed local.

To find out which machine a given object corresponds to, one may look at the info attributes of the parent Machine
object. The HostName info is usually available in Machine objects, it may be retrieved with the following code:

hwloc_obj_t machine_obj;
obj = hwloc_get_ancestor_obj_by_type (topology, HWLOC_OBJ_MACHINE, obj);
if (machine_obj)
return hwloc_obj_get_info_by_name (machine_obj, "HostName");
else
return NULL;

The hwloc assembler scripts (see below) also add AssemblerName and AssemblerIndex info attributes to
the Machine objects to identify the corresponding host name and index during assembly.



32 Multi-node Topologies

7.2 Assembling topologies with command-line tools

One way to manipulate multinode topologies is to retrieve other nodes’ topologies as XML files and combine them
as a global XML topology. It may then be loaded with hwloc_topology set xml() or with the HWLOC_XMLFILE
environment variable.

The hwloc-assembler and hwloc-assembler-remote utilities offer the ability to combine XML topologies or remote
nodes’ topologies (see Command-Line Tools).

7.3 Assembling topologies with the programming interface

The hwloc programming interface offers the ability to build multinode topologies using the custom interface. A new
multinode topology has to be initialized with hwloc_topology_init() and then set to custom with hwloc_topology «
set_custom(). Topologies and objects mat then be assembled. Later, the custom topology is finalized as usual with
hwloc_topology_load().

A custom topology starts with a single root object of type System. It may be modified by inserting a new child
object with hwloc_custom_insert_group_object_by_parent() or by duplicating another topology with hwloc_custom«
_insert_topology(). Both of these operations require to specify the parent object in the custom topology where the
insertion will take place. This parent may be either the root (returned by hwloc_get_root_obj()) or an already-inserted
object (returned by hwloc_custom_insert_group_object_by_parent()).

Ideally, any existing object in the custom topology could be the parent. However, special care should be taken when
traversing the topology to find such an object because most links between objects (children, siblings, cousins) are
not setup until hwloc_topology_load() is invoked.

7.4 Example of assembly with the programming interface

If the topologies of two hosts have been previously gathered in XML files host 1 .xml and host2 . xm1, the global
topology may be assembled with the following code.

hwloc_topology_t hostl, host2, global;

/* initialize global topology =*/
hwloc_topology_init (&global);
hwloc_topology_set_custom(global);

/* insert hostl entire topology below the global topology root =/

hwloc_topology_init (&hostl);

hwloc_topology_load(hostl);

hwloc_custom_insert_topology (global, hwloc_get_root_obj(global),
hostl, NULL);

hwloc_topology_destroy (hostl);

/* insert host2 entire topology below the global topology root =/

hwloc_topology_init (&host2);

hwloc_topology_load (host2);

hwloc_custom_insert_topology (global, hwloc_get_root_obj(global),
host2, NULL);

hwloc_topology_destroy (host2);

/* load and play with the global topology =*/
hwloc_topology_load(global);

If a intermediate object such as a switch should be inserted above one of the host topologies:

/* insert a switch object below the global topology root =*/
hwloc_obj_t sw =
hwloc_custom_insert_group_object_by_parent (global,
hwloc_get_root_obj(global), 0);

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



7.4 Example of assembly with the programming interface

33

/+ insert host2 entire topology below the switch */
hwloc_topology_init (&host2);
hwloc_topology_load(host2);
hwloc_custom_insert_topology(global, switch, host2,
hwloc_topology_destroy (host2);

/* load and play with the global topology =*/
hwloc_topology_load(global);

NULL) ;

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



34

Multi-node Topologies

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 8

Object attributes

8.1 Normal attributes

hwloc objects have many attributes. The hwloc_obj structure contains a common set of attributes that are available
for object types, for instance their t ype or logical_index.

Each object also contains an attr field that, if non NULL, points to a union hwloc_obj_attr_u of type-
specific attribute structures.  For instance, a Cache object obj contains cache-specific information in
obj->attr->cache, such as its size and associativity. See hwloc_obj_attr_u for details.

8.2 Custom string infos

Aside from the name field of each object, hwloc annotates many objects with string attributes that are made of a
key and a value. Each object contains a list of such pairs that may be consulted manually (looking at the object
infos array field) or using the hwloc_obj_get_info_by_name(). The user may additionally add new key-value pairs
to any object using hwloc_obj_add_info() or the hwloc-annotate program.

Here is a non-exhaustive list of attributes that may be automatically added by hwloc (with the usual corresponding
object in parentheses). Note that these attributes heavily depend on the ability of the operating system to report
them. Many of them will therefore be missing on some OS.

OSName, OSRelease, OSVersion, HostName, Architecture (Machine object) The operating system name, re-
lease, version, the hostname and the architecture name, as reported by the Unix uname command.

Backend (Machine object or topology root object) The name of the hwloc backend/component that filled the
topology. If several components were combined, multiple Backend keys may exist, with different values, for
instance x86, Linux and pci.

LinuxCgroup (Machine object) The name the Linux control group where the calling process is placed.

SyntheticDescription (topology root object) The description string that was given to hwloc to build this synthetic
topology.

CPUModel (Socket or Machine) The processor model name. Usually added to Socket objects, but can be in
Machine instead if hwloc failed to discover any socket.

CPUType (Socket) A Solaris-specific general processor type name, such as "i86pc".

CPUVendor, CPUModelNumber, CPUFamilyNumber (Socket or Machine) The processor vendor name, model
number, and family number. Currently available for x86 and Xeon Phi processors on most systems, and for
iab4 processors on Linux. Usually added to Socket objects, but can be in Machine instead if hwloc failed to
discover any socket.

CPURevision (Socket) A POWER/PowerPC-specific general processor revision number, currently only available
on Linux.



36 Object attributes

PlatformName, PlatformModel, PlatformVendor, PlatformBoardID, PlatformRevision,

SystemVersionRegister, ProcessorVersionRegister (Machine) Some POWER/PowerPC-specific attributes de-
scribing the platform and processor. Currently only available on Linux. Usually added to Socket objects, but
can be in Machine instead if hwloc failed to discover any socket.

PClVendor, PCIDevice (PCl devices and bridges) The vendor and device names of the PCI device.

CoProcType (Co-Processor OS devices) The type of co-processor, for instance "MIC", "CUDA" or "Open«
CL".

GPUVendor, GPUModel (GPU or Co-Processor OS devices) The vendor and model names of the GPU device.
OpenCLDeviceType, OpenCLPlatformindex,

OpenCLPlatformName, OpenCLPlatformDevicelndex (OpenCL GPU OS devices) The type of OpenCL de-
vice, the OpenCL platform index and name, and the index of the device within the platform.

OpenCLComputeUnits, OpenCLGlobalMemorySize The number of compute units and global memory size (in
kB) of a OpenCL device.

NVIDIAUUID, NVIDIASerial (NVML GPU OS devices) The UUID and Serial of NVIDIA GPUs.
CUDAMultiProcessors, CUDACoresPerMP,

CUDAGIobalMemorySize, CUDAL2CacheSize, CUDASharedMemorySizePerMP (CUDA OS devices) The
number of shared multiprocessors, the number of cores per multiprocessor, the global memory size, the
(global) L2 cache size, and size of the shared memory in each multiprocessor of a CUDA device. Sizes are
in kB.

MICSerialNumber The serial number of an Intel Xeon Phi (MIC) coprocessor. When running hwloc on the host,
each hwloc OS device object that corresponds to a Xeon Phi gets such an attribute. When running hwloc
inside a Xeon Phi, the root object of the topology gets this attribute. It enables easy identification of devices
and topologies when multiples nodes and MICs are involved.

MICFamily, MICSKU, MICActiveCores, MICMemorySize The family, SKU (model), number of active cores, and
memory size (in kB) of an Intel Xeon Phi (MIC) coprocessor.

DMIBoardVendor, DMIBoardName, etc. (Machine object) DMI hardware information such as the moth-
erboard and chassis models and vendors, the BIOS revision, etc., as reported by Linux under
/sys/class/dmi/id/.

Address, Port (Network interface OS devices) The MAC address and the port number of a software network
interface, such as eth4 on Linux.

NodeGUID, SysimageGUID, Port1State, Port2LID, Port2LMC, Port3GID1 (OpenFabrics OS devices) The
node GUID and GUID mask, the state of a port #1 (value is 4 when active), the LID and LID mask
count of port #2, and GID #1 of port #3.

hwlocVersion The version number of the hwloc library that was used to generate the topology. If the topology was
loaded from XML, this is not the hwloc version that loaded it, but rather the first hwloc instance that exported
the topology to XML earlier.

Here is a non-exhaustive list of user-provided info attributes that have a special meaning:

IstopoStyle Enforces the style of an object (background and text colors) in the graphical output of Istopo. See
CUSTOM COLORS in the Istopo(1) manpage for details.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 9

Importing and exporting topologies from/to XML
files

hwloc offers the ability to export topologies to XML files and reload them later. This is for instance useful for
loading topologies faster (see | do not want hwloc to rediscover my enormous machine topology every time | rerun a
process), manipulating other nodes’ topology, or avoiding the need for privileged processes (see Does hwloc require
privileged access?).

Topologies may be exported to XML files thanks to hwloc_topology_export_xml(), or to a XML memory buffer with
hwloc_topology_export_xmlbuffer(). The Istopo program can also serve as a XML topology export tool.

XML topologies may then be reloaded later with hwloc_topology_set_xml() and hwloc_topology_set_xmlbuffer().
The XMLFILE environment variable also tells hwloc to load the topology from the given XML file.

Note

Loading XML topologies disables binding because the loaded topology may not correspond to the physical
machine that loads it. This behavior may be reverted by asserting that loaded file really matches the underlying
system with the HWLOC_THISSYSTEM environment variable or the HWLOC_TOPOLOGY_FLAG_IS_THI«
SSYSTEM topology flag.

hwloc also offers the ability to export/import Topology differences.

XML topology files are not localized. They use a dot as a decimal separator. Therefore any exported topology
can be reloaded on any other machine without requiring to change the locale.

XML exports contain all details about the platform. It means that two very similar nodes still have different
XML exports (e.g. some serial numbers or MAC addresses are different). If a less precise exporting/importing
is required, one may want to look at Synthetic topologies instead.

9.1 libxml2 and minimalistic XML backends

hwloc offers two backends for importing/exporting XML.

First, it can use the libxml2 library for importing/exporting XML files. It features full XML support, for instance
when those files have to be manipulated by non-hwloc software (e.g. a XSLT parser). The libxml2 backend
is enabled by default if lioxml2 development headers are available (the relevant development package is usually
libxml2-devel or libxml2-dev).

If libxml2 is not available at configure time, or if —-disable—-1ibxml?2 is passed, hwloc falls back to a custom
backend. Contrary to the aforementioned full XML backend with libxmlI2, this minimalistic XML backend cannot
be guaranteed to work with external programs. It should only be assumed to be compatible with the same hwloc
release (even if using the libxml2 backend). Its advantage is however to always be available without requiring any
external dependency.

If libxml2 is available but the core hwloc library should not directly depend on it, the libxmlI2 support may be built
as a dynamicall-loaded plugin. One should pass —~enable-plugins to enable plugin support (when supported)



38 Importing and exporting topologies from/to XML files

and build as plugins all component that support it. Or pass —enable-plugins=xml_1ibxml to only build this
libxmlI2 support as a plugin.

9.2 XML import error management

Importing XML files can fail at least because of file access errors, invalid XML syntax or non-hwloc-valid XML
contents.

Both backend cannot detect all these errors when the input XML file or buffer is selected (when hwloc_topology+
_set_xml() or hwloc_topology_set_xmlbuffer() is called). Some errors such non-hwloc-valid contents can only be
detected later when loading the topology with hwloc_topology_load().

It is therefore strongly recommended to check the return value of both hwloc_topology_set_xml() (or hwloc_«
topology_set_xmlbuffer()) and hwloc_topology_load() to handle all these errors.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 10

Synthetic topologies

hwloc may load fake or remote topologies so as to consult them without having the underlying hardware available.
Aside from loading XML topologies, hwloc also enables the building of synthetic topologies that are described by a
single string listing the arity of each levels.

For instance, Istopo may create a topology made of 2 NUMA nodes, containing a single socket each, with one cache
above two single-threaded cores:

$ lstopo -1 "node:2 sock:1 cache:1 core:2 pu:l" -
Machine (2048MB)
NUMANode L#0 (P#0 1024MB) + Socket L#0 + L2 L#0 (4096KB)
Core L#0 + PU L#0 (P#0)
Core L#1 + PU L#1 (P#1)
NUMANode L#1 (P#1 1024MB) + Socket L#1 + L2 L#1 (4096KB)
Core L#2 + PU L#2 (P#2)
Core L#3 + PU L#3 (P#3)

Replacing — with file.xml in this command line will export this topology to XML as usual.

Note

Synthetic topologies offer a very basic way to export a topology and reimport it on another machine. It is a lot
less precise than XML but may still be enough when only the hierarchy of resources matters.

10.1 Synthetic description string

Each item in the description string gives the type of the level and the number of such children under each object of
the previous level. That is why the above topology contains 4 cores (2 cores times 2 nodes).

These type names must be written as machine, node, socket, core, cache, pu, misc, group. They do
not need to be written case-sensitively, nor entirely (as long as there is no ambiguity, 2 characters such as ma select
a Machine level). Type-specific attributes may also be given such as L21iCache (hwloc_obj_type_sscanf() is used
for parsing the type names). Note that I/O objects are not available.

The root object does not appear in the string. A Machine object is used by default, and a System object replaces it
if a Machine level is specified in the string.

Cache level depths are automatically chosen by hwloc (only a L2 first, then a L1 under it, then L3 above, then L4
etc.) unless they are specified. Memory and cache sizes are also automatically chosen. The only way to modifying
them is to export to XML and manually modify the file.

Each item may be followed parentheses containing a list of space-separated attributes. For instance:

+ L2iCache:2 (size=32kB) specifies 2 children of 32kB level-2 instruction caches. The size may be
specified in bytes (without any unit suffix) or as TB, GB, MB or kB.



40 Synthetic topologies

+ NUMANode: 3 (memory=16MB) specifies 3 NUMA nodes with 16MB each. The size may be specified in
bytes (without any unit suffix) or as TB, GB, MB or kB.

* PU:2 (indexes=0,2, 1, 3) specifies 2 PU children and the full list of OS indexes among the entire set of
4 PU objects.

PU:2 (indexes=numa:core) specifies 2 PU children whose OS indexes are interleaved by NUMA node
first and then by socket.

« Attributes in parentheses at the very beginning of the description apply to the root object.

10.2 Loading a synthetic topology

Aside from Istopo, the hwloc programming interface offers the same ability by passing the synthetic description
string to hwloc_topology_set_synthetic() before hwloc_topology_load().

Synthetic topologies are created by the synthet ic component. This component may be enabled by force by set-
ting the HWLOC_COMPONENTS environment variable to something such as synthetic="node:2 core:3
pu:4".

Loading a synthetic topology disables binding support since the topology usually does not match the underlying
hardware. Binding may be reenabled as usual by setting HWLOC_THISSYSTEM=1 in the environment or by setting
the HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM topology flag.

10.3 Exporting a topology as a synthetic string

The function hwloc_topology_export_synthetic() may export a topology as a synthetic string. It offers a convenient
way to quickly describe the contents of a machine. The Istopo tool may also perform such an export by forcing the
output format.

$ lstopo —-of synthetic --no-io
Socket:1 Cache:1 Cache:2 Cache:1 Cache:1 Core:1 PU:2

The exported string may be passed back to hwloc for recreating another similar topology. The entire tree will be
similar, but some special attributes such processort types may be missing.

Such an export is only possible if the topology is totally symmetric, which means the symmetric_subtree field
of the root object is set. This usually implies that I/O objects are disabled since attaching 1/0O busses often cause
the topology to become asymmetric. Passing —no—1o to Istopo is therefore often useful to make synthetic export
work (as well as not passing any /O topology flag before exporting with hwloc_topology_export_synthetic()).

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 11

Interoperability With Other Software

Although hwloc offers its own portable interface, it still may have to interoperate with specific or non-portable li-
braries that manipulate similar kinds of objects. hwloc therefore offers several specific "helpers" to assist converting
between those specific interfaces and hwloc.

Some external libraries may be specific to a particular OS; others may not always be available. The hwloc core
therefore generally does not explicitly depend on these types of libraries. However, when a custom application uses
or otherwise depends on such a library, it may optionally include the corresponding hwloc helper to extend the hwloc
interface with dedicated helpers.

Most of these helpers use structures that are specific to these external libraries and only meaningful on the local
machine. If so, the helper requires the input topology to match the current machine. Some helpers also require 1/0
device discovery to be supported and enabled for the current topology.

Linux specific features hwloc/linux.h offers Linux-specific helpers that utilize some non-portable features of the
Linux system, such as binding threads through their thread ID ("tid") or parsing kernel CPU mask files.

Linux libnuma hwloc/linux-libnuma.h provides conversion helpers between hwloc CPU sets and libnuma-
specific types, such as bitmasks. It helps you use libnuma memory-binding functions with hwloc CPU sets.

Glibc hwloc/glibc-sched.h offers conversion routines between Glibc and hwloc CPU sets in order to use hwloc
with functions such as sched_getaffinity() or pthread_attr_setaffinity_np().

OpenFabrics Verbs hwloc/openfabrics-verbs.h helps interoperability with the OpenFabrics Verbs interface. For
example, it can return a list of processors near an OpenFabrics device. It may also return the corresponding
OS device hwloc object for further information (if I/O device discovery is enabled).

Myrinet Express hwloc/myriexpress.h offers interoperability with the Myrinet Express interface. It can return
the list of processors near a Myrinet board managed by the MX driver. Note that if I/O device discovery is
enabled, such boards may also appear as PCI objects in the topology.

Intel Xeon Phi (MIC) hwloc/intel-mic.h helps interoperability with Intel Xeon Phi (MIC) coprocessors by returning
the list of processors near these devices. It may also return the corresponding OS device hwloc object for
further information (if 1/0O device discovery is enabled).

AMD OpenCL hwloc/opencl.h enables interoperability with the OpenCL interface. Only the AMD implementation
currently offers locality information. It may return the list of processors near an AMD/ATI GPU given as a
cl_device_id. It may also return the corresponding OS device hwloc object for further information (if I/O
device discovery is enabled).

NVIDIA CUDA hwloc/cuda.h and hwloc/cudart.h enable interoperability with NVIDIA CUDA Driver and Runtime
interfaces. For instance, it may return the list of processors near NVIDIA GPUs. It may also return the
corresponding OS device hwloc object for further information (if /O device discovery is enabled).

NVIDIA Management Library (NVML) hwloc/nvml.h enables interoperability with the NVIDIA NVML interface. It
may return the list of processors near a NVIDIA GPU given as a nvmlDevice_t. It may also return the
corresponding OS device hwloc object for further information (if I/O device discovery is enabled).



42 Interoperability With Other Software

NVIDIA displays hwloc/gl.h enables interoperability with NVIDIA displays using the NV-CONTROL X extension
(NVCitrl library). If /0 device discovery is enabled, it may return the OS device hwloc object that corresponds
to a display given as a name such as :0.0 or given as a port/device pair (server/screen).

Taskset command-line tool The taskset command-line tool is widely used for binding processes. It manipulates
CPU set strings in a format that is slightly different from hwloc’s one (it does not divide the string in fixed-size
subsets and separates them with commas). To ease interoperability, hwloc offers routines to convert hwloc
CPU sets from/to taskset-specific string format. Most hwloc command-line tools also support the ~taskset
option to manipulate taskset-specific strings.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 12

Thread Safety

Like most libraries that mainly fill data structures, hwloc is not thread safe but rather reentrant: all state is held in a
hwloc_topology_t instance without mutex protection. That means, for example, that two threads can safely operate
on and modify two different hwloc_topology_t instances, but they should not simultaneously invoke functions that
modify the same instance. Similarly, one thread should not modify a hwloc_topology_t instance while another thread
is reading or traversing it. However, two threads can safely read or traverse the same hwloc_topology_t instance
concurrently.

When running in multiprocessor environments, be aware that proper thread synchronization and/or memory co-
herency protection is needed to pass hwloc data (such as hwloc_topology_t pointers) from one processor to another
(e.g., a mutex, semaphore, or a memory barrier). Note that this is not a hwloc-specific requirement, but it is worth
mentioning.

For reference, hwloc_topology_t modification operations include (but may not be limited to):

Creation and destruction hwloc_topology_init (), hwloc_topology_load(), hwloc_«
topology_destroy () (see Topology Creation and Destruction) imply major modifications of the
structure, including freeing some objects. No other thread cannot access the topology or any of its ob-
jects at the same time.

Also references to objects inside the topology are not valid anymore after these functions return.

Runtime topology modifications hwloc_topology_insert_misc_object_by_x (see Modifying a
loaded Topology) may modify the topology significantly by adding objects inside the tree, changing the
topology depth, etc. hwloc_topology_restrict modifies the topology even more dramatically by
removing some objects.

Although references to former objects may still be valid after insertion or restriction, it is strongly advised to
not rely on any such guarantee and always re-consult the topology to reacquire new instances of objects.

Locating topologies hwloc_topology_ignorex, hwloc_topology_setx* (see Topology Detection
Configuration and Query) do not modify the topology directly, but they do modify internal structures describ-
ing the behavior of the upcoming invocation of hwloc_topology_load (). Hence, all of these functions
should not be used concurrently.



44

Thread Safety

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 13

Components and plugins

hwloc is organized in components that are responsible for discovering objects. Depending on the topology con-
figuration, some components will be used, some will be ignored. The usual default is to enable the native oper-
ating system component, (e.g. 1inux or solaris) and the pci miscellaneous component. If available, an
architecture-specific component (such as x86) may also improve the topology detection.

If a XML topology is loaded, the xm1 discovery component will be used instead of all other components. It inter-
nally uses a specific class of components for the actual XML import/export routines (xm1_libxml and xml_«
nolibxml) but these will not be discussed here (see libxml2 and minimalistic XML backends).

13.1 Components enabled by default

The hwloc core contains a list of components sorted by priority. Each one is enabled as long as it does not conflict
with the previously enabled ones. This includes native operating system components, architecture-specific ones,
and if available, /0O components such as pci.

Usually the native operating system component (when it exists, e.9. 1inux or aix) is enabled first. Then hwloc
looks for an architecture specific component (e.g. x86). Finally these also exist a basic component (no_os) that
just tries to discover the number of PUs in the system.

Each component discovers as much topology information as possible. Most of them, including most native OS
components, do nothing unless the topology is still empty. Some others, such as x86 and pci, can complete and
annotate what other backends still earlier.

Default priorities ensure that clever components are invoked first. Native operating system components have higher
priorities, and are therefore invoked first, because they likely offer very detailed topology information. If needed, it
will be later extended by architecture-specific information (e.g. from the x86 component).

If any configuration function such as hwloc_topology_set xml() is used before loading the topology, the correspond-
ing component is enabled first. Then, as usual, hwloc enables any other component (based on priorities) that does
not conflict.

Certain components that manage a virtual topology, for instance XML topology import, synthetic topology descrip-
tion, or custom building, conflict with all other components. Therefore, one of them may only be loaded (e.g. with
hwloc_topology_set_xml ()) if no other component is enabled.

The environment variable HWLOC_COMPONENTS_VERBOSE may be set to get verbose messages about compo-
nent registration (including their priority) and enabling.

13.2 Selecting which components to use

Once topology configuration functions such as hwloc_topology_set_custom () have been taken care of,
the priority order of the remaining components may be changed through the HWLOC_COMPONENTS environment



46 Components and plugins

variable (component names must be separated by commas).

Specifying x86 in this variable will cause the x86 component to take precedence over any other component,
including the native operating system component. It is therefore loaded first, before hwloc tries to load all remaining
non-conflicting components. In this case, x86 would take care of discovering everything it supports, instead of only
completing what the native OS information. This may be useful if the native component is buggy on some platforms.

It is possible to prevent some components from being loaded by prefixing their name with — in the list. For instance
%86, —pci will load the x86 component, then let hwloc load all the usual components except pci.

It is possible to prevent all remaining components from being loaded by placing st op in the environment variable.
Only the components listed before this keyword will be enabled.

Certain component names (xml and synthetic) accept an argument (e.g. xml=file.xml). These argu-
ments behave exactly as if the corresponding string had been passed to hwloc_topology_set_xml () or
hwloc_topology_set_synthetic().

13.3 Loading components from plugins

Components may optionally be built as plugins so that the hwloc core library does not directly depend on their depen-
dencies (for instance the 1ibpciaccess library). Plugin support may be enabled with the ~enable-plugins
configure option. All components buildable as plugins will then be built as plugins. The configure option may be
given a comma-separated list of component names to specify the exact list of components to build as plugins.

Plugins are built as independent dynamic libraries that are installed in $1ibdir/hwloc. All plugins found in this
directory are loaded during topology_init (). A specific list of directories (colon-separated) to scan may be
specified in the HWLOC_PLUGINS_PATH environment variable.

Note that loading a plugin just means that the corresponding component is registered to the hwloc core. Compo-
nents are then only enabled if the topology configuration requests it, as explained in the previous sections.

Also note that plugins should carefully be enabled and used when embedding hwloc in another project, see Em-
bedding hwloc in Other Software for details.

13.4 Adding new discovery components and plugins

The types and functions cited below are declared in the hwloc/plugins.h header. Components are supposed to
only use hwloc public headers (hwloc.h and anything under the include/hwloc subdirectory) and nothing from
the include/private subdirectory in the source tree.

13.4.1 Basics of discovery components

Each discovery component is defined by a hwloc_disc_component structure which contains an
instantiate () callback. This function is invoked when this component is actually used by a topology. It
fills a new hwloc_backend structure that usually contains discover () and/or notify_new_object ()
callbacks taking care of the actual topology discovery.

Note

If two discovery components have the same name, only the highest priority one is actually made available.
This offers a way for third-party plugins to override existing components.

13.4.2 Registering a new discovery component

Registering components to the hwloc core relies on a hwloc_component structure. Its data field points to the
previously defined hwloc_disc_component structure while its t ype should be HWLOC_COMPONENT_T+«
YPE_DISC. This structure should be named hwloc_<name>_component.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



13.5 Existing components and plugins 47

The configure script should be modified to add <name> to its hwloc_components shell variable so that the
component is actually available.

Note

The symbol name of the hwloc_component structure is independent of the name of the discovery com-
ponent mentioned in the previous section.

When the component is statically built inside the hwloc library, the symbol hwloc_<name>_component is
added by configure to the src/static—components.h. The core then registers all components listed in this
file.

If the new component may be built as a plugin, the configure script should also define the shell variable hwloc+«
_<name>_component_maybeplugin=1. When the configure script actually enables the component as a
plugin, it will set the variable hwloc_<name>_component to plugin. The build system may then use this
variable to change the way the component is built. It should create a hwloc_<name> . so shared object. All
these files are loaded in alphabetic order, and the components they contain are registered to the hwloc core.

13.5 Existing components and plugins

All components distributed within hwloc are listed below. The list of actually available components may be listed at
running with the HWLOC__COMPONENTS_VERBOSE environment variable (see Environment Variables).

aix, darwin, freebsd, hpux, linux, netbsd, osf, solaris, windows Each officially supported operating system
has its own native component, which is statically built when supported, and which is used by default.

x86 The x86 architecture (either 32 or 64 bits) has its own component that may complete or replace the previously-
found CPU information. It is statically built when supported.

bgq This component is specific to IBM BlueGene/Q compute node (running CNK). It is built and enabled by default
when —host=powerpc64-bgg-1inux is passed to configure (see How do | build hwloc for BlueGene/«
Q7).

no_os A basic component that just tries to detect the number of processing units in the system. It mostly serves
on operating systems that are not natively supported. It is always statically built.

pci  PCI object discovery uses the external pciaccess library (aka libpciaccess); see I/O Devices. It may be built
as a plugin.

linuxpci This component can probe PCI devices on Linux without the help of external libraries such as libpciac-
cess. lts priority is lower than the pci component because it misses device names.

opencl The OpenCL component creates co-processor OS device objects such as openclodo (first device of the
first OpenCL platform) or openc/1d3 (fourth device of the second platform). Only the AMD OpenCL imple-
mentation currently offers locality information. It may be built as a plugin.

cuda This component creates co-processor OS device objects such as cuda0 that correspond to NVIDIA GPUs
used with CUDA library. It may be built as a plugin.

nvml Probing the NVIDIA Management Library creates OS device objects such as nvml0 that are useful for batch
schedulers. It also detects the actual PCle link bandwidth without depending on power management state
and without requiring administrator privileges. It may be built as a plugin.

gl Probing the NV-CONTROL X extension (NVCirl library) creates OS device objects such as :0.0 corresponding
to NVIDIA displays. They are useful for graphical applications that need to place computation and/or data
near a rendering GPU. It may be built as a plugin.

synthetic Synthetic topology support (see Synthetic topologies) is always built statically.

custom Custom topology support (see Multi-node Topologies) is always built statically.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



48 Components and plugins

xml XML topology import (see Importing and exporting topologies from/to XML files) is always built statically. It
internally uses one of the XML backends (see libxml2 and minimalistic XML backends).

» xml_nolibxml is a basic and hwloc-specific XML import/export. It is always statically built.

« xmli_libxml relies on the external libxml2 library for provinding a feature-complete XML import/export.
It may be built as a plugin.

fake A dummy plugin that does nothing but is used for debugging plugin support.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 14

Embedding hwloc in Other Software

It can be desirable to include hwloc in a larger software package (be sure to check out the LICENSE file) so that
users don’t have to separately download and install it before installing your software. This can be advantageous to
ensure that your software uses a known-tested/good version of hwloc, or for use on systems that do not have hwloc
pre-installed.

When used in "embedded" mode, hwloc will:

+ not install any header files
* not build any documentation files
* not build or install any executables or tests

* not build 1ibhwloc.* —instead, it will build 1ibhwloc_embedded. %

There are two ways to put hwloc into "embedded" mode. The first is directly from the configure command line:

shell$ ./configure --enable-embedded-mode ...

The second requires that your software project uses the GNU Autoconf / Automake / Libtool tool chain to build your
software. If you do this, you can directly integrate hwloc’s m4 configure macro into your configure script. You can
then invoke hwloc’s configuration tests and build setup by calling an m4 macro (see below).

Although hwloc dynamic shared object plugins may be used in embedded mode, the embedder project will have to
manually setup libltdl in its build system so that hwloc can load its plugins at run time. Also, embedders should be
aware of complications that can arise due to public and private linker namespaces (e.g., if the embedder project is
loaded into a private namespace and then hwloc tries to dynamically load its plugins, such loading may fail since
the hwloc plugins can'’t find the hwloc symbols they need). The embedder project is strongly advised not to use
hwloc’s dynamically loading plugins / libltdl capability.

14.1 Using hwloc’s M4 Embedding Capabilities

Every project is different, and there are many different ways of integrating hwloc into yours. What follows is one
example of how to do it.

If your project uses recent versions Autoconf, Automake, and Libtool to build, you can use hwloc’s embedded m4
capabilities. We have tested the embedded m4 with projects that use Autoconf 2.65, Automake 1.11.1, and Libtool
2.2.6b. Slightly earlier versions of may also work but are untested. Autoconf versions prior to 2.65 are almost certain
to not work.

You can either copy all the config/hwlocxm4 files from the hwloc source tree to the directory where your project’s
m4 files reside, or you can tell aclocal to find more m4 files in the embedded hwloc’s "config" subdirectory (e.g., add
"-lpath/to/embedded/hwloc/config" to your Makefile.am’s ACLOCAL_AMFLAGS).



50 Embedding hwloc in Other Software

The following macros can then be used from your configure script (only HWLOC_SETUP_CORE must be invoked
if using the m4 macros):

+ HWLOC_SETUP_CORE(config-dir-prefix, action-upon-success, action-upon-failure, print_banner_or_not)«
: Invoke the hwloc configuration tests and setup the hwloc tree to build. The first argument is the prefix to
use for AC_OUTPUT files — it's where the hwloc tree is located relative to $top_srcdir. Hence, if your
embedded hwloc is located in the source tree at contrib/hwloc, you should pass [contrib/hwloc] as
the first argument. If HWLOC_SETUP_CORE and the rest of configure completes successfully, then
"make" traversals of the hwloc tree with standard Automake targets (all, clean, install, etc.) should behave
as expected. For example, it is safe to list the hwloc directory in the SUBDIRS of a higher-level Makefile.am.
The last argument, if not empty, will cause the macro to display an announcement banner that it is starting
the hwloc core configuration tests.

HWLOC_SETUP_CORE will set the following environment variables and AC_SUBST them: HWLOC_EM«-
BEDDED_CFLAGS, HWLOC_EMBEDDED_CPPFLAGS, and HWLOC_EMBEDDED_LIBS. These flags are
filled with the values discovered in the hwloc-specific m4 tests, and can be used in your build process as
relevant. The _CFLAGS, _CPPFLAGS, and _LIBS variables are necessary to build libhwloc (or libhwloc_«
embedded) itself.

HWLOC_SETUP_CORE also sets HWLOC_EMBEDDED_LDADD environment variable (and AC_SUBSTs
it) to contain the location of the libhwloc_embedded.la convenience Libtool archive. It can be used in your
build process to link an application or other library against the embedded hwloc library.

NOTE: If the HWLOC_SET_SYMBOL_PREFIX macro is used, it must be invoked before HWLOC_SE
TUP_CORE.

 HWLOC_BUILD_STANDALONE: HWLOC_SETUP_CORE defaults to building hwloc in an "embedded"
mode (described above). If HWLOC_BUILD_STANDALONE is invoked xbeforex HWLOC_SETUP_CORE,
the embedded definitions will not apply (e.g., libhwloc.la will be built, not libhwloc_embedded.la).

« HWLOC_SET_SYMBOL_PREFIX(foo_): Tells the hwloc to prefix all of hwloc’s types and public symbols with
"foo_"; meaning that function hwloc_init() becomes foo_hwloc_init(). Enum values are prefixed with an upper-
case translation if the prefix supplied; HWLOC_OBJ_SYSTEM becomes FOO_HWLOC_OBJ_SYSTEM. This
is recommended behavior if you are including hwloc in middleware — it is possible that your software will be
combined with other software that links to another copy of hwloc. If both uses of hwloc utilize different symbol
prefixes, there will be no type/symbol clashes, and everything will compile, link, and run successfully. If you
both embed hwloc without changing the symbol prefix and also link against an external hwloc, you may get
multiple symbol definitions when linking your final library or application.

+ HWLOC_SETUP_DOCS, HWLOC_SETUP_UTILS, HWLOC_SETUP_TESTS: These three macros only ap-
ply when hwloc is built in "standalone" mode (i.e., they should NOT be invoked unless HWLOC_BUILD_ST+«
ANDALONE has already been invoked).

+ HWLOC_DO_AM_CONDITIONALS: If you embed hwloc in a larger project and build it conditionally with
Automake (e.g., if HWLOC_SETUP_CORE is invoked conditionally), you must unconditionally invoke HWL
OC_DO_AM_CONDITIONALS to avoid warnings from Automake (for the cases where hwloc is not selected
to be built). This macro is necessary because hwloc uses some AM_CONDITIONALs to build itself, and
AM_CONDITIONALs cannot be defined conditionally. Note that it is safe (but unnecessary) to call HWLO«
C_DO_AM_CONDITIONALS even if HWLOC_SETUP_CORE is invoked unconditionally. If you are not using
Automake to build hwloc, this macro is unnecessary (and will actually cause errors because it invoked AM_x
macros that will be undefined).

NOTE: When using the HWLOC_SETUP_CORE m4 macro, it may be necessary to explicitly invoke AC_CANO«
NICAL_TARGET (which requires config.sub and config.guess) and/or AC_USE_SYSTEM_EXTENSIONS macros
early in the configure script (e.g., after AC_INIT but before AM_INIT_AUTOMAKE). See the Autoconf documentation
for further information.

Also note that hwloc’s top-level configure.ac script uses exactly the macros described above to build hwloc in a
standalone mode (by default). You may want to examine it for one example of how these macros are used.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



14.2 Example Embedding hwloc 51

14.2 Example Embedding hwloc

Here’s an example of integrating with a larger project named sandbox that already uses Autoconf, Automake, and
Libtool to build itself:

# First, cd into the sandbox project source tree
shell$ cd sandbox
shell$ cp -r /somewhere/else/hwloc-<version> my-embedded-hwloc
shell$ edit Makefile.am
1. Add "-Imy-embedded-hwloc/config" to ACLOCAL_AMFLAGS
2. Add "my-embedded-hwloc" to SUBDIRS
3. Add "$ (HWLOC_EMBEDDED_LDADD)" and "$ (HWLOC_EMBEDDED_LIBS)" to
sandbox’s executable’s LDADD line. The former is the name of the
Libtool convenience library that hwloc will generate. The latter
is any dependent support libraries that may be needed by
$ (HWLOC_EMBEDDED_LDADD) .
4. Add "$ (HWLOC_EMBEDDED_CFLAGS)" to AM_CFLAGS
5. Add "$ (HWLOC_EMBEDDED_CPPFLAGS)" to AM_CPPFLAGS
shell$ edit configure.ac
1. Add "HWLOC_SET_SYMBOL_PREFIX (sandbox_hwloc_)" line
2. Add "HWLOC_SETUP_CORE ( [my-embedded-hwloc], [happy=yes], [happy=no])" line
3. Add error checking for happy=no case
shell$ edit sandbox.c
1. Add #include <hwloc.h>
2. Add calls to sandbox_hwloc_init () and other hwloc API functions

Now you can bootstrap, configure, build, and run the sandbox as normal — all calls to "sandbox_hwloc_x*" will use
the embedded hwloc rather than any system-provided copy of hwloc.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



52

Embedding hwloc in Other Software

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 15

Frequently Asked Questions

15.1 1do not want hwloc to rediscover my enormous machine topology every time | rerun
a process

Although the topology discovery is not expensive on common machines, its overhead may become significant when
multiple processes repeat the discovery on large machines (for instance when starting one process per core in a
parallel application). The machine topology usually does not vary much, except if some cores are stopped/restarted
or if the administrator restrictions are modified. Thus rediscovering the whole topology again and again may look
useless.

For this purpose, hwloc offers XML import/export features. It lets you save the discovered topology to a file (for
instance with the Istopo program) and reload it later by setting the HWLOC_XMLFILE environment variable. The
HWLOC_THISSYSTEM environment variable should also be set to 1 to assert that loaded file is really the underlying
system.

Loading a XML topology is usually much faster than querying multiple files or calling multiple functions of the
operating system. It is also possible to manipulate such XML files with the C programming interface, and the
import/export may also be directed to memory buffer (that may for instance be transmitted between applications
through a socket). See also Importing and exporting topologies from/to XML files.

15.2 How many topologies may | use in my program?

hwloc lets you manipulate multiple topologies at the same time. However these topologies consume memory and
system resources (for instance file descriptors) until they are destroyed. It is therefore discouraged to open the
same topology multiple times.

Sharing a single topology between threads is easy (see Thread Safety) since the vast majority of accesses are
read-only.

If multiple topologies of different (but similar) nodes are needed in your program, have a look at How to avoid
memory waste when manipulating multiple similar topologies?.

15.3 How to avoid memory waste when manipulating multiple similar topologies?

hwloc does not share information between topologies. If multiple similar topologies are loaded in memory, for
instance the topologies of different identical nodes of a cluster, lots of information will be duplicated.

hwloc/diff.h (see also Topology differences) offers the ability to compute topology differences, apply or unapply
them, or export/import to/from XML. However this feature is limited to basic differences such as attribute changes.
It does not support complex modifications such as adding or removing some objects.



54 Frequently Asked Questions

15.4 Why is Istopo slow?

Istopo enables most hwloc discovery flags by default so that the output topology is as precise as possible (while
hwloc disables many of them by default). This includes I/O device discovery through PCl libraries as well as external
libraries such as NVML. To speed up Istopo, you may disable such features with command-line options such as
-no-io.

When NVIDIA GPU probing is enabled with CUDA or NVML, one should make sure that the Persistent mode is
enabled (with nvidia—-smi —pm 1) to avoid significant GPU initialization overhead.

When AMD GPU discovery is enabled with OpenCL and hwloc is used remotely over ssh, some spurious round-
trips on the network may significantly increase the discovery time. Forcing the DISPLAY environment variable to
the remote X server display (usually : 0) instead of only setting the COMPUTE variable may avoid this.

Also remember that these components may be disabled at build-time with configure flags such as
—disable-opencl, —disable-cuda or —disable—nvml, and at runtime with the environment variable
HWLOC_COMPONENTS=-opencl, cuda, nvml.

If loading topologies is slow because the machine contains tons of processors, one should also consider using XML
(see | do not want hwloc to rediscover my enormous machine topology every time | rerun a process).

15.5 What should | do when hwloc reports "operating system" warnings?

When the operating system reports invalid locality information (because of either software or hardware bugs), hwloc
may fail to insert some objects in the topology because they cannot fit in the already built tree of resources. If so,
hwloc will report a warning like the following. The object causing this error is ignored, the discovery continues but
the resulting topology will miss some objects and may be asymmetric (see also What happens if my topology is
asymmetric?).

kA kA hhhkhkhkhkhkhhhhhhkhkhkhhhkhhhkhhhhhhkhkhkhhhhhhkhkhhr kb hkhkhkhkhkhhhhkhkhkhrhhhkhkhkhkhrhrhkhkhkhhkhhhkkh*k
hwloc has encountered what looks like an error from the operating system.

L3 (cpuset 0x000003f0) intersects with NUMANode (P#0 cpuset 0x0000003f) without inclusion!
Error occurred in topology.c line 940

* ok X % o

* Please report this error message to the hwloc user’s mailing list,
*+ along with the output from the hwloc-gather-topology script.
R EEEEEE SRS S SRR R R R R R R R SRR R R R EEEEEEEEEEE R R R R R R R R R R R R EEE R I I I I I I S

As explained in the message, reporting this issue to the hwloc developers (by sending the tarball that is generated
by the hwloc-gather-topology script on this platform) is a good way to make sure that this is a software (operating
system) or hardware bug (BIOS, etc).

These errors are common on large AMD platforms because several BIOS releases fail to properly report L3 caches.
In the above example, the hardware reports a L3 cache that is shared by 2 cores in the first NUMA node and 4
cores in the second NUMA node. That's wrong, it should actually be shared by all 6 cores in a single NUMA node.
The resulting topology will miss some L3 caches. If your application not care about cache sharing, or if you do not
plan to request cache-aware binding in your process launcher, you may likely ignore this error.

Some platforms report similar warnings about conflicting Sockets and NUMANodes. Upgrading the BIOS and/or
the operating system may help. Otherwise, the warning may be hidden by setting HWLOC_HIDE_ERRORS=1 in
your environment.

15.6 Does hwloc require privileged access?

hwloc discovers the topology by querying the operating system. Some minor features may require privileged access
to the operation system. For instance PCI link speed discovery on Linux is reserved to root, and the entire PC«
| discovery on FreeBSD requires access to the /dev/pci special file.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



15.7 hwloc only has a one-dimensional view of the architecture, it ignores distances 55

To workaround this limitation, it is recommended to export the topology as a XML file generated by the administrator
(with the Istopo program) and make it available to all users (see Importing and exporting topologies from/to XML
files). It will offer all discovery information to any application without requiring any privileged access anymore. Only
the necessary hardware characteristics will be exported, no sensitive information will be disclosed through this XML
export.

This XML-based model also has the advantage of speeding up the discovery because reading a XML topology is
usually much faster than querying the operating system again.

15.7 hwloc only has a one-dimensional view of the architecture, it ignores distances

hwloc places all objects in a tree. Each level is a one-dimensional view of a set of similar objects. All children of the
same object (siblings) are assumed to be equally interconnected (same distance between any of them), while the
distance between children of different objects (cousins) is supposed to be larger.

Modern machines exhibit complex hardware interconnects, so this tree may miss some information about the actual
physical distances between objects. The hwloc topology may therefore be annotated with distance information that
may be used to build a more realistic representation (multi-dimensional) of each level. For instance, the root object
may contain a distance matrix that represents the latencies between any pairs of NUMA nodes if the BIOS and/or
operating system reports them.

15.8 How may | ignore symmetric multithreading, hyper-threading, ... ?

hwloc creates one PU (processing unit) object per hardware thread. If your machine supports symmetric multi-
threading, for instance Hyper-Threading, each Core object may contain multiple PU objects.

$ lstopo —

Core L#1
PU L#2 (P#1)
PU L#3 (P#3)

If you need to ignore symmetric multithreading, you should likely manipulate hwloc Core objects directly:

/* get the number of cores */
unsigned nbcores = hwloc_get_nbobjs_by_type (topology, HWLOC_OBJ_CORE) ;

/* get the third core below the first socket x/

hwloc_obj_t socket, core;

socket = hwloc_get_obj_by_type (topology, HWLOC_OBJ_SOCKET, O0);

core = hwloc_get_obj_inside_cpuset_by_type (topology, socket->cpuset,
HWLOC_OBJ_CORE, 2);

Whenever you want to bind a process or thread to a core, make sure you singlify its cpuset first, so that the task is
actually bound to a single thread within this core (to avoid useless migrations).

/+ bind on the second core */

hwloc_obj_t core = hwloc_get_obj_by_type (topology, HWLOC_OBJ_CORE, 1);
hwloc_cpuset_t set = hwloc_bitmap_dup (core->cpuset) ;
hwloc_bitmap_singlify (set);

hwloc_set_cpubind (topology, set, 0);

hwloc_bitmap_free (set);

With hwloc-calc or hwloc-bind command-line tools, you may specify that you only want a single-thread within each
core by asking for their first PU object:

$ hwloc-calc core:4-7
0x0000££00

$ hwloc-calc core:4-7.pu:0
0x00005500

When binding a process on the command-line, you may either specify the exact thread that you want to use, or ask
hwloc-bind to singlify the cpuset before binding

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



56 Frequently Asked Questions

$ hwloc-bind core:3.pu:0 -- echo "hello from first thread on core #3"
hello from first thread on core #3

$ hwloc-bind core:3 --single -- echo "hello from a single thread on core #3"
hello from a single thread on core #3

15.9 What happens if my topology is asymmetric?

hwloc supports asymmetric topologies even if most platforms are usually symmetric. For example, there may be
different types of processors in a single machine, each with different numbers of cores, symmetric multithreading,
or levels of caches.

To understand how hwloc manages such cases, one should first remember the meaning of levels and cousin objects.
All objects of the same type are gathered as horizontal levels with a given depth. They are also connected through
the cousin pointers of the hwloc_obj structure. Some types, such as Caches or Groups, are annotated with a depth
or level attribute (for instance L2 cache or Group1). Moreover caches have a type attribute (for instance L1i or L1d).
Such attributes are also taken in account when gathering objects as horizontal levels. To be clear: there will be one
level for L1i caches, another level for L1d caches, another one for L2, etc.

If the topology is asymmetric (e.g., if a cache is missing in one of the processors), a given horizontal level will still
exist if there exist any objects of that type. However, some branches of the overall tree may not have an object
located in that horizontal level. Note that this specific hole within one horizontal level does not imply anything for
other levels. All objects of the same type are gathered in horizontal levels even if their parents or children have
different depths and types.

Moreover, it is important to understand that a same parent object may have children of different types (and therefore,
different depths). These children are therefore siblings (because they have the same parent), but they are
not cousins (because they do not belong to the same horizontal levels).

15.10 How do I annotate the topology with private notes?

Each hwloc object contains a userdata field that may be used by applications to store private pointers. This
field is only valid during the lifetime of these container object and topology. It becomes invalid as soon the topology
is destroyed, or as soon as the object disappears, for instance when restricting the topology. The userdata field
is not exported/imported to/from XML by default since hwloc does not know what it contains. This behavior may
be changed by specifying application-specific callbacks with hwloc_topology_set_userdata_export«
_callback () and hwloc_topology_set_userdata_import_callback ().

Each object may also contain some info attributes (key name and value) that are setup by hwloc during discovery
and that may be extended by the user with hwloc_obj_add_info () (see also Object attributes). Contrary to
the userdata field which is unique, multiple info attributes may exist for each object, even with the same name.
These attributes are always exported to XML. However only character strings may be used as key names and
values.

It is also possible to insert Misc objects with custom names anywhere in the topology (hwloc_topology+
_insert_misc_object_by_cpuset ()) or as a leaf of the topology (hwloc_topology_insert_«
misc_object_by_parent ()).

There is also a topology-specific userdata pointer that can be used to recognize different topologies by storing a
custom pointer. It may be manipulated with hwloc_topology_set_userdata () andhwloc_topology«
_get_userdatal).

15.11 Why does Valgrind complain about hwloc memory leaks?

If you are debugging your application with Valgrind, you want to avoid memory leak reports that are caused by hwloc
and not by your program.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



15.12 How do | handle ABI breaks and APl upgrades? 57

hwloc itself is often checked with Valgrind to make sure it does not leak memory. However some global variables in
hwloc dependencies are never freed. For instance libz allocates its global state once at startup and never frees it
so that it may be reused later. Some libxml2 global state is also never freed because hwloc does not know whether
it can safely ask libxml2 to free it (the application may also be using libxmlI2 outside of hwloc).

These unfreed variables cause leak reports in Valgrind. hwloc installs a Valgrind suppressions file to hide them.
You should pass the following command-line option to Valgrind to use it:

-—suppressions=/path/to/hwloc-valgrind. supp

15.12 How do | handle ABI breaks and API upgrades?

The hwloc interface is extended with every new major release. Any application using the hwloc API should be
prepared to check at compile-time whether some features are available in the currently installed hwloc distribution.

For instance, to check whether the hwloc version is at least 1.10, you should use:

#include <hwloc.h>
#1if HWLOC_API_VERSION >= 0x00010a00

#endif

The hwloc interface will be deeply modified in release 2.0 to fix several issues of the 1.x interface. The ABI will be
broken, which means applications must be recompiled against the new 2.0 interface.

To check that you are not mixing old/recent headers with a recent/old runtime library:

#include <hwloc.h>
#1if HWLOC_API_VERSION >= 0x00020000
/* headers are recent =/
if (hwloc_get_api_version() < 0x20000)
. error out, the hwloc runtime library is older than 2.0 ...
#else
/* headers are pre-2.0 x/
if (hwloc_get_api_version() >= 0x20000)
. error out, the hwloc runtime library is more recent than 2.0 ...
#endif

You should not try to remain compatible with very old releases such as 1.1.x or earlier because HWLOC_APT_«
VERSION was added in 1.0.0 and hwloc_get_api_version () came onlyin 1.1.1. Also do not use the old
cpuset API since it was deprecated and superseded by the bitmap APl in 1.1, and later removed in 1.5.

15.13 How do | build hwloc for BlueGene/Q?

IBM BlueGene/Q machines run a standard Linux on the I/O node and a custom CNK (Compute Node Kernel) on the
compute nodes. To run on the compute node, hwloc must be cross-compiled from the 1/0O node with the following
configuration line:

./configure --host=powerpc64-bgg-linux —--disable-shared --enable-static \
CPPFLAGS='-I/bgsys/drivers/ppcfloor -I/bgsys/drivers/ppcfloor/spi/include/kernel/cnk/’

CPPFLAGS may have to be updated if your platform headers are installed in a different directory.

15.14 How to get useful topology information on NetBSD?

The NetBSD (and FreeBSD) backend uses x86-specific topology discovery (through the x86 component). This
implementation requires CPU binding so as to query topology information from each individual logical processor.
This means that hwloc cannot find any useful topology information unless user-level process binding is allowed
by the NetBSD kernel. The security.models.extensions.user_set_cpu_affinity sysctl variable
must be set to 1 to do so. Otherwise, only the number of logical processors will be detected.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



58

Frequently Asked Questions

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 16

Module Index

16.1 Modules

Here is a list of all modules:

APIVErSION . . L . e e 63
Object Sets (hwloc_cpuset_t and hwloc_nodeset_t) . . . . . . . . . .. . ... . . .. ... 64
Object TYPeS . . . . . o o e e e 65
Object Structure and Attributes . . . . . . . . L 68
Topology Creation and Destruction . . . . . . . . . . . . . . . . .. . 69
Topology Detection Configurationand Query . . . . . . . . . . . . . . . .. .. . 71
Object levels, depths and types . . . . . . . . . . . e 77
Manipulating Object Type, Sets and Attributesas Strings . . . . . . . . . . . . . .. .. .. ... ... 80
CPUDINDING . . . . . . e e e 82
Memory binding . . . . . . . e e e e e e 86
Modifying a loaded Topology . . . . . . . . . . e e e e e 94
Building Custom Topologies . . . . . . . . . . . . . e e e e 96
Exporting Topologies to XML . . . . . . . . . L e e e 97
Exporting Topologies to Synthetic . . . . . . . . . . . . . L 100
Finding ObjectsinsideaCPU set . . . . . . . . . . . . . . e 101
Finding Objects covering atleast CPUset . . . . . . . . . . . . . . e 104
Looking at Ancestor and Child Objects . . . . . . . . . . . . . . e 106
Looking at Cache Objects . . . . . . . . . . . e 107
Finding objects, miscellaneous helpers . . . . . . . . . . e 108
Distributing items over atopology . . . . . . . . . e 110
CPU and node sets of entire topologies . . . . . . . . . . . . 111
Converting between CPU setsandnode sets . . . . . . . . . . . . . . 114
Manipulating Distances . . . . . . . . . e 116
Finding /O objects . . . . . . . L 118
The bitmap APl . . . . 120
Topology differences . . . . . . . . L e 128
Components and Plugins: Discovery components . . . . . . . . . . . ... e 132
Components and Plugins: Discovery backends . . . . . . . . . . . ... ... o 133
Components and Plugins: Genericcomponents . . . . . . . . . . ... 135
Components and Plugins: Core functions to be used by components . . . . . . ... ... ... .... 136
Components and Plugins: PCI functions to be used by components . . . . . . .. .. ... .. ..... 138
Linux-specific helpers . . . . . . . . . e e e e 139
Interoperability with Linux libnuma unsignedlongmasks . . . . . . . . ... .. ... ... .. ... .. 140
Interoperability with Linux libnumabitmask . . . . . . . . . ... oo o 142
Interoperability with glibc sched affinity . . . . . . . ... .. ... . L 144
Interoperability with OpenCL . . . . . . . . . . . e 145
Interoperability with the CUDA Driver APl . . . . . . . . . o o e 147

Interoperability with the CUDA Runtime APl . . . . . . . . . . . 149



60

Module Index

Interoperability with the NVIDIA Management Library . . . . . . . . . . .. . ... .. ... . ..., 151
Interoperability with OpenGL displays . . . . . . . . . . . . o e 153
Interoperability with Intel Xeon Phi (MIC) . . . . . . . . . o o 155
Interoperability with OpenFabrics . . . . . . . . . . . e 156
Interoperability with Myrinet Express . . . . . . . . . . . L 157

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 17

Data Structure Index

17.1 Data Structures

Here are the data structures with brief descriptions:

hwloc_backend

Discovery backend structure . . . . . . . . L 159
hwloc_obj_attr_u::hwloc_bridge_attr_s

Bridge specific Object Attribues . . . . . . . . .. L 160
hwloc_obj_attr_u::hwloc_cache_attr_s

Cache-specific Object Attributes . . . . . . . . . . . . . 161
hwloc_component

Generic component structure . . . . . . . .. L L 162
hwloc_disc_component

Discovery component structure . . . . . . . .. Lo 163
hwloc_distances_s

Distances between objects . . . . . . . . . L 164
hwloc_obj_attr_u::hwloc_group_attr_s

Group-specific Object Attributes . . . . . . . . . . L 166
hwloc_obj

Structure of a topology object . . . . . . . L 166
hwloc_obj_attr_u

Object type-specific Attributes . . . . . . . . . L L 171
hwloc_obj_info_s

Objectinfo . . . . . . . e 171
hwloc_obj_memory_s::hwloc_obj_memory_page_type_s

Array of local memory page types, NULL if no local memory and page_typesis0 . .. .. 172
hwloc_obj_memory_s

Object memory . . . . . . e 173
hwloc_obj_attr_u::hwloc_osdev_attr_s

OS Device specific Object Attributes . . . . . . . . . ... 173
hwloc_obj_attr_u::hwloc_pcidev_attr_s

PCI Device specific Object Attributes . . . . . . . . . . . ... o 174
hwloc_topology_cpubind_support

Flags describing actual PU binding support for this topology . . . . . . . .. .. .. .. ... 175
hwloc_topology_diff_u::hwloc_topology_diff_generic.s . . . . . . . .. .. . ... ... ... ... 176
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr generic.s . . . . . . ... ... ... .. 177
hwloc_topology_diff_u::hwloc_topology diff_obj_attr s . . . . . . . .. ... ... ... ... ... 177
hwloc_topology_diff_obj_attr_u::hwloc_topology_diff_obj_attr_string_s

String attribute modification with an optionalname . . . . . . . . . .. ... . oL 178

hwloc_topology_diff_obj_attr_u
One object attribute difference . . . . . . . . . . L L 178



62

Data Structure Index

hwloc_topology_diff obj_attr_u::hwloc_topology_diff_obj_attr_uint64_s

Integer attribute modification with an optionalindex . . . . . ... .. ... ... ... .. .. 179
hwloc_topology_diff_u::hwloc_topology diff_too_complex_s . . . . . . .. .. ... ... ... .... 180
hwloc_topology_diff u

One element of a difference list between two topologies . . . . . . . . . ... ... ... ... 180
hwloc_topology_discovery_support

Flags describing actual discovery support for this topology . . . . . . .. ... ... .. ... 181
hwloc_topology_membind_support

Flags describing actual memory binding support for this topology . . . . . . . . . .. ... .. 181
hwloc_topology_support

Set of flags describing actual support for thistopology . . . . . . . . ... ... ... ..... 183

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



Chapter 18

Module Documentation

18.1 API version

Macros

+ #define HWLOC_API_VERSION 0x00010a00
+ #define HWLOC_COMPONENT_ABI 4

Functions

* unsigned hwloc_get_api_version (void)

18.1.1 Detailed Description

18.1.2 Macro Definition Documentation
18.1.2.1 #define HWLOC_API_VERSION 0x00010a00

Indicate at build time which hwloc API version is being used.

18.1.2.2 #define HWLOC_COMPONENT_ABI 4

Current component and plugin ABI version (see hwloc/plugins.h)

18.1.3 Function Documentation
18.1.3.1 unsigned hwloc_get_api_version ( void )

Indicate at runtime which hwloc API version was used at build time.



64 Module Documentation

18.2 Object Sets (hwloc_cpuset_t and hwloc_nodeset _t)

Typedefs

« typedef hwloc_bitmap_t hwloc_cpuset_t

« typedef hwloc_const_bitmap_t hwloc_const_cpuset_t
typedef hwloc_bitmap_t hwloc_nodeset_t

typedef hwloc_const_bitmap_t hwloc_const_nodeset_t

18.2.1 Detailed Description

Hwloc uses bitmaps to represent two distinct kinds of object sets: CPU sets (hwloc_cpuset_t) and NUMA node sets
(hwloc_nodeset_t). These types are both typedefs to a common back end type (hwloc_bitmap_t), and therefore all
the hwloc bitmap functions are applicable to both hwloc_cpuset_t and hwloc_nodeset_t (see The bitmap API).

The rationale for having two different types is that even though the actions one wants to perform on these types are
the same (e.g., enable and disable individual items in the set/mask), they’re used in very different contexts: one for
specifying which processors to use and one for specifying which NUMA nodes to use. Hence, the name difference
is really just to reflect the intent of where the type is used.

18.2.2 Typedef Documentation
18.2.2.1 typedef hwloc_const_bitmap_t hwloc_const_cpuset_t

A non-modifiable hwloc_cpuset_t.

18.2.2.2 typedef hwloc_const_bitmap_t hwloc_const_nodeset_t

A non-modifiable hwloc_nodeset_t.

18.2.2.3 typedef hwloc_bitmap_t hwloc_cpuset_t

A CPU set is a bitmap whose bits are set according to CPU physical OS indexes.
It may be consulted and modified with the bitmap API as any hwloc_bitmap_t (see hwloc/bitmap.h).

Each bit may be converted into a PU object using hwloc_get_pu_obj_by_os_index().

18.2.2.4 typedef hwloc_bitmap_t hwloc_nodeset_t

A node set is a bitmap whose bits are set according to NUMA memory node physical OS indexes.

It may be consulted and modified with the bitmap APl as any hwloc_bitmap_t (see hwloc/bitmap.h). Each bit may
be converted into a NUMA node object using hwloc_get_numanode_obj_by_os_index().

When binding memory on a system without any NUMA node (when the whole memory is considered as a single
memory bank), the nodeset may be either empty (no memory selected) or full (whole system memory selected).

See also Converting between CPU sets and node sets.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



18.3 Object Types 65

18.3 Object Types

Typedefs

 typedef enum hwloc_obj_cache_type_e hwloc_obj_cache_type_t
* typedef enum

hwloc_obj_bridge_type_e hwloc_obj_bridge_type_t
 typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type t

Enumerations

» enum hwloc_obj_type_t {
HWLOC_OBJ_SYSTEM, HWLOC_OBJ_MACHINE, HWLOC_OBJ_NODE, HWLOC_OBJ_SOCKET,
HWLOC_OBJ_CACHE, HWLOC_OBJ_CORE, HWLOC_OBJ_PU, HWLOC_OBJ_GROUP,
HWLOC_OBJ_MISC, HWLOC_OBJ_BRIDGE, HWLOC_OBJ_PCI_DEVICE, HWLOC_OBJ_OS_DEVICE,
HWLOC_OBJ_TYPE_MAX}

« enum hwloc_obj_cache_type_e { HWLOC_OBJ_CACHE_UNIFIED, HWLOC_OBJ_CACHE_DATA, HWL«
OC_OBJ_CACHE_INSTRUCTION }

» enum hwloc_obj_bridge_type_e { HWLOC_OBJ_BRIDGE_HOST, HWLOC_OBJ_BRIDGE_PCI }

« enum hwloc_obj_osdev_type_e {
HWLOC_OBJ_OSDEV_BLOCK, HWLOC_OBJ_OSDEV_GPU, HWLOC_OBJ_OSDEV_NETWORK, HWL«-
OC_OBJ_OSDEV_OPENFABRICS,
HWLOC_OBJ_OSDEV_DMA, HWLOC_OBJ_OSDEV_COPROC }

» enum hwloc_compare_types_e { HWLOC_TYPE_UNORDERED }

Functions

« int hwloc_compare_types (hwloc_obj_type_t type1, hwloc_obj_type_t type2)

18.3.1 Detailed Description
18.3.2 Typedef Documentation
18.3.2.1 typedef enum hwloc_obj_bridge_type_e hwloc_obj_bridge_type_t

Type of one side (upstream or downstream) of an 1/O bridge.

18.3.2.2 typedef enum hwloc_obj_cache_type_e hwloc_obj_cache_type t

Cache type.

18.3.2.3 typedef enum hwloc_obj_osdev_type_e hwloc_obj_osdev_type_t

Type of a OS device.

18.3.3 Enumeration Type Documentation

18.3.3.1 enum hwloc_compare_types_e

Enumerator

HWLOC_TYPE_UNORDERED Value returned by hwloc_compare_types when types can not be compared.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



66 Module Documentation

18.3.3.2 enum hwloc_obj_bridge_type_e
Type of one side (upstream or downstream) of an I/O bridge.

Enumerator

HWLOC_OBJ_BRIDGE_HOST Host-side of a bridge, only possible upstream.
HWLOC_OBJ_BRIDGE_PCI PCl-side of a bridge.

18.3.3.3 enum hwloc_obj_cache_type_e
Cache type.

Enumerator

HWLOC_OBJ_CACHE_UNIFIED Unified cache.
HWLOC_OBJ_CACHE_DATA Data cache.

HWLOC_OBJ_CACHE_INSTRUCTION Instruction cache. Only used when the HWLOC_TOPOLOGY_FL«
AG_ICACHES topology flag is set.

18.3.3.4 enum hwloc_obj_osdev_type_e
Type of a OS device.

Enumerator

HWLOC_OBJ_OSDEV_BLOCK Operating system block device. For instance "sda" on Linux.

HWLOC_OBJ_OSDEV_GPU Operating system GPU device. For instance ":0.0" for a GL display, "card0" for
a Linux DRM device.

HWLOC_OBJ_OSDEV_NETWORK Operating system network device. For instance the "ethQ" interface on
Linux.

HWLOC_OBJ_OSDEV_OPENFABRICS Operating system openfabrics device. For instance the "mix4_0"
InfiniBand HCA device on Linux.

HWLOC_OBJ_OSDEV_DMA Operating system dma engine device. For instance the "dmaOchan0" DMA
channel on Linux.

HWLOC_OBJ_OSDEV_COPROC Operating system co-processor device. For instance "mic0" for a Xeon Phi
(MIC) on Linux, "openclod0" for a OpenCL device, "cuda0" for a CUDA device.

18.3.3.5 enum hwloc_obj_type_t
Type of topology object.

Note

Do not rely on the ordering or completeness of the values as new ones may be defined in the future! If you
need to compare types, use hwloc_compare_types() instead.

Enumerator
HWLOC_OBJ_SYSTEM Whole system (may be a cluster of machines). The whole system that is accessible
to hwloc. That may comprise several machines in SSI systems like Kerrighed.

HWLOC_OBJ_MACHINE Machine. The typical root object type. A set of processors and memory with cache
coherency.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



18.3 Object Types 67

HWLOC_OBJ_NODE NUMA node. A set of processors around memory which the processors can directly
access.

HWLOC_OBJ_SOCKET Socket, physical package, or chip. In the physical meaning, i.e. that you can add or
remove physically.

HWLOC_OBJ_CACHE Cache. Can be L1i, L1d, L2, L3, ...

HWLOC_OBJ_CORE Core. A computation unit (may be shared by several logical processors).

HWLOC_OBJ_PU Processing Unit, or (Logical) Processor. An execution unit (may share a core with some
other logical processors, e.g. in the case of an SMT core). Objects of this kind are always reported and
can thus be used as fallback when others are not.

HWLOC_OBJ_GROUP Group objects. Objects which do not fit in the above but are detected by hwloc and
are useful to take into account for affinity. For instance, some operating systems expose their arbitrary
processors aggregation this way. And hwloc may insert such objects to group NUMA nodes according to
their distances. These objects are ignored when they do not bring any structure.

HWLOC_OBJ_MISC Miscellaneous objects. Objects without particular meaning, that can e.g. be added by
the application for its own use.

HWLOC _OBJ_BRIDGE Bridge. Any bridge that connects the host or an I/O bus, to another I/O bus. Bridge
objects have neither CPU sets nor node sets. They are not added to the topology unless I/O discovery is
enabled with hwloc_topology_set_flags().

HWLOC_OBJ_PCI_DEVICE PCI device. These objects have neither CPU sets nor node sets. They are not
added to the topology unless I/O discovery is enabled with hwloc_topology_set_flags().

HWLOC_OBJ_OS_DEVICE Operating system device. These objects have neither CPU sets nor node sets.
They are not added to the topology unless I/O discovery is enabled with hwloc_topology_set_flags().

HWLOC_OBJ_TYPE_MAX Sentinel value

18.3.4 Function Documentation
18.3.4.1 int hwloc_compare_types ( hwloc_obj_type_t typel, hwloc_obj_type_t type2 )

Compare the depth of two object types.

Types shouldn’t be compared as they are, since newer ones may be added in the future. This function returns less
than, equal to, or greater than zero respectively if t ypel objects usually include t ype2 objects, are the same as
type?2 objects, or are included in t ype?2 objects. If the types can not be compared (because neither is usually
contained in the other), HWLOC_TYPE_UNORDERED is returned. Object types containing CPUs can always be
compared (usually, a system contains machines which contain nodes which contain sockets which contain caches,
which contain cores, which contain processors).

Note

HWLOC_OBJ_PU will always be the deepest.
This does not mean that the actual topology will respect that order: e.g. as of today cores may also contain
caches, and sockets may also contain nodes. This is thus just to be seen as a fallback comparison method.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



68 Module Documentation

18.4 Object Structure and Attributes

Data Structures

« struct hwloc_obj_memory_s

« struct hwloc_obj_memory_s::hwloc_obj_memory_page type_s
« struct hwloc_obj

 union hwloc_obj_attr_u

« struct hwloc_obj_attr_u::hwloc_cache_attr_s
« struct hwloc_obj_attr_u::hwloc_group_attr_s
« struct hwloc_obj_attr_u::hwloc_pcidev_attr_s
« struct hwloc_obj_attr_u::hwloc_bridge_attr_s
« struct hwloc_obj_attr_u::hwloc_osdev_attr_s
« struct hwloc_distances_s

« struct hwloc_obj_info_s

Typedefs

* typedef struct hwloc_obj * hwloc_obj_t

18.4.1 Detailed Description

18.4.2 Typedef Documentation
18.4.2.1 typedef struct hwloc_obj+ hwloc_obj_t

Convenience typedef; a pointer to a struct hwloc_obj.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



18.5 Topology Creation and Destruction

18.5 Topology Creation and Destruction

Typedefs

« typedef struct hwloc_topology * hwloc_topology_t

Functions

« int hwloc_topology_init (hwloc_topology_t xtopologyp)

« int hwloc_topology load (hwloc_topology_t topology)

« void hwloc_topology_destroy (hwloc_topology_t topology)
« void hwloc_topology_check (hwloc_topology_t topology)

18.5.1 Detailed Description

18.5.2 Typedef Documentation
18.5.2.1 typedef struct hwloc_topologyx hwloc_topology_t

Topology context.

To be initialized with hwloc_topology_init() and built with hwloc_topology_load().

18.5.3 Function Documentation
18.5.3.1 void hwloc_topology_check ( hwloc_topology_t topology )

Run internal checks on a topology structure.
The program aborts if an inconsistency is detected in the given topology.

Parameters

topology | is the topology to be checked

Note

This routine is only useful to developers.
The input topology should have been previously loaded with hwloc_topology_load().

18.5.3.2 void hwloc_topology_destroy ( hwloc_topology_t topology )

Terminate and free a topology context.

Parameters

topology | is the topology to be freed

18.5.3.3 int hwloc_topology_init ( hwloc_topology_t x topologyp )

Allocate a topology context.

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



70 Module Documentation

Parameters

out topologyp | is assigned a pointer to the new allocated context.

Returns

0 on success, -1 on error.

18.5.3.4 int hwloc_topology_load ( hwloc_topology_t topology )

Build the actual topology.

Build the actual topology once initialized with hwloc_topology_init() and tuned with Topology Detection Configuration
and Query routines. No other routine may be called earlier using this topology context.

Parameters

] topology | is the topology to be loaded with objects.

Returns

0 on success, -1 on error.

Note

On failure, the topology is reinitialized. It should be either destroyed with hwloc_topology_destroy() or config-
ured and loaded again.
This function may be called only once per topology.

See also

Topology Detection Configuration and Query

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



18.6 Topology Detection Configuration and Query 71

18.6 Topology Detection Configuration and Query

Data Structures

« struct hwloc_topology_discovery_support
« struct hwloc_topology_cpubind_support
« struct hwloc_topology_membind_support
« struct hwloc_topology_support

Enumerations

» enum hwloc_topology_flags_e {
HWLOC_TOPOLOGY_FLAG_WHOLE_SYSTEM, HWLOC_TOPOLOGY_FLAG_IS_THISSYSTEM, HWL«
OC_TOPOLOGY_FLAG_IO_DEVICES, HWLOC_TOPOLOGY_FLAG_IO_BRIDGES,
HWLOC_TOPOLOGY_FLAG_WHOLE_IO, HWLOC_TOPOLOGY_FLAG_ICACHES }

Functions

« int hwloc_topology_ignore_type (hwloc_topology_t topology, hwloc_obj_type_t type)

« int hwloc_topology_ignore_type_keep_structure (hwloc_topology_t topology, hwloc_obj_type_t type)
« int hwloc_topology_ignore_all_keep_structure (hwloc_topology_t topology)

« int hwloc_topology_set_flags (hwloc_topology_t topology, unsigned long flags)

« unsigned long hwloc_topology_get_flags (hwloc_topology_t topology)

« int hwloc_topology_set_pid (hwloc_topology_t restrict topology, hwloc_pid_t pid)

« int hwloc_topology_set_fsroot (hwloc_topology_t restrict topology, const char xrestrict fsroot_path)

« int hwloc_topology_set_synthetic (hwloc_topology_t restrict topology, const char xrestrict description)
« int hwloc_topology_set_xml (hwloc_topology_t restrict topology, const char xrestrict xmlpath)

« int hwloc_topology_set_xmibuffer (hwloc_topology_t restrict topology, const char xrestrict buffer, int size)
« int hwloc_topology_set_custom (hwloc_topology_t topology)

« int hwloc_topology_set_distance_matrix (hwloc_topology_t restrict topology, hwloc_obj type t type, un-
signed nbobjs, unsigned xos_index, float xdistances)

« int hwloc_topology_is_thissystem (hwloc_topology _t restrict topology)

+ const struct
hwloc_topology_support x hwloc_topology_get support (hwloc_topology_t restrict topology)

« void hwloc_topology_set_userdata (hwloc_topology_t topology, const void xuserdata)
+ void x hwloc_topology_get_userdata (hwloc_topology_t topology)

18.6.1 Detailed Description

Several functions can optionally be called between hwloc_topology_init() and hwloc_topology_load() to configure
how the detection should be performed, e.g. to ignore some objects types, define a synthetic topology, etc.

If none of them is called, the default is to detect all the objects of the machine that the caller is allowed to access.

This default behavior may also be modified through environment variables if the application did not modify it already.
Setting HWLOC_XMLFILE in the environment enforces the discovery from a XML file as if hwloc_topology_set«
_xml() had been called. HWLOC_FSROOQOT switches to reading the topology from the specified Linux filesystem
root as if hwloc_topology_set_fsroot() had been called. Finally, HWLOC_THISSYSTEM enforces the return value
of hwloc_topology_is_thissystem().

Generated on Mon Jan 26 2015 10:38:04 for Hardware Locality (hwloc) by Doxygen



72 Module Documentation

18.6.2 Enumeration Type Documentation
18.6.2.1 enum hwloc_topology_flags_e

Flags to be set onto a topology context before load.
Flags should be given to hwloc_topology_set_flags(). They may also be returned by hwloc_topology_get_flags().
Enumerator

HWLOC_TOPOLOGY FLAG_WHOLE_SYSTEM Detect the whole system, ignore reservations and offline
settings. Gather all resources, even if some were disabled by the administrator. For instance, ignore Linux
Cgroup/Cpusets and gather all processors and memory nodes, and ignore the fact that some resources
may be offline.

HWLOC_TOPOLOGY _FLAG_IS _THISSYSTEM Assume that the selected backend provides the topology for
the system on which we are running. This forces hwloc_topology_is_thissystem to return 1, i.e. makes
hwloc assume that the selected backend provides the topology for the system on which we are running,
even if it is not the OS-specific backend but the XML backend for instance. This means making the binding
functions actually call the OS-specific system calls and really do binding, while the XML backend would
otherwise provide empty hooks just returning success.

Setting the environment variable HWLOC_THISSYSTEM may also result in the same behavior.
This can be used for efficiency reasons to first detect the topology o