2

Open MPI Developer's Workshop

April 17-20, 2006
Cisco Building 14
San Jose, CA USA

Open MPI Sponsors

DoE \

= A e Y

. L/iﬁl_ CCS-1 Ast @
* NNSA @A'amos

HLRS o s
LI”y Endowment m pervasivetechnologylabs
Microsoft
NSF H L R S

Workshop Sponsor

Cisco Systems

Cisco SYSTEMS

Instructors

Brian Barrett

= Indiana University

George Bosilca

= University of Tennessee

Rich Graham, Galen Shipman, Tim
Woodall

= Los Alamos National Laboratory

Jeff Squyres

= Cisco Systems

Logistics

Building 14 lobby, meet at 7:45am
= Missed us?

= Jeff Lesniak: 831-247-1660

= Jeff Squyres: 502-648-6714
Breaks

= Breakfasts, lunches

= Morning and afternoon breaks

Logistics

Bathrooms / break area

Network access

Cell phones

Slides

Cisco-sponsored dinner Tuesday
= Fault Line Brewery

= Information in your folder

Week Overview

This is interactive
Please interrupt us!
= Questions, comments, etc.

Week Overview: Monday

Background / project information
Developer tools / perspective

Code base

Open MPI State of the Union
Component / plugin system
Portability layer

(Optional) Next generation collectives

Week Overview: Tuesday

Run-time environment

MPI implementation fundamentals

= Groups, communicators, datatypes, requests
MPI-1 collectives

MPI-1 topologies

MPI-2 dynamics

MPI-2 Parallel I/0

Cisco-sponsored dinner

Week Overview: Wednesday

Point-to-point frameworks /
implementations

= RDMA-based networks

= Send/receive-based networks
= Loopback device
Multi-threading issues
Memory management
MPI-2 one-sided

Week Overview: Thursday

Gil Bloch, Mellanox

= Lessons learned — MPI on IB
Patrick Geofray, Myricom

= Lessons learned — MPI on Myrinet
Spill over from anything else

7

=
Project Background

The Name

Two words!

= Open MPI

= NOT “OpenMPI”

Frequently abbreviated “OMPI”
= Pronounced “oom-pee”

It's a brand — let’s try to get it right ©

MPI From Scratch!

Developers of FT-MPI, LA-MPI, LAM/MPI
= Kept meeting at conferences in 2003

= Culminated at SC 2003: Let's start over

= Open MPI was born

Started serious design and coding work
January 2004

= All of MPI-2 (initially skipped one-sided ops)
= Demonstrated at SC 2004

= Released at SC 2005

MPI From Scratch: Why?

MPI From Scratch: Why?

Each prior project had different strong points
= Could not easily combine into one code base
New concepts could not easily be
accommodated in old code bases

Easier to start over

= Start with a blank sheet of paper

= Decades of combined MPI implementation
experience

Merger of ideas from

= FT-MPI (U. of Tennessee)
= LA-MPI (Los Alamos)

= LAM/MPI (Indiana U.) 1
= PACX-MPI (HLRS, U. Stuttgart)

Open MPI

What About the Prior Projects?

All are in “maintenance” mode

= Cannot abandon existing user bases

= New releases (if any) for critical bug fixes

= [Vast] Majority of time spent on Open MPI

All major features being [slowly] rolled into
Open MPI

Open MPI Members

Founders Recent additions

= High Performance = Cisco Systems
Computing Center, = Mellanox Technologies
Stuttgart .

Sun Microsystems
= University of Houston
= Voltaire

= |Indiana University
= Los Alamos National
Laboratory

= The University of
Tennessee

Multi-Organization

Collaboration

Each organization:

= Shares some common goals

= Has non-overlapping / different goals
...but that is ok!

= In fact, this is what makes us strong
Open MPI reflects the priorities of the
current members

= _..and the membership just got larger

Project Goals

Next generation MPI implementation
= All of MPI-2

= Reflect over a decade of MPI experience
Prevent “forking” problem

= Community / 3rd party involvement

= Production-quality research platform

= Rapid deployment for new platforms

Project Goals

Open source

= VVendor-friendly license (BSD)

= Bring together “MPIl-smart” developers
Provide an MPI that “just works”

= Make a user-friendly experience
Portable performance

= Support arbitrary combinations of back-end
networks, platforms, run-time environments

Design Goals

Extend / enhance previous ideas

= Component architecture

= Message fragmentation / reassembly

= Design for heterogeneous environments
Multiple networks (run-time selection and striping)
Node architecture (data type representation)

= Automatic error detection / retransmission

= Process fault tolerance

Design Goals

Design for a changing environment

= Hardware failure

= Resource changes

= Application demand (dynamic processes)
Portable efficiency on any parallel resource
= Small cluster

= “Big iron” hardware

= “Grid” (everyone has a different definition)

Implementation Goals

All of MPI-2

Optimized performance
= Low latency
= High bandwidth

Production quality

Thread safety and concurrency
(MPI_THREAD_MULTIPLE)

Implementation Goals

Based on a Natively support
component commodity networks
architecture = TCP
= Flexible run-time = Shared memory
tuning = Myrinet
= “Plug-ins” for different GM, MX
capabilities (e.g., = Infiniband
different networks) mVAPI, OpenIB
= Portals

Operating Systems

Current Majority of OMPI is
= Linux POSIX C

= OS X (BSD) = Not difficult to port to
Not frequently tested new OS's

= Solaris Segregate OS-

= AIX specific functionality
Development * Plugins

= MS Window

Maybe?

= HP/UX, IRIX

Run-Time Environments

Daemon and daemon- Future

less modes « SGE

= vs. LAM/MPI = LSF

Current support = BProc (Scyld)

= rsh/ssh = RMS (Quadrics)

* BProc (current) « Grid (‘multi-cell’)
PBS / Torque

« SLURM Segregate RTE-

« BJS (LANL BProc specific functionality
Clustermatic) = Plugins

= Yod (Red Storm)

>

Legal Stuff

This is boring but necessary @
Bear with me...

IANAL

| am not a lawyer

This is not legal advice

This is simply my non-legal-professional
understanding

| strongly encourage you to check with
your own legal counsel

Intellectual Property

Commit access requires legal paperwork
We must have an IP-clean code base

= Contribution agreements on web site

= Modeled after Apache contribution
agreements

No copyright assignments

= Just license contributed code to OMPI

= Allow redistribution under BSD

Ownership

Initial entire code base

= Jointly developed and owned by 4 founders
= |U, UTK, LANL, HLRS

= So you'll see copyrights for all 4 in most files
Since then, ownership is diverse

= Asserted by copyright notices

Copyrights

Not the same thing as licenses
Copyright notices go in every file
Rules of thumb

= \WWhen in doubt, ask

= Include more copyrights (vs. less)

= If you edit a file, update your organization’s
copyright notice in that file

License

Open MPI licensed under the BSD
= Not GPL
All contributed code must be compatible
with BSD
= Therefore, licenses do not go in source files
= Top-level LICENSE file only
= One license for all of Open MPI

Importing External Source

Must be licensed properly

= Compatible with BSD

= GPL is not compatible with BSD
Always include all relevant notices
= Copyright(s) and license

= Avoid someone later saying “you used my
code; you owe me money”

Examples
= ptmalloc2, libevent, ROMIO

Patches

Legal / IP Questions

“Small” patches do not require signed
contribution agreements

= Definition of “small” is relative and left up to
common sense

= Typos, small patches

= Fixes to current functionality (not new
functionality)

“Large” patches do

= New functionality (e.g., new components)

When in doubt, ask
When in doubt, ask
When in doubt, ask

2

Open Source

Open Source Project

The Open MPI code base is open source
= Anyone can fork, but we discourage that

= There are too many MPI’s already

Does not exclude closed source

= Can distribute closed-source plugins

= Do not need to distribute Open MPI itself

Community

Strong relationship with open source
community

= Open repository

= Open mailing lists

= Responsive to questions, problems
Work with and for the HPC community

b

%

Top-Level Architecture

Three Main Code Sections

Open MPI layer (OMPI)

= Top-level MPI API and supporting logic
Open Run-Time Environment (ORTE)
= Interface to back-end run-time system
Open Portability Access Layer (OPAL)
= Utility code (lists, reference counting, etc.)
Dependencies - not layers

= OMPI »> ORTE > OPAL

= Strict abstraction barriers!

Three Main Code Sections
o -

[Operating system]

OPAL

Lowest layer in Open MPI

Much OS/system-system specific stuff
= Assembly code

= Processor / memory affinity

= High-resolution timers

“Glue” code

= OBJ macros

= Utility classes

ORTE

Run-time environment support

= Hook in to back-end resource managers, etc.

= Process discovery, allocation, launch

= |/O forwarding

= Generally only provide functionality if back-end
system does not

General purpose registry

Messaging (not high-performance)

All MPI semantics
= Groups, communicators, datatypes, etc.
Heavily optimized
= Will be spending much of the workshop
discussing this layer

