
An Efficient Open MPI Transport System for
Virtual Worker Nodes

Timothy Hayes
B.A. (Mod.) Computer Science

Trinity College Dublin
Final Year Project, April 2009
Supervisor: Dr. Stephen Childs

1

“It would appear that we have reached the limits of what it is possible
to achieve with computer technology, although one should be careful
with such statements, as they tend to sound pretty silly in 5 years.”

– John Von Neumann, circa 1949

2

Acknowledgements

I would like to thank my supervisor Dr. Stephen Childs for agreeing to supervise
this project and for all his helpful advice throughout the year. I would also like to
thank the people of the Open MPI and Xen developer mailing lists; without their
time and enthusiasm this project would surely not have seen completion. Finally
I would like to thank my family and friends for their support and encouragement
over the past year.

3

Abstract

There is increased interest in running cluster jobs within virtual ma-
chines to provide isolation and customised environments. For this to be
successful, it is essential that efficient transport mechanisms are available.
In particular, communication between virtual machines on the same phys-
ical host should provide similar performance to that between multiple jobs
running on a single host. This project will implement a shared memory
transport for Open MPI that uses Xen features to provide low-latency com-
munication between virtual machines. Open MPI’s failover features will be
used to automatically switch to other transport mechanisms (e.g. Ethernet)
when virtual machines are migrated so they no longer share a physical host.

4

Contents

1 Introduction 9

2 Background Information 11

2.1 Message Passing Interface . 11

2.2 Open MPI . 11

2.3 Virtualization . 11

2.4 Xen . 12

3 Xen Inter-VM Communication 14

3.1 Xen - An Unenlightened Network 14

3.2 Previous Work . 17

3.2.1 XenLoop . 17

3.2.2 Xway . 18

3.2.3 XenSocket . 18

4 Design Research 20

4.1 Introduction to the Open MPI architecture 20

4.1.1 The Point to Point Messaging Layer 22

4.1.2 The BTL Management Layer 24

4.1.3 The Byte Transfer Layer . 24

4.1.4 The Event System . 29

4.1.5 Object Orientation . 29

4.2 Introduction to the Xen architecture 30

5

4.2.1 Hypercalls . 30

4.2.2 Grant Tables . 33

4.2.3 XenStore . 35

5 Design and Implementation 37

5.1 A Custom XenSocket . 37

5.2 The xen BTL . 39

5.2.1 The Initialisation Phase . 39

5.2.2 The Process Selection Phase 41

5.2.3 The Operation Phase . 44

5.2.4 The Shutdown Phase . 51

5.2.5 Live Migration . 51

6 Analysis 55

6.1 Latency & Bandwidth . 55

6.2 CPU Usage . 57

6.3 The Alternative Design . 59

7 Summary 61

7.1 Problems Encountered . 61

7.2 Conclusion . 62

8 Bibliography 63

A Source Code 65

A.1 CD-ROM Contents . 65

6

A.2 Installing Software . 65

List of Figures

3.1 Process of Xen virtual machines accessing a local network 15

3.2 Process of Xen virtual machines communicating with each other . . 16

4.1 Open MPI code sections . 20

4.2 Functions available in an MCA component 21

4.3 The hierarchy of the PML, BML & BTL frameworks 24

4.4 A BTL descriptor can have many memory segments 25

4.5 The four stages of a BTL component/module 26

4.6 The operating system is moved to ring 1 31

4.7 The operating system remains in ring 0 32

4.8 The guest operating system makes hypercalls to the hypervisor . . . 32

4.9 Virtual memory can be mapped to the same location 33

4.10 An example layout of XenStore . 35

5.1 The xen component checks for a suitable environment to run in . . . 40

5.2 A xen module scatters its metadata to other xen modules 41

5.3 A xen module searches for processes to communicate with 43

5.4 A xen module attempts to send a message 47

5.5 A xen module attempts to receive messages 50

5.6 Both ends of a XenSocket in virtual memory 52

5.7 The sending machine emigrates . 53

5.8 The receiving machine emigrates 53

7

6.1 Latency of the tcp, xen & sm components 56

6.2 Bandwidth of the tcp, xen & sm components 56

6.3 domU CPU activity of the tcp and xen components 58

6.4 dom0 CPU activity of the tcp and xen components 58

6.5 Latency comparison of alternative xen designs 60

6.6 Bandwidth comparison of alternative xen designs 60

List of Tables

4.1 Functions available in a PML module 23

4.2 Functions available in a BTL module 27

5.1 Customisable parameters of the xen BTL component 40

8

1 Introduction

There has been an interest in virtualizing worker nodes in high performance com-
puting (HPC) clusters for a variety of reasons. Virtual machines can provide
different customised environments sharing the same hardware. They can easily
accommodate fine-tuning an operating system’s scheduling and memory manage-
ment for specific applications. Many light-weight, customised guest operating
systems can be used to partition large multi-core machines. Virtual machines also
enable checkpointing and migration of a job’s entire environment; this can be used
to implement transparent real-time load balancing.

While there are many benefits to fusing virtualization and high-performance
computing, there are also reasons not to. Applications running on a virtual
machine incur performance overheads not present on a native operating system.
These issues are being looked at in the form of hardware solutions (Intel, AMD
and IBM now have virtualization features in their processors) along with ex-
tensive research into paravirtualized software (e.g. Xen and the IBM Research
Hypervisor)[7]. One particular performance issue is inter-VM (i.e. virtual ma-
chines on the same physical machine) communication; this theoretically could
perform as well as inter-process communication, yet remains highly inefficient.

Performance overhead is probably the greatest factor inhibiting the HPC com-
munity from adopting virtualized solutions. HPC applications rely heavily on
efficient communication channels between processes. The desire is to have low
latency and high throughput point-to-point links between processes which can
be guaranteed by inter-process communication but not inter-VM communication.
The motivation of this project is to try to remove some of the overhead that exists
in virtualized clusters while making the optimisation completely transparent to
existing code. This would provide an incentive to the HPC community to adopt
virtualized solutions.

Message Passing Interface (MPI) is a standardised and widely adopted com-
munication interface used by many HPC clusters. It has been used to develop
solutions for huge problems such as climate change prediction and simulating
drug compound effects on malaria. This project is concerned with running MPI
programs on virtualized environments hosted by Xen. Although Xen offers near-
native performance to its virtual machines, communication channels between vir-
tual machines on the same physical machine are still prone to inefficiencies. Using
an MPI implementation called Open MPI, this project implemented a highly effi-
cient MPI communication system specifically for Xen virtual machines. This came
in the form of an easily installable plug-in which outperforms the native transfer
mechanism in terms of latency, throughput and CPU utilisation.

This report can be read by itself or as a complement to the source code. Section
2 describes the primary technologies used in the scope of this project. Section 3

9

analyses the current inter-VM communication system in Xen. It identifies critical
weaknesses in the basic implementation and describes third-party software that
addresses them. Section 4 describes a subset of the Open MPI and Xen architec-
tures that are crucial to the project’s implementation. Section 5 draws on material
from section 4 and describes the design process of the plug-in itself. Section 6 pro-
vides a detailed analysis of the plug-in’s performance. Section 7 discusses some
of the pitfalls encountered during the design and implementation of the project;
finally, a summary of the project as a whole is given.

10

2 Background Information

This section introduces technologies and terminology of significance to the project.

2.1 Message Passing Interface

Message Passing Interface (MPI) is an API to aid the building of parallel and
distributed programs. The model allows individual processes to work together to
help solve a common task or problem; processes communicate with each other
by passing messages. In contrast to shared-memory models of parallel program-
ming, MPI processes neednt be on the same physical machine. For example, in a
threaded program every thread must exist in the same physical memory whereas
with MPI, the processes can be local or on remote machines. MPI is therefore
more scalable and remains the de facto choice for programming high performance
computers and clusters. MPI has no targeted language, although common bind-
ings include C, C++ and Fortan. MPI has two standard versions defined by the
MPI Forum, MPI-1[15] (currently MPI-1.2) and MPI-2[16] (currently MPI-2.1).

2.2 Open MPI

Open MPI[4, 5] is an implementation of both versions of the MPI API. It was
a merger between four major MPI implementations and aspired to take the best
features of each one into a single cutting-edge library. It is a widely adopted multi-
platform MPI implementation that strives to provide high performance, high band-
width and low latency on every supported system. It is an open source project
with many contributors coming from both academic institutions and industry,
however the Open MPI community encourage contributions from all people in-
terested. Open MPI has a component based architecture so specific features and
tasks are decoupled from each other and implemented cohesively with strict APIs,
this way a programmer can develop their own features in the form of plug-ins.

2.3 Virtualization

Virtualization is a concept that refers to the abstraction of a physical machine’s
resources into multiple isolated copies known as virtual machines. A virtual ma-
chine can present a very similar (if not identical) hardware model as the physical
machine it is running on. This gives the operating system the illusion of running
directly on hardware. The benefit of this is that many virtual machines, each
with their own operating system, can run concurrently on one physical machine.

11

A layer of code is inserted between the virtual machines and the underlying sys-
tem which is known as a virtual machine monitor or hypervisor. There are two
primary types of hypervisor: ‘bare-metal’ which runs on hardware directly in place
of an operating system or ‘hosted’ which runs as a user application in an operating
system.

Paravirtualization is a specific kind of virtualization where the exact hardware
model can’t be cloned verbatim, so instead a very similar one is used. For an
operating system to run in this kind of virtual machine it must be modified so
that all problematic machine instructions are replaced with a mixture of safe
machine instructions and calls to the hypervisor itself. This way the operating
system becomes aware that it is running on a virtual machine.

2.4 Xen

Xen[8] is bare-metal virtual machine monitor that supports a range of guest oper-
ating systems and CPU architectures; it was developed at University of Cambridge
and publicly made first available in 2003. Xen offers a choice to its end users in
that it can run paravirtualized virtual machines for operating systems that have
been made Xen aware (this particularly common for Linux based operating sys-
tems which has an open source kernel implementation) and also hardware assisted
virtual machines for operating systems which can’t be modified e.g. Windows.

The Xen hypervisor is a very thin layer that sits between the hardware and
the virtual machines. Interacting with the hypervisor requires the presence of
a specific targeted virtual machine with a paravirtualized operating system. In
Xen terminology this is known as the dom0 (short for domain 0) and every other
virtual machine is then called a domU (for unprivileged domain). The dom0 can
be a variety of modified operating systems including OpenSolaris and NetBSD,
however Linux based systems remain the most common choice. The dom0 is the
first virtual machine booted by Xen and includes applications to create, delete
and manage virtual machines.

Xen offers its virtual machines various hardware resources with a split device
driver model. What this means is that a guest operating system can interact with
their device drivers as normal, however instead of the device drivers interacting
directly with the hardware, the requests will be passed via the hypervisor to a
special virtual machine known as the driver domain. The driver domain contains
all the real device drivers that interact with the hardware and also logic to help
multiplex requests from the unprivileged domains in order to share the physical
resources of the machine. This way, all the virtual machines are given the illusion of
interacting directly with real devices when in reality all their requests are tunnelled
through a special domain first. More often than not, the dom0 is also the driver
domain, however they can be separated which can help make the dom0 more

12

stable[2, p.47-74].

Xen also offers a facility known as live migration where a virtual machine run-
ning on one hypervisor can change physical hosts and move to another hypervisor.
The migration happens in real-time and is completely transparent to the virtual
machine itself. The benefit of this is that virtual machines can be scheduled on
different machines dynamically as a form of load balancing. For example, one
could have a large number of virtual machines hosted on one hypervisor doing no
important work; should one machine become active and require more resources, it
can be migrated to another physical machine that can guarantee these resources.

13

3 Xen Inter-VM Communication

This section looks at how the Xen Inter-VM communication system works and
summarises various third-party utilities that have attempted to improve it.

3.1 Xen - An Unenlightened Network

One of the purposes of a virtual machine monitor is to multiplex and time-share
physical hardware to many virtual machines. Analogous to how an operating sys-
tem provides the illusion to its processes that each one has complete and undis-
turbed access to physical hardware, a virtual machine monitor does the same
for its virtual machines. For virtual machines running in Xen, one of the more
interesting aspects is how it addressed the issue of per-guest networking with a
limited amount of physical network interface cards available. For simplicity we
will assume these to be Ethernet cards, however this could apply to any number
of different technologies. A virtual machine should be isolated and ideally have
no knowledge that it is sharing resources, therefore it is inevitable that each guest
needs its own network device to access a local network.

One solution would be to have a separate network interface card for every
virtual machine running, but naturally this solution would be expensive and would
not scale well. Another solution would be to give each virtual machine the same
device driver to access the network card directly. This would ultimately lead to
disaster as every virtual machine would be competing to send and receive frames in
unison leading to race conditions and fatal consequences. Fortunately Xen offers
a clean and effective way for each virtual machine to exist on the same network
using a single network interface card whilst giving each one the illusion of having
their own network interface card.

Virtual machine guests on Xen talk directly to a virtual network device. This
device essentially comes in the form of a device driver that offers the same func-
tionality found in most generic Ethernet card drivers. Instead of translating in-
structions into hardware signals, the driver will interact with the Xen hypervisor
in order to communicate with a corresponding back-end interface that exists in
the driver domain. The back - interface translates instructions into regular MAC
Ethernet frames and alerts a virtual software bridge, also running in the driver
domain, of the request. The virtual bridge operates like any layer 2 switch; if it
sees a frame is destined for a machine on a local network it will pass the frame to
a real device driver corresponding to a physical network device. Each virtual net-
work interface has a unique MAC address (usually randomly generated) and the
whole process runs transparently to any user applications running in the virtual
machines. See figure 3.1.

14

Figure 3.1: Process of Xen virtual machines accessing a local network

The main concern of this project is how virtual machines sitting in the same
physical machine communicate with each other. The communication channels
between a virtual machine to the outside network may be an acceptable solution
since the extra complexity is somewhat lost in the general overhead of network
bound traffic. On the other hand, it proves to be a very ineffective method for
communication channels between virtual machines residing on the same physical
host. Because these virtual machines share the same physical memory, one would
expect performance close to inter-process communication. Figure 3.2 illustrates
the problem. The main point here is that domU A doesn’t know domU B is a
virtual machine hosted on the same physical machine. Therefore domU A sends
a packet of information to domU B under the assumption it exists somewhere on
the LAN which leads to many inefficiencies[9, 10].

1. An application in domU A must make a system call and change into kernel
space.

2. The kernel copies the data from the user’s memory space into the kernel’s
memory space.

3. The data is then packed with TCP and then IP metadata before being passed
to the virtual device driver.

15

Figure 3.2: Process of Xen virtual machines communicating with each other

4. The virtual device driver surrounds the packet in an Ethernet frame.

5. The virtual device driver must copy this data into numerous free pages and
then request that Xen map the page ownership from domU A to dom0. This
is known as page flipping.

6. dom0 is then signalled and scheduled to handle this request.

7. The frame moves from the back-end driver to the software bridge.

8. The software bridge sees the destination resides in a virtual machine on the
same physical machine so calls the back-end driver again.

9. The back-end driver places the frame into numerous free pages and requests
Xen to map the page ownership from dom0 to domU B.

10. domU B is then signalled and scheduled to handle this request.

11. The frame is stripped of its Ethernet information and passed up into the
TCP/IP stack.

12. The TCP/IP stack strips all the metadata from the packet.

13. The user-space application then makes a system call into kernel-space.

14. The kernel must copy the data from the kernel’s memory space to the user’s
memory space.

16

All this is very long winded and inefficient way to essentially have two processes
share a piece of information. It results in low bandwidth, high latency and far too
much CPU utilisation. In the context of high performance computing the goal
is to achieve the exact opposite: high bandwidth, low latency and as little CPU
utilisation as possible. This project is concerned with bypassing the standard
internal communication model of Xen for jobs running in Open MPI.

3.2 Previous Work

The following describes three third-party utilities that were developed to try and
remedy the problems of Xen’s inter-VM communication system.

3.2.1 XenLoop

XenLoop[12] is a utility developed at Binghamton University, NY. It modifies the
network stack of the domU clients and inserts a module between the network
layer and the data-link layer. This module contains a table with information on
co-resident virtual machines. In order to fill this table with relevant information,
when a guest is created or migrated onto a machine, they advertise their desire
to participate in XenLoop using the XenStore database. A daemon runs in dom0
looking for changes in XenStore. If a new XenLoop enabled guest is detected or
removed, the dom0 signals all resident guest domains which promptly create or
destroy direct channels with the guest.

Advantages

� No page flipping.
� Works transparently for all existing applications.
� Handles live migration (in/out).
� Source code available.

Disadvantages

� Still goes through TCP/IP stack (unnecessary overhead & fragmentation).
� Relies heavily on the dom0 daemon.
� No granularity of control.

17

3.2.2 Xway

Xway[10, 11] is a self-contained kernel module for a guest domain developed by
the ETRI, Republic of Korea. Its goal is to provide efficient inter-domain com-
munication transparently to the guest operating systems. The basic idea is that
an extra layer is inserted between the INET layer and TCP/IP stack. The layer
redirects the flow of information down its own Xway protocol for traffic bound for
inter-VM domains and alternatively redirects down the TCP/IP stack for traffic
bound for machines external to the hypervisor. Inside the Xway stack, memory
and event channels are mapped between guests using an out of band TCP channel.

Advantages

� No page flipping.
� Bi-directional socket interface.
� Bypasses the TCP/IP stack.
� Binary compatibility with the socket interface.
� Source code available.

Disadvantages

� Uses an out-of-band TCP channel (this is an extra overhead in the context
of this project as Open MPI already has an efficient out-of-band channel
system).

� Requires kernel modification.
� Relatively complicated design.
� Source code unmaintained and obsolete.
� Live migration was proposed for version 0.70 targeted for release in March

2008 but this was never released publicly.

3.2.3 XenSocket

XenSocket[13] is a loadable kernel module, developed at the IBM T.J Watson Re-
search Center, NY. The module is a custom Berkeley socket implementation that
creates direct paths between co-resident virtual machines. Sockets are unidirec-
tional and therefore two are required for full-duplex communication. The receiving
socket first allocates a pool of memory and grants access to it to another virtual
machine. The binding function returns a unique identifier called a grant reference.
The sending socket, created by the other virtual machine, maps the memory into
its own address space using the grant reference. The socket avoids AF INET (and
thus TCP/IP stack) entirely instead using its own socket family AF XEN. Because
the sockets must be bound to particular domains, some sort of out-of-band system

18

is needed to transfer addressing information. The shared pool of memory is used
as a circular buffer. The send and receive calls are blocking only.

Advantages

� No page flipping.
� Completely separated from the TCP/IP stack.
� No dependency on dom0.
� No out-of-band channels (more flexibility this way).
� Simple but efficient design.
� Source code available.

Disadvantages

� Unidirectional stream.
� Blocking send/receive system only.
� No notification of data.
� Applications need modification.
� Needs some means of communicating domids and grant references.
� Socket breaks if virtual machine emigrates from its original hypervisor.

19

Figure 4.1: Open MPI code sections

4 Design Research

This section provides a study on subsets of the Open MPI and Xen architectures
that are specifically related to this project.

4.1 Introduction to the Open MPI architecture

Open MPI is written with a component architecture in mind. From a high level
analysis the library has 3 separate code sections. These are not layers in the purest
sense of the word, but rather dependencies. See figure 4.1.

� Open MPI (OMPI) - The uppermost layer that contains the actual imple-
mentation of the MPI API.

� Open Run-time Environment (ORTE) - The middle layer which is a common
interface to the runtime system. It is responsible for managing tasks such as
process launching/discovery, out of band signalling, resource management.

� Open Portability Access Layer (OPAL) - The bottom layer which contains
mostly utility code, e.g. a common C-style object management system, hash
tables, linked lists, high resolution timers.

One of Open MPI’s greatest strengths is its Modular Component Architec-
ture (MCA). The MCA provides a light weight component architecture for the
system and allows plug-ins with specific functionality to be found, loaded and
unloaded dynamically. In Open MPI terminology a plug-in is generally known as
a component.

A component has two incarnations: the component and the module. The
component itself presents functions to open and close itself as well as an initialisa-

20

Figure 4.2: Functions available in an MCA component

tion function that is responsible for dynamically checking the suitability of being
used, see figure 4.2. For example, there is a component to support point-to-point
communication using InfiniBand technology, it is therefore necessary for the ini-
tialisation function to check the interface list for InfiniBand hardware. Modules
on the other hand are the instances of the components which the rest of the sys-
tem interact with. Where a component may be compared to a class, a module
could be compared to an object. The component initialisation function can re-
turn zero or more modules. Returning no modules would suggest that there isn’t
an environment suitable to use the component. The component can optionally
return multiple modules too; for example, if there are multiple network interface
cards present, the component may wish to have one module managing each one
individually.

Every module uses some public API specific to a particular framework and
each framework is defined to have a targeted purpose. For example, there is a
framework called allocator responsible for the allocation of memory. There are two
components defined in this framework: basic - a simple heap based allocator and
bucket - a bucket based allocator. Although internally they are logically different,
they present the exact same public interface to the rest of the system. Some
frameworks have only one component, for example the Byte Management Layer
(BML) framework has one component called r2. r2 is used to open and multiplex
all the components of the Byte Transfer Layer (BTL) framework. Having the
framework and API defined like this means if one wants to change the internal
logic for this particular task, they won’t need to modify the core of the system.

This project is specifically focused on the PML, BML and BTL frameworks but
primarily the BTL framework. There will be a brief overview of the functionality
and uses of the PML and BML frameworks and then a more detailed look at the
BTL framework.

21

4.1.1 The Point to Point Messaging Layer

The Point to Point Messaging Layer (PML) is a bridge between the MPI seman-
tics (e.g. MPI Send()) and the underlying transfer techniques. It is a relatively
thin layer responsible for the scheduling and fragmentation of data. The MCA
framework only selects one PML component which is then used for the duration of
the job. Currently there are two main PML components written. ob1 was written
to be a progress engine and track multiple transport interfaces; for example, it can
schedule and track messages destined for processes reachable via shared memory,
TCP and any number of specialised interfaces (e.g. InfiniBand). ob1 is specifically
targeted to use BTL modules. The alternative is the cm component which doesn’t
use BTL modules at all, instead it uses a single Matching Transport Layer (MTL)
module. An MTL component differs from a BTL component in that it is written
for devices that natively support hardware/library message matching. The cm
component won’t provide features such as fragmentation, multi-device support
and NIC failover, instead these features will be delegated to the MTL component.
The c1 component and MTL framework are out of the scope of this project and
instead the focus will be on ob1 component and the BTL framework.

A standard PML module has public interface outlined in table 4.1. This is
achieved by using a structure containing pointers to functions. The PML functions
have a strong resemblance to the MPI Send(), MPI Recv(), MPI Test() and MPI

Wait() MPI functions.

The ob1 module is internally a buffered and asynchronous transport engine.
Although it offers both blocking and non-blocking send and receive functions to the
rest of the Open MPI framework, internally it works by preregistering completion
functions to be called by lower layers and then waiting/progressing until these
callback functions are eventually invoked. For example, if the user’s program
called MPI ISend(), ob1 would simply invoke an asynchronous send with a BTL
module and the user’s program would then use MPI Wait() or MPI Test() in order
to check for the invocation of callback function. On the other hand, if the user
were to call MPI Send(), ob1 would still call an asynchronous send with a BTL
module, however it won’t return from the function until it detects the BTL module
has invoked the callback function. Internally this works with condition variables,
however instead of sleeping, ob1 will attempt to progress and try and do some
useful work each time before checking the condition.

22

Function Description
pml add procs Called to notify when new processes have been created
pml del procs Called to notify when processes have been terminated
pml enable Called to enable the PML and BTL modules
pml progress Called to progress all the BTL modules used
pml add comm Called to notify when a new communicator has been cre-

ated
pml del comm Called to notify when a communicator has been destroyed
pml irecv init Create a non-blocking request to receive an MPI message

without executing it
pml isend init Create a non-blocking request to send an MPI message

without executing it
pml start Execute multiple requests created by the pml irecv

init() and pml isend init() functions
pml irecv Post a non-blocking request to receive an MPI message
pml recv A blocking request to receive an MPI message
pml isend Post a non-blocking request to send an MPI message
pml send A blocking request to send an MPI message
pml iprobe Perform a non-blocking poll for the completion of a re-

ceive
pml probe perform a blocking poll for the completion of a receive
pml dump Diagnostic information

Table 4.1: Functions available in a PML module

23

Figure 4.3: The hierarchy of the PML, BML & BTL frameworks

4.1.2 The BTL Management Layer

Although the PML is a very lightweight and simple framework, ob1 uses an addi-
tional module to help manage the BTL modules it utilises. The BTL Management
Layer (BML) framework is in charge of opening and multiplexing multiple BTL
modules. It schedules multiple BTL modules in a round-robin fashion to achieve
a kind of load balancing. There is only one BML component currently written
called r2. When ob1 has its functions pml add procs(), pml del procs() and
pml progress() called, it actually passes these requests down to r2. r2 will open
all the BTL components during its initialisation phase and cache all the available
BTL modules which are returned. This is particularly useful as BTL modules have
an associated priority value, so r2 can find the best module for sending the mes-
sage. It is also useful if there are multiple BTL modules returned from the same
component (e.g. if a machine has two Ethernet cards, there would be a unique
BTL module per card), r2 will alternate using modules of the same priority in
order to distribute the load. Not every process may be reachable by a given BTL
module (e.g. a shared memory module can only communicate with processes on
the same host), r2 will query each BTL module about this and use the information
in its scheduler. All this is made semi-transparent to ob1. See figure 4.3.

4.1.3 The Byte Transfer Layer

The Byte Transfer Layer (BTL) is a framework targeted to move raw data to and
from processes. A BTL component is self-contained and should be completely un-
aware of any other components in the BTL framework. A BTL module is designed
to utilise some specific transportation technique to move data and therefore a BTL
module may only communicate with another BTL module of the same type (i.e.
returned from the same component). The BTL API provides an abstraction over
the underlying transport techniques, so where the component named sm (shared
memory) is used to transfer data between processes on the same host using a FIFO
shared memory construct, the tcp component would use socket file descriptors in-
stead. This is completely transparent to both r2 and ob1.

A BTL module works with a simple tag and completion callback system. There

24

Figure 4.4: A BTL descriptor can have many memory segments

is an upper limit of 256 possible tags allowed (0 - 255) and currently very few of
these are used. During the initialisation phase of a job, the PML through the
BML will register various completion callback functions for specific tags. When
a message is sent through a BTL module the higher layers will also pass a tag
value that is separate from the message itself. It is then up to BTL module to
transfer the data along with this tag and then module in the receiving process will
match this tag to a completion function which it invokes to indicate the receipt
of a message. This is a useful system as it provides a means for higher layers to
separate and handle different messages in different ways while still ensuring the
BTL module is oblivious to the nature of the messages themselves. As of Open
MPI 1.3 ob1 reserves 9 tags to use with the BTL modules.

A BTL module passes information around using descriptor and segment struc-
tures defined by the BTL framework. A descriptor structure mca btl base

descriptor contains an array of source or destination segments, message flags
and a completion callback function with associated data. As of Open MPI 1.3
there is an extra field called ‘order’ which is optional at the moment, it will be
assumed to have a default value and will not be used in the scope of this project.
The segment structure mca btl base segment is Open MPI’s answer to an iovec

structure; it contains a pointer to an address in memory, a length in bytes of the
contiguous data at the memory location and a segment key which is only used in
RDMA operations. Having an array of segment structures means we can work
with segmented or non-contiguous data which will turn out to be very advanta-
geous for this project. When data is to be the des src field is used and when
data is to be received the des dst field is used, however they both simply point
to an array of segment structures. See figure 4.4.

A BTL component/module has 4 stages in its life cycle. See figure 4.5.

1. The initialisation phase calls the component’s open and initialize functions
and allow modules to be created. This is called during MPI Init().

25

Figure 4.5: The four stages of a BTL component/module

2. The process selection phase determines which processes are reachable using
the module. Endpoint structures are usually created in this phase too. This
is also called during MPI Init().

3. The operation phase sends and receives raw data to and from other processes.

4. The shutdown phase releases any resources taken by the modules and com-
ponent. This is called during MPI Finalize().

A standard BTL module has a public interface outlined in table 4.2. It may be
noticeable from the API that a BTL module supports both a standard send/recv
system and also a remote direct memory access (RDMA) system. A BTL module
can choose either method or both. RDMA is out of the scope of this project and
will not be discussed further; for our BTL module these function pointers will
simply be set to NULL. The btl sendi() function is new to Open MPI 1.3 and
won’t be used in the scope of this project and so it will also be set to NULL. This is
perfectly safe as all these functions are not needed to create a functioning module.

26

It may also be noticeable that there is no function to progress the module. This is
actually placed in the BTL component code instead of individual BTL modules,
it is assumed the component has enough information about each module in order
to progress them. For the purposes of this project other techniques are used to
ensure messages are sent and received properly so the progress function pointer is
set to NULL too.

Function Description
btl add procs Called to discover which processes are reachable by this

module and create endpoint structures
btl del procs Called to release resources held by the endpoint structures
btl register Called to register completion callback functions for a par-

ticular tag
btl finalize Called to release any resources held by the module
btl alloc Returns a BTL descriptor with free space but no actual

data
btl free Releases a BTL descriptor and any memory used by it
btl prepare src Returns a BTL descriptor that contains user data
btl prepare dst Returns a BTL descriptor used for RDMA operations
btl send Initiates an asynchronous send of a particular BTL de-

scriptor
btl sendi Initiates an immediate send of a particular BTL descrip-

tor
btl put Initiates an asynchronous put (RDMA)
btl get Initiates an asynchronous get (RDMA)
btl dump Diagnostic information

Table 4.2: Functions available in a BTL module

One thing that may not be obvious from looking at the BTL module API is
how receiving data should work. The only thing mentioned thus far is registering
callback functions with an associated tag. The answer is that there is no standard
technique and entirely it’s up to the programmer to find the most appropriate
way of achieving this based on the underlying technology. For example the sm
(shared memory) module relies on its component’s progress function being called
periodically to check for changes in the shared FIFO structures. On the other
hand, the tcp module relies on periodic polling of any open TCP/IP socket file
descriptors.

The btl add procs() function is one of the more elaborate functions defined
by the API. Its input parameters take in a list of all processes in the Open MPI
job during the initialisation phase and its purpose is to identify which of these
processes are reachable using this module. It is also used to create a BTL endpoint
data structure for each reachable process. Both of these tasks can cause some
confusion to programmers new to the BTL framework. With regards to the BTL
endpoint data structure, the BTL framework does not actually define one, instead

27

it uses an incomplete structure declaration and allows the programmer to define
it however they wish. This way the higher levels can cache pointers to the BTL
endpoint data structures without ever utilising them. This proves to more efficient
as higher layers can call the BTL functions and explicitly pass in BTL endpoint
data structure as parameters instead of forcing the BTL module to match a process
structure to a corresponding endpoint structure.

With regards to the other issue of identifying which processes are reachable
via the module, we must introduce an Open MPI feature called the OpenRTE
Group Communications (grpcomm) which is actually an MCA framework within
the Open Run-Time Environment (ORTE) layer of Open MPI. Programmers who
worked with Open MPI 1.2 and prior will be familiar with the General Purpose
Registry (GPR) which had been used for a similar purpose. The grpcomm modules
implement methods targeted to allow processes to communicate with large collec-
tions of other processes in specific communicator groups (e.g. MPI COMM WORLD).
It operates out-of-band and how it establishes connections needn’t concern the
programmer. One must acknowledge these out-of-band channels will never be as
efficient or as effective as the point-to-point channels established by a BTL module
and should only be used for exchanging meta-data.

The grpcomm modules provide functions to help scatter metadata to commu-
nicator groups; however, Open MPI gives us some helper functions in the OMPI
layer to make this slightly more transparent, these are known as the module ex-
change or modex functions. During the initialisation phase of an Open MPI job,
when all components are opened and modules are returned ompi modex send()

can be used to scatter metadata about the module. This would generally be
addressing-type information, e.g. the tcp modules use this to exchange port num-
bers of their sockets. During the process selection phase there is a guarantee that
the scatter will have happened by this point and consequently ompi modex recv()

can be called on a particular process to receive the metadata. What’s good about
this is that somewhere between the initialisation phase and the process selection
phase the ORTE layer will perform an out-of-band process information exchange
anyway; if any additional metadata can be provided, it is sent essentially cost free.

In the case of trying to perform ompi modex recv() on a process that simply
doesn’t use the same kind of module (e.g. for a cluster of machines connected to
each other over InfiniBand connections and also some additional machines con-
nected using Ethernet, the machines lacking InfiniBand hardware would not use
the openib component), it will return immediately with an error code and thus it is
known the process can’t be accessed the using this module. In the case of processes
which use the same kind of module but are not suitable to communicate with each
other (e.g. two machines connected using Ethernet each running two processes
that communicate with each other using the sm shared memory component. Ev-
ery process uses the sm component yet it isn’t feasible to use the module between
processes on different machines), the programmer is expected to provide enough

28

metadata in their ompi modex send() to determine the reachability of processes.

A BTL component can be fine tuned at runtime using MCA parameters. When
an Open MPI job is launched, the user can optionally provide additional argue-
ments as command line parameters. During the initialisation phase of a BTL
component, there should be code to check to see if any of these parameters are set
and to configure the component/module based on their values (otherwise default-
ing to empirically optimal values). This can be useful for any number of situations,
for example, offering the user the ability to define the maximum size of a message
can potentially allow them to optimise the job for a particular application.

4.1.4 The Event System

Open MPI contains its own internal event system based on Niels Provos’ libevent[18],
it is located in the OPAL section of code. The event system is responsible for
monitoring open file descriptors, scheduling timed callbacks and catching system
signals. The programmer writing a component can utilise the event system to
register callback functions that will be invoked when an event happens. The event
system is compatible with file descriptors that implement the select(), poll()
or epoll() functions. The event system can efficiently poll many file descriptors
in the background for POLLIN or POLLOUT flags and will invoke the user’s callback
function on detection.

4.1.5 Object Orientation

An object oriented system can improve the ease of development and readability
of code. Open MPI uses a single inheritance C-style object oriented model. Be-
cause different systems have different memory organisations for C++ objects, C
was chosen as the implementation language instead and an object oriented utility
system was implemented in the OPAL section of code.

Open MPI’s single inheritance model can give the programmer a flexible, ef-
ficient and safe environment to work in. It is common practice to extend the
structures defined in the BTL API using this model. For example, mca btl

base descriptor structures are created in the functions btl prepare src(), btl
prepare dst() and btl alloc(). There is a lot of extra metadata and context
information that can be helpful to the programmer and yet doesn’t fit in any of
the given fields of the mca btl base descriptor structure. The programmer can
create a new structure that is inherited from mca btl base descriptor. The new
structure contains a mca btl base descriptor variable as its first element and
when returning from one these functions, the programmer would return a pointer
to the first element of this new extended structure. When other BTL functions

29

get passed back this pointer, e.g. btl send(), they can cast the pointer from the
supertype to the subtype. This way higher layers see the exact same memory lay-
out for the structure and are oblivious to the extra information, but lower layers
can safely access the additional fields (provided they can guarantee the structure
is subtyped).

The above doesn’t have the full ease of object orientation; to remedy this
Open MPI has its own system in which the programmer can utilise construc-
tors, destructors and an object reference counting system. A class is made as
described above using a structure with the parent type as its first element (the
parent type must also be a class). In order to transform this structure into a
class the programmer uses the macro OBJ CLASS DECLARATION(NAME) passing the
structure type as an argument. The programmer can then associate a construc-
tor and destructor for the class by using the macro OBJ CLASS INSTANCE(NAME,

PARENT, CONSTRUCTOR, DESTRUCTOR) where NAME is the struct type, PARENT is
the supertype’s structure type and CONSTRUCTOR and DESTRUCTOR are names of
the functions for the desired constructor and destructor (these must take a single
parameter which is a pointer to a structure of the class’s type). In order to use
the class system, the programmer would use OBJ NEW(type) which will create an
object on the heap, initialise it using the constructor and return a pointer to it.
If the object is to be used in several places around the system, the programmer
can optionally use OBJ RETAIN(object) which increments the object’s reference
counter. Similarly OBJ RELEASE(object) decrements the reference counter and
when it reaches zero, the destructor will be invoked and the memory freed auto-
matically.

4.2 Introduction to the Xen architecture

Xen as a whole has a very complicated architecture that is best described by [8]
and [1, p.27-46]. There are a subset of features that were specifically important
to this project and these will be described in detail.

4.2.1 Hypercalls

Generally operating systems are designed specifically to run on processors with
varied modes or privileges. This means that the operating system would run on
the highest privilege mode of the processor and any processes it created would
run in a less privileged mode. Consequently this means that a user process cannot
execute operating system code directly as these routines require the processor to be
running at a certain privilege or mode. Instead, the user process has to passively
invoke these functions. This means lodging a request in a known destination of
memory or a register and explicitly triggering an interrupt causing the operating

30

Figure 4.6: The operating system is moved to ring 1

system to schedule in place of the process. The operating system, running in
privileged mode, then performs safety and security checks on the request and runs
it on behalf of the user process before scheduling it back in. This is commonly
known as a syscall and is a clever way to ensure processes remain isolated and
don’t execute code that could be detrimental to the rest of the system.

For Xen to operate correctly the scenario becomes more complicated. The Xen
hypervisor has to provide the same isolation and security to all its virtual machine
guests which in turn expect at least two privilege modes each (i.e. privileged
for the operating system code and unprivileged for the user code). Therefore a
processor with at least 3 unique privilege levels is required. Fortunately for the
x86 architecture there are two solutions.

The x86 architecture is unusual in that it doesn’t offer standard 2 level privi-
leged/unprivileged modes, instead it offers 4 unique privilege levels known as rings.
Traditionally the operating system has always occupied ring 0 and the user ap-
plications occupied ring 3 leaving rings 1 and 2 unused. Xen can take advantage
of this and run in ring 0 allowing its guest operating systems to run in ring 1.
This, however, requires modification of the operating system code to run in ring 1
instead of ring 0. For a Linux based operating system this isn’t a problem as the
kernel is open source. See figure 4.6.

The alternative comes in the form of hardware extensions offered by the two
major x86 manufacturers Intel and AMD; the technology is known as Intel VTX
and AMD-V respectively. Instead of requiring the operating system to be modified
in order to run in a lower privileged ring, an extra ring called -1 is added to the
processor which inherently has a higher privilege than rings 0,1,2,3. This way the
Xen hypervisor can run in ring -1 and the guest operating systems can remain in

31

Figure 4.7: The operating system remains in ring 0

Figure 4.8: The guest operating system makes hypercalls to the hypervisor

ring 0. This is especially important for the x86-64 architecture which removed the
2 unused rings from its processors. See figure 4.7

This is important because if a user process needs to invoke a syscall in order
for the operating system to perform sensitive work on its behalf, a guest operating
system must have to do the same same thing with the Xen hypervisor. After all,
for any device drivers in a guest operating system they can’t directly communi-
cate with the hardware so they must rely on another part of the Xen system to
handle requests on their behalf. The solution is called the hypercall[2, p.47-74].
A hypercall is to the Xen hypervisor what a syscall is to an operating system.
See figure 4.8. There exists a number of Xen hypercalls that can be used in the
operating system’s kernel space with a variety of uses, however the scope of the
project only concerns itself with a few in particular.

32

Figure 4.9: Virtual memory can be mapped to the same location

4.2.2 Grant Tables

Sharing memory between multiple processes on an operating system has generally
been considered as a simple and efficient way to achieve interprocess communi-
cation. One process would allocate a pool of memory and then give access to
it to another process on the system. It remains a secure model since it is only
ever the process that owns the memory that can grant and revoke access to it
to the other processes. Internally it is very efficient since every process has its
own unique view of the system’s memory known as virtual memory. The virtual
memory space of a process maps onto arbitrary locations of the system’s physical
memory. This means that two processes can write to location 0x1000 of their own
memory without interfering with each other as this location will be mapped to two
unique locations in physical memory. When two processes wish to share the same
memory, it remains as simple as mapping both of the process’s virtual memory
location to the same physical memory location. See figure 4.9.

Xen offers an analogous system to share memory between two isolated operat-
ing systems. Grant Tables[1, p.59-74] provide a mechanism for virtual machines
to offer their memory pages to other virtual machines and then similarly for other
virtual machines to map these pages into their own memory space. Mapping can
only take place at a page granularity (usually 4Kb). One must do this in the vir-
tual machine’s kernel space and then use the virtual machine’s operating system’s
constructs to bridge the user space to the kernel space.

In order to grant another virtual machine access to pages, the functions in
listing 4.1 should be used.

int gnttab_grant_foreign_access(domid_t domid , unsigned

long frame , int readonly)

int gnttab_end_foreign_access_ref(int ref , int readonly)

Listing 4.1: Code to grant memory to another virtual machine

Where domid is the unique identifier of the other virtual machine; frame is

33

the machine frame number of page(s); readonly is a flag to indicate if the other
virtual machine is allowed to write to the pages or not. gnttab grant foreign

access returns an integer known as a grant reference and gnttab grant foreign

access returns 1 if the pages were granted successfully or 0 otherwise. One can
use int virt to mfn(int va) to convert a virtual machine’s heap address into
the machine frame number.

In order for the other guest to map and unmap pages, functions in listing 4.2
should be used.

int HYPERVISOR_grant_table_op(unsigned int cmd , void *

uop , unsigned int count)

struct gnttab_map_grant_ref

{

/* IN parameters. */

uint64_t host_addr;

uint32_t flags;

grant_ref_t ref;

domid_t dom;

/* OUT parameters. */

int16_t status;

grant_handle_t handle;

uint64_t dev_bus_addr;

};

Listing 4.2: Code to map memory from another virtual machine

For the HYPERVISOR grant table op function, cmd should be the constant
GNTTABOP map grant ref; uop should point to an array of gnttab map grant

ref structures and count should be be the amount of elements in the array.

For the gnttab map grant ref structure, host addr should point to some-
where in the virtual machine’s heap allocated by alloc vm area; flags should be
the constant GNTMAP host map; ref should be the grant reference returned from
the granting function and dom should be the unique id of the virtual machine that
is granting us access to these pages. status will be non-zero if an error occurred
and handle is a structure used to help unmap these pages at a later stage.

To unmap these pages we call HYPERVISOR grant table op again changing the
parameters slightly. cmd should be the constant GNTTABOP unmap grant ref and
uop points to an array of gnttab map grant ref structure taking the following
form: host addr should point to the location in the heap where the pages are
mapped to and handle should be the structure generated when the pages were
initially mapped. The remaining values can be zeroed.

34

Figure 4.10: An example layout of XenStore

4.2.3 XenStore

Sharing memory between virtual machines is a very useful system to have, however
it requires a certain amount of knowledge about the virtual machines ahead of
time. For example, granting another virtual machine access to pages of memory
requires that the virtual machine’s unique identifier (domid) is known. Each
virtual machine is therefore expected to be able to find out their own domid
somehow. Fortunately this value, along with a wealth of other information, is
stored in a database known as XenStore[1, p.141-160].

XenStore is a tree-like database with key-value pairs. There is a root with a
mixture of branches and keys, within these branches there are more branches and
keys. The kind of information stored in XenStore would be metadata about the
virtual machines themselves. For example: their names, unique identifiers (domid
& uuid), memory allocated or the number of virtual CPUs allocated. To navigate
through XenStore one would list the branches and keys located at a particular
location (e.g. root is /) and then in order to read a particular key, one would
format their location to something like /local/domain/0/domid. See figure 4.10.

One issue that may seem to exist in the database shown in figure 4.10 is that one
needs to know the domid of the virtual machine in order to navigate to its branch
in the tree. Much like a UNIX filesystem, when interacting with XenStore and the
root argument / is missing from a location, it will assume the current directory
instead. By default, the current directory is actually /local/domain/your domid/
so one would merely need to query name in order to find the name of their virtual
machine.

35

XenStore is actually an application running in dom0 and has very little to
do with the underlying hypervisor. Each virtual machine can access XenStore
through a virtual device driver, however there is a well defined interface in the file
(xs.h) which can be included in user applications in order to interact with it.

By default there is a strict security model for XenStore. For example, dom0
can read and write to all the branches of the database and grant and revoke access
for other virtual machines to read or write to particular branches of the database
too. By default a virtual machine can read and write to the to its home directory
and its sub-branches. Care must be taken however, as in the default security model
for guest virtual machines, only root users can interact with XenStore. This can
be changed by modifying the access privileges of the virtual device, in Linux the
device is /proc/xen/xenbus.

36

5 Design and Implementation

Section 4 examined some of the Open MPI architecture and how the BTL frame-
work is used to make point-to-point connections between processes. It also de-
scribed some of the constructs offered by the Xen API that facilitate creation of
alternative communication channels between virtual machines. This section de-
scribes how an Open MPI BTL component that utilises these Xen constructs was
designed and implemented. This component will be referred to as xen.

One of the critical design decisions lay in the fact that Open MPI is a user
space library and the Xen API works in kernel space only. This meant that the
xen component could not be entirely cohesive; there would have to be code written
in kernel-space to execute memory mapping operations and set up any inter-VM
event channels, there would also need to be code in user-space to co-ordinate and
interact with this kernel code.

Section 3 described some technologies that attempted to remedy the problems
of Xen’s inter-VM communication system. One of these was XenSocket, a light
weight loadable kernel module that offers a unidirectional direct path between
two virtual machines by granting/mapping shared memory. XenSocket bridges
the kernel-space/user-space division by using a standard Berkeley socket inter-
face. The disadvantage of XenSocket is that it inhibits any form of non-blocking
interaction and has no way to notify user-space applications when data is avail-
able. Another problem of XenSocket is that it had been written and released in
2007 and had not been updated since then. When attempting to compile it on
a more recent Xen hypervisor and Linux kernel, it was found that many of the
constructs and functions were deprecated or changed.

A decision was made to build a BTL component that would use a pair of
XenSocket file descriptors, one for sending and another receiving. The only way
XenSocket in its default state could work with Open MPI would be by introduc-
ing threads into the Open MPI component. For every receiving XenSocket file
descriptor created a thread would also need to be created to continually perform
a blocking receive operation on the socket. [17] discusses why this is not a optimal
solution, especially if the goal is efficiency. Additionally, this method doesn’t fit
in with Open MPI’s best practice model. In order to use the good features of
XenSocket with Open MPI, some additions and changes would need to be made
to it.

5.1 A Custom XenSocket

Before customising XenSocket, it first had to be updated to work with Xen 3.2 and
the Linux kernel 2.6.25. This was achieved by investigating how socket features

37

are implemented in [3] and how grant tables and event channels work in [1]. The
rest was achieved by looking at Linux kernel code and Xen header files and also
examining the Xen changelog. The update was successful; the new source code
looked semantically the same as the original and the module itself performed as
expected. It has also been demonstrated to work correctly on Xen 3.3 and the
Linux kernel 2.6.27.

The next step was implementing functionality to notify the user-space code
when there is data in the XenSocket buffer. Two methods were tried. The first
was a real-time signal system. Linux real-time signals allow a running process
to be interrupted by invoking a system signal; the running process catches this
signal by using a signal handler. The benefit of real-time signals is that they allow
an additional piece of information to be sent to the user’s signal handler. The
goal was as follows: whenever a XenSocket was sent data, it would notify the
receiving process with a signal and additionally send the unique id of the socket
file descriptor to the process’s signal handler. This way the signal handler could
work with many sockets without performing any additional checks to determine
which file descriptor invoked the signal. For reasons outlined in section 7 this
design did not function correctly and so another method was tried.

Section 4 specifies the Open MPI event system which can be used to monitor
file descriptors by using the poll() and select() functions. The event system can
watch for the POLLIN and POLLOUT flags in large number of open file descriptors
concurrently. [18] shows that the time taken to poll multiple file descriptors rises
linearly; so for this reason and also for the fact that there will be a rational upper
limit on the amount of virtual machines hosted on one physical machine, a polling
system was implemented. The standard Berkeley socket interface has a place
holder for a select/poll function. Some of the code for the function was taken
from other socket implementations found in the Linux source code. XenSocket
keeps a shared structure that contains values such as the size of the buffer and the
amount of data currently in the buffer. The polling logic simply looks as these
values; if the amount of data in the buffer is greater than 0 it will set the POLLIN

flag; if the amount of data in the buffer is less than the size of the buffer it will set
the POLLOUT flag. This requires minimal code and can inform the user application
when it is suitable to read and write data to and from the socket.

Two separate designs of the BTL component were developed. One design
reads a known amount of bytes from the socket in order to retrieve the header of
a message. The header contains a field with the size of the rest of the message
so the socket could then be read again for this amount of bytes. Because this
system used two system calls to retrieve a single message, an additional design
was developed to remedy the issue. Instead of trying to retrieve one message in
two steps, the socket is queried to see how much data is pending in the buffer
and consequently this amount of data is retrieved into user-space in one go. It
is then up to an algorithm in users-space to filter out complete messages. Doing

38

this requires some way to find out how much data is in the XenSocket buffer. To
achieve this, the socket’s IOCTL functionality was extended to accommodate the
request. XenSocket was subsequently given one command to detect the amount of
free space in the XenSocket buffer and another to detect the amount data pending
in the XenSocket buffer.

5.2 The xen BTL

The xen BTL was designed to work with a pair of XenSocket file descriptors,
however the actual design had three different incarnations. Two of these worked
correctly and the other was faulty and so abandoned early in the project life
cycle. Of the two which worked, it is interesting to note that the design unlikely
to yield the best performance actually outperformed the other for larger messages.
The two designs that operated correctly share a common groundwork which will
be described in detail; their unique features will be also be described and then
analysed in section 6.

5.2.1 The Initialisation Phase

The first phase of the BTL life cycle focuses primarily on searching for an appropri-
ate environment to run in and allocating and initialising resources appropriately.

The xen component structure was the first item implemented; its task is to reg-
ister parameters and detect if the environment is suitable to run in and returning
a module instance conditionally. As discussed in section 4, there are four main
functions in a BTL component: open, close, init and progress. The progress func-
tion is called periodically in order to help move data in intervals. It was decided
from the beginning that because the component/module would work with sockets,
other techniques would be used to move data to and from endpoints. Therefore
the xen module does not have a progress function.

The component is also the structure that houses customisable fields that fine
tune the module’s run-time behaviour. The fields in table 5.1 were used to cus-
tomise the component. The btl xen free list * fields are best described in
context and are explained later this section. btl xen buffer order is used to
adjust the size of the underlying buffer in the XenSockets; if buffer order is x
then the buffer size will be 2x ∗ PAGE SIZE. Care must be taken here as the
Linux kernel can only guarantee (if the memory is available) an order of 10 or
11 (corresponding to 1024 or 2048 pages). btl xen exclusivity refers to the
priority of using the xen component over another component, it is defaulted to the
constant MCA BTL EXCLUSIVITY DEFAULT which means it will be prioritised over
the tcp module which is set to MCA BTL EXCLUSIVITY LOW. btl xen eager limit

39

Figure 5.1: The xen component checks for a suitable environment to run in

refers to a maximum size of a short message, we can set this to improve internal
memory management. btl xen max send size is the maximum possibly size of a
message that can be sent before it needs to be fragmented.

During the xen component’s initialisation routine it is required to detect if
it is running in a Xen paravirtualized environment and subsequently check for
the presence of the XenSocket loadable kernel module. This was accomplished
with some example code found in the Xen package, it contains a cpuid assembly
instruction to detect a paravirtualized environment. Checking for the presence

Field Description
btl xen free list num The number of elements initially in a list
btl xen free list max The number of elements a list can grow to
btl xen free list inc The number of elements to add when growing a

list
btl xen buffer order A parameter that decides on the size of the

XenSocket internal buffer
btl xen exclusivity Can change the priority of the component during

a selection phase
btl xen eager limit A probable size of a message going through a

XenSocket
btl xen max send size The maximum size of a message going through a

XenSocket

Table 5.1: Customisable parameters of the xen BTL component

40

Figure 5.2: A xen module scatters its metadata to other xen modules

of XenSocket was achieved by scanning the contents of /proc/modules (this is
user readable by default). Provided these checks pass a single xen module can
be allocated and returned, see figure 5.1. When initialising the module, it will
access XenStore to find the domid and uuid of the virtual machine it is running
on. After retrieving these values it will perform a module-exchange using ompi

modex send() to scatter these values to every process in the job. See figure 5.2.

5.2.2 The Process Selection Phase

The second phase of the BTL life cycle requires finding processes to interact with
using the xen module and establishing communication endpoints with them. In
the initialisation phase, the process performed a ompi modex send() in order to
scatter its virtual machine metadata to every process using a xen BTL module.
This is the key to determining which processes are reachable in our job. When btl

add procs() is called, the higher layers pass in an array of ompi proc t structures
as a parameter. These structures don’t contain any useful data for the xen module
directly but they do provide a field to allow calling the corresponding ompi modex

recv() function.

Inspired by other BTL implementations, the process selection phase is split
into two stages and part of the process detection has been placed in a separate
area of code. In essence, there is a structure called mca btl xen proc t which
contains a pointer to the original ompi proc t structure along with the additional
virtual machine metdata. A helper function called mca btl xen proc create() is

41

defined which that takes the original ompi proc t structure as an argument and
attempts to create and return a matching mca btl xen proc t instance. Internally
this works by calling the ompi modex recv() on the process structure to retrieve
this virtual machine metadata. As described in the initialisation phase, if any
process in the job has opened a xen BTL component and successfully returned a
xen BTL module it will call ompi modex send() in order to send its domid and
uuid. This is exactly the information we get when ompi modex recv() is called.
For a process that did not successfully obtain a xen BTL module, calling ompi

modex recv() with it as a parameter will fail gracefully and no corresponding mca

btl xen proc t instance will be created. To ensure this process doesn’t happen
multiple times, a hash table is used to store previously created mca btl xen proc

t instances using the original ompi proc t structure’s unique name attribute as
the hash key. The function quickly checks the hash table before attempting to
call the ompi modex recv() function. If a mca btl xen proc t instance cannot
be made or found, NULL is returned.

Within btl add procs(), the function iterates over an array of ompi proc t

structures and calls mca btl xen proc create() on each one. If NULL is returned,
it is known that the process isn’t utilising a xen BTL module. If a mca btl xen

proc t instance is returned, some additional checks must be performed. In section
4 it was mentioned that there could be circumstances where a process is definitely
utilising a particular kind of module, but it still considered unreachable. Consider
the scenario where there are two machines connected over an Ethernet connection;
each physical machine is running a Xen hypervisor and houses 2 virtual machines
each: A1 & B1 on machine 1 and A2 & B2 on machine 2. They all successfully get
a xen BTL module and within btl add procs() they will all successfully return
mca btl xen proc t instances for all four processes. The problem here is that
although each process is using the a xen module, only processes on co-resident
virtual machines can establish endpoints with each other. It makes no sense to
attempt to establish endpoints between A1 and B2.

This is where the metadata becomes useful. The process should ask Xen if
the virtual machine identified by the other process’s domid and uuid fields exists
on the same hypervisor. To do this requires accessing XenStore and requesting
a listing of the entries at /vm; this will give a list of all the uuids of co-resident
virtual machines. The reason to use uuid instead of domid is because uuid is a
GUID to identify a virtual machine universally whereas the domid is simply a
integer starting from 0 that identifies virtual machines locally. To achieve this,
xs directory() is called to get an array of strings at the directory mentioned
above of XenStore. All that is required then is a simple string comparison against
each entry in the array. One final precaution is checking to see if the process exists
in the same virtual machine to us (as opposed to another virtual machine on the
same hypervisor). Because Open MPI won’t discriminate this by itself, we are
forced to perform this check. While it would be harmless to add these processes
to the list of processes reachable through the xen module, it is best practise to

42

Figure 5.3: A xen module searches for processes to communicate with

avoid doing so. Open MPI has a BTL component specifically designed for inter-
process communications and there is little point in wasting resources establishing
extra unused endpoints. See figure 5.3.

For each process found that uses a xen BTL module and also detected to
exists on a co-resident virtual machine, the function can proceed to establishing
an endpoint. It was stated in the section 4 that an mca btl base endpoint t

structure is undefined by Open MPI and is left to the BTL programmer to define
it for their own custom needs. At the very minimum, a xen endpoint needs to
contain two XenSocket file descriptors in order to send and receive data.

A XenSocket must first be created by the receiving side where a unique iden-
tifier known as a grant reference (gref) is returned. To create the receiving
XenSocket, the domid of the virtual machine that is allowed to send the data
must be known. This domid value can now be found in the mca btl xen proc t

instance. The problem still remains of how to get the grant reference to the other
virtual machine which is required to open the sending socket. To achieve this, an
out of band channel established by Open MPI is used.

43

The function used is orte rml.send nb() where RML stands for Remote Mes-
saging Layer. It is worth mentioning that this is actually a type of proxy to to
another Open MPI utility called OOB that creates and utilises out of band chan-
nels. The RML is actually in charge of establishing, maintaining and routing
messages through the OOB utility. Using this instead of an out of band channel
directly is better practice and can prevent extra out of band connections being
established unnecessarily. The nb suffix of the function indicates the send is non-
blocking. The reason a non-blocking send is used in lieu of a blocking send is
simply because there is no way to ensure the matching process can call a blocking
receive. For example, if the matching process was already performing a blocking
send to another process, the whole job would result in deadlock.

There is now a file descriptor for receiving data, however not for sending data.
In order to do this there must by a corresponding RML call to receive the gref value
sent via the out of band channel. Instead of explicitly doing this within the btl

add procs() function, a decision was made to postpone this happening until later.
This way the BTL can establish the other duplex of its connection on-demand
when there is actually a necessity to send data. The first time data is attempted
to be sent, a check is made to detect if the endppoint is fully established. If it’s
not, the corresponding orte rml.recv() function is called and the grant reference
is returned allowing the creation of the sending XenSocket. This technique allows
some extra time to let the out of band send to propagate.

5.2.3 The Operation Phase

The operation phase of the BTL life cycle deals with the moving of data to and
from our XenSocket pair. This is probably the most significant phase of the xen
BTL life cycle as it is the area that affects throughput, latency and processor usage
the most. The main design proved to outperform the tcp module which is shown
in section 6, however there was also a variation of the design which outperformed
the original. Because the differences are minor in contrast to the overall design,
both are described.

When designing the method to send data, it had to be taken into account that a
XenSocket uses a finite buffer which can become full and block the sending process.
There is a symbiotic relationship between the two communicating processes as the
only way a blocked send can proceed and return is if the matching process performs
a receive and clears the buffer. A problem arises when both processes wish to send
more data than there is available space in the buffers. They will both block, and
because they are blocking there is no way for the processes to return and empty
out the buffers so this results in deadlock. Naturally this problem extends to
sending messages which are bigger than the buffer itself.

The way around this came in two forms. First, there had to be an upper limit

44

on the amount of data that can be sent through a XenSocket in a single send
operation. This limit was naturally to be the size of the buffer or less and it
was empirically found that an upper limit of 1

8
the size of the buffer worked best.

Secondly, there had to be a means to find the available space in the XenSocket
buffer in order to decide if a message can be sent immediately or if should be
scheduled for later a time.

In order to limit the size of single messages there had to be a system to allow
the fragmentation of raw data on the sender’s side and the reassembly of the
data on the receiver’s side. Fortunately there are higher levels in the Open MPI
framework that can help achieve this very effectively. btl prepare src() is called
by higher layers in order to construct a mca btl base descriptor t that contains
some user data. The function has a variety of parameters including a reserve size,
a ompi convertor t structure and and in/out integer called size. The reserve
size is some space we must leave at the beginning of the message for the PML to
place its header. The ompi convertor t is a helper structure used to point to the
actual user data; the total size of the user data is then indicated by the in/out
parameter size. There is a helper function called ompi convertor pack() that
will copy x amount of bytes of the user’s data into a specific location of memory.
The in/out parameter size is then used to indicate to the PML exactly how much
data was taken and placed into the allocated descriptor. If it’s less than the size of
the whole data the PML will indicate this in its header. When all of the user data
is transferred using several descriptors, the entire message can be reconstructed
in higher layers at the other end.

One of the benefits of the ompi convertor t argument is that there exists a
helper function called ompi convertor need buffers() which indicates whether
or not the user data is contiguous or not. If it is contiguous, an extra copy can be
avoided and by simply pointing to the data, otherwise another helper function is
used to pack x amount of bytes into the descriptor’s buffer.

Although there is reserve space for the PML header, it is vital that there is a
custom header specific to the xen BTL too. This header contains 3 fields: the size
of the message as a whole, the size of the PML header (i.e. whatever the reserve
size was) and the tag of the message itself. The tag is not included in the PML
header and is required by the BTL module to find the correct callback function
during the receive stage. A structure called mca btl xen fraghdr t is defined in
order to house these 3 fields.

btl prepare src() returns a descriptor to the higher layers of the framework
which subsequently adds header information in the reserved space before calling
the btl send() function with the modified descriptor as a parameter. In Open
MPI 1.2 and prior a BTL module’s send function was for submitting a descriptor
to a send queue and returning a success or error code. It was then up to the BTL
module to dequeue the descriptor, send it, and invoke its callback function to tell

45

higher layers that the message was successfully sent. As of Open MPI 1.3 there
is an alternative approach whereby if the BTL module finds it suitable to send
the data immediately within the btl send() function it can avoid invoking the
callback function and instead return a code that indicates the data was sent via
the shortest path. This is useful for the xen BTL module as a lot of the time there
will be enough space in a XenSocket buffer to accommodate an immediate send.

The crucial decision in btl send() is deciding whether or not to send the
data immediately or scheduling it for a later time. It was mentioned previously
that in order to avoid deadlock it must be certain there is enough space in the
XenSocket buffer before sending a message. To find out the amount of free space
in the buffer, IOCTL functionality that was added to XenSocket can be used. If
it is found that there is enough space to pass in the whole message, a send can be
performed immediately, otherwise the descriptor is added to an ordered list and
scheduled to send at a later time. Adding the descriptor works by first checking
the flags of the descriptor for the presence of MCA BTL DES FLAGS PRIORITY, if
found the descriptor is prepended to the list, otherwise it is appended. In order
to reschedule the send, Open MPI’s event system is used. A request is made for a
callback to be performed when the sending XenSocket is writable. In our custom
XenSocket, there is a simple polling mechanism that indicates when there is data
in the buffer and when the buffer has some space available. The XenSocket will be
polled with all the other open sockets in the Open MPI job periodically so it can
be guaranteed that the callback function will be invoked at some point. Within
the callback function, the space available in the XenSocket buffer is first checked
and then the function iterates over the list of descriptors in order to see if any can
be sent without blocking.

All this relies heavily on the IOCTL functionality of the XenSocket which
means invoking a system call every so often. Unfortunately system calls are very
expensive due to their mechanism of going through libc and being context switched
into the kernel, therefore it is desirable to keep them to an absolute minimum.
IOCTL calls can be avoided by keeping a local record of free bytes available in
the XenSocket buffer. For example, if the size of the buffer is found once and
recorded, one can continually subtract the size of all successfully sent messages
from this record. There is then a guarantee that at least that amount of space
in the XenSocket buffer is available since the only other process effecting the free
bytes in the buffer is removing data rather than inserting it. A record is kept in
each endpoint structure of the guaranteed space available in the sending XenSocket
buffer. If the descriptor can fit in this space there is no necessity to perform an
additional IOCTL. An IOCTL call is only ever made whenever is is found that
there is not enough guaranteed space to send the entire descriptor. Each time an
IOCTL call is made, the record of the size of the XenSocket buffer is updated too.
See figure 5.4.

Because messages can be in three separate memory locations (the mca btl

46

Figure 5.4: A xen module attempts to send a message

47

xen fraghdr t structure, the PML header data and the user data are in no way
guaranteed to be in contiguous memory) a decision was made to send data using
an array of iovec structures with the writev() function. This means all three
memory locations could be handled in one single system call instead of three
separate calls to the standard socket send() function.

Because there is no reliance on the BTL component’s progress function, re-
ceiving data had to work another way. Open MPI’s event system can poll file
descriptors for pending data. This feature is used to invoke a callback function
whenever the event system finds there is data in the XenSocket buffer. One of
designs of the callback function used a circular buffer at each endpoint that was
the same size as the XenSocket buffer. When the event library invokes this call-
back function it would first perform an IOCTL operation to find how much data
is pending in the XenSocket buffer and then copy it all into the circular buffer.
This was potentially a good idea as it allowed a maximum amount of information
to be copied in a single step avoiding excessive system calls. After this receive is
made, the raw data in the local buffer is sifted through to find complete messages.

Since the first thing transmitted in a message from the xen BTL is a mca btl

xen fraghdr t structure, a check is made to see if the circular buffer contains at
least sizeof(mca btl xen fraghdr t) bytes. If it does, a mca btl xen fraghdr

t variable can be made from the raw data. Because this is a circular buffer, care
must be taken to identify if data has been fragmented at the end and continued
at the beginning. This is done by having variables for the offset of the buffer and
the used space of the buffer, then finding it the data can be obtained in a single
copy or if it is fragmented at the end in which case two copies are required. If
an entire sizeof(mca btl xen fraghdr t) variable is obtained, a further check
is performed to compare the size of the entire message (contained in one of the
structure’s fields) with the size of the used space of the buffer. If the used space of
the buffer is greater or equal to the size of the message, the whole message can be
retrieved, otherwise the callback function can finish gracefully knowing that there
is still more data to come.

One of the quirks of the receiving callback function is that the PML header
can’t be fragmented. This is where knowing the PML reserve size in the mca

btl xen fraghdr t structure can be very useful. The same technique as before
is used to see if the header wraps around the circular buffer. If it does, the data
must be copied into contiguous memory (this is fine since the data is relatively
small) otherwise pointing to the circular buffer will suffice. The rest of the data is
allowed to be fragmented so one or two segment structures can be used to point
to it in the buffer rather than performing an additional copy.

A mca btl base descriptor t structure is made from the PML header and
raw data. The tag field from the mca btl xen fraghdr t structure is used to
find the corresponding callback function. It is invoked passing in the descriptor

48

which may have several segments pointing to different places in memory. This
is perfectly legal and it is the PML module’s responsibility to copy all this data
into its own contiguous buffer. After the callback function returns, the position
and size of the user buffer is updated to remove the data just processed. The
process is repeated until there isn’t enough data in the local buffer to process a
complete message. At this point the callback function returns not to be called
again until the event library finds more data in the XenSocket buffer and then the
entire process is attempted again. See figure 5.5.

This design seemed like it would be the optimal way of retrieving and process-
ing data as it could potentially pull many messages at once from the XenSocket
buffer and thus eliminate repeated system calls to receive data. Surprisingly, a
variant of this design performed better. Instead of the XenSocket polling feature
being implemented by checking for data present in the buffer, an atomic counter
was used instead. Each time a message was sent to XenSocket the counter was
incremented and each time a message was pulled from XenSocket the counter was
decremented. The fundamental difference in this design is that within the receiv-
ing callback function. Instead of querying how much data is in the XenSocket
buffer and retrieving that amount, a single mca btl xen fraghdr t structure is
first retrieved, from this it can be determined how long the subsequent data is
and then remainder of the message is received. For the second receive a flag is
used to indicate to XenSocket to decrement the atomic counter. This means two
system calls are performed for each message and the callback function is limited to
processing a single message only. The benchmarks in 6 show that the alternative
design performs better for larger messages.

In order for the operation phase to be efficient, special care was taken in the
memory management of the xen component. Since there is a high demand for the
xen module to create descriptors for messages that may contain sparse amounts
of data (e.g. the descriptor holds a synchronisation message with no user data)
or bulks of data (e.g. if the user’s data was non-contiguous it must be copied
to a contiguous location of memory) there is a significant issue of allocating and
deallocating memory effectively. The following techniques were based on other
BTL component implementations and are described here for clarity.

Calling malloc() and free() are expensive operations and because of the
frequency of messages created and returned to and from the BTL module it is best
to avoid calling them as much as possible. Open MPI offers its own dynamic list
construct called ompi free list t as an alternative. Instead of allocating memory
for individual messages using malloc(), a free item from a list is requested instead.
The list can grow and shrink by a user defined amount so memory allocation and
deallocation happens less frequently. When an item is returned back to the list it
can be retained for the next request thus avoiding more memory allocation. The
list construct fits in with Open MPI’s object oriented system; each time an item is
requested from the list it can be automatically passed to a user defined constructor

49

Figure 5.5: A xen module attempts to receive messages

50

where the fields are reset or defaulted to the programmer’s preference. As of Open
MPI 1.3 the ompi free list t initialisation function has extra parameters to align
the items in memory which can help improve caching.

The xen component has 3 such lists. One list is for returning a descriptor
and memory for messages that only need space for the PML header (e.g. barrier
messages or messages where there is no requirement to copy the user’s data as
it is contiguous); another is for returning a descriptor and memory for messages
that need to be explicitly copied into contiguous memory and are under an eager
size limit; finally the other is for returning a descriptor and memory for messages
that need to be copied into contiguous memory and are larger than the eager size
limit and less than or equal to the maximum size limit.

5.2.4 The Shutdown Phase

The shutdown phase is responsible for releasing resources at the end of an Open
MPI job. There are two functions that are of importance: btl finalize() and
component close(). The btl finalize() function is very simple, it makes two
iteration over all the endpoints created during the process selection phase. The
first iteration shuts down the sending socket of each endpoint structure; a check is
put in place to check that the socket was established in the first place. The next
iteration shuts down the receiving socket of each endpoint structure and then
releases the endpoint object. Provided Open MPI hasn’t retained the object for
itself, this will call the destructor and free the object from memory. After this the
xen module is freed. The component close() function is even simpler; it merely
calls any destructors on objects (e.g. lists) created during the component open()

function. It is higher layers that allocate and free memory for the component
itself.

5.2.5 Live Migration

Failover on live migration was an unfinished feature of the xen component. The-
oretically it should be possible, but due to time constraints it was not properly
investigated. The following is an explanation of problems found when performing
a live migration during a running Open MPI job.

Given a scenario of two co-resident virtual machines running one Open MPI
process each, there will be a xen endpoint established by each process to commu-
nicate with the other. A xen endpoint contains two XenSocket file descriptors, one
for receiving and another for sending. It is the receiving XenSocket that owns the
memory of the internal buffer whereas the sending XenSocket maps this memory
into its address space and does not allocate any of its own. If one virtual machine

51

Figure 5.6: Both ends of a XenSocket in virtual memory

migrates to another physical machine, its entire memory is transferred too. This
implies that the internal buffer of the receiving XenSocket is safely be transferred
over to the new host so there is no risk of losing any unreceived data.

The problem lies in the sending XenSocket’s behaviour which can vary de-
pending on circumstance. Ideally, when the virtual machine hosting the matching
receiving XenSocket migrates, the sending XenSocket should immediately break;
this way the socket can return an error code that could be inform the xen BTL
component of the problem. It was found using a looping unidirectional blocking
send MPI program that if the machine performing the send operation migrates
during the job, the sending XenSocket will break as expected; however, if the
machine performing the receive operation migrates, the sending XenSocket will
remain operational as if the memory is still mapped. This was unexpected be-
haviour.

The following is an attempt to explain what may be happening. Figure 5.6
shows virtual machine B, which actually owns the memory of allocated buffer for
the XenSocket and also shows virtual machine A which doesn’t own the memory,
but instead maps it into its virtual address space. For clarity, virtual machine
A’s reference to the memory is seen going through virtual machine B’s virtual
memory address. Figure 5.7 shows the result of machine A emigrating to a new
physical machine. Because the sender doesn’t own the memory in the allocated
buffer, it isn’t transferred during the migration. This leaves the sender with an
invalid memory reference which is exactly what is needed in order to report an
error. The problem is shown in figure 5.8 where machine B migrates instead. The
migration process makes a new a new copy of the allocated buffer in the new
physical machine and machine B won’t notice any difference; however, it appears
that the memory in the original host isn’t deallocated after the migration. This
results in machine A getting a type of psuedo-ownership over the allocated buffer.

During the design stage of this project an assumption was made that both mi-
gration scenarios would lead to the sending XenSocket’s buffer becoming invalid.

52

Figure 5.7: The sending machine emigrates

Figure 5.8: The receiving machine emigrates

53

This ultimately resulted in the live migration feature being incomplete. The prob-
lem could be resolved if there is a Xen construct that can identify if some mapped
memory’s original owner has migrated to another host. This way a check could
be made at the end of a send operation which would return an error code appro-
priately. Given an error, it could be used to tell higher levels in Open MPI not to
use the endpoint any more. Provided the job is run with the tcp component too,
Open MPI will automatically use these endpoints instead.

In the duration of this project, no such feature in Xen was found. Other tech-
niques could be used instead, for example using XenStore to check for migrations.
However, this would incur a huge overhead which would probably cancel out any
performance gains achieved in the first place.

54

6 Analysis

The following benchmarks were made using a simple MPI blocking ping-pong
program. The machine was an AMD Athlon 64 X2 4200+ @ 2200 MHz; 1Ghz
HyperTransport FSB; 1MB level-2 shared cache; 4GB of DDR2-800 RAM. All
tests were carried out on a Xen 3.3 hypervisor between two domU virtual machines
running a 2.6.27 Linux kernel. Each virtual machine was assigned one virtual
processor that corresponded to one unique core of the physical processor (CPU
affinity was enabled) and allocated 256MB of RAM. For any shared memory test an
extra processor was given to the virtual machine. Latency/Bandwidth benchmarks
were run 6 times taking the arithmetic mean of the results.

6.1 Latency & Bandwidth

Figure 6.1 shows a latency comparison between the tcp, xen and sm BTL compo-
nents. Both axis are shown on a logarithmic scale for readability. It is immediately
obvious that the xen component consistently outperforms the tcp component. For
1048576 bytes, the latency of the tcp component is 6972µs in contrast to the xen
component which is 3453µs which is less than half the time. By the end the
sm component outperforms the xen component with a latency of 1803µs which is
roughly half the time of the xen component and one quarter the time of the tcp
component. For smaller messages there is a greater margin of latency, for example
512 bytes takes 103µs using the tcp component, 15µs using the xen component and
24µs using the sm component. Therefore the xen component takes 15% of the tcp
component’s time, but also outperforms the sm component.

Figure 6.2 shows a bandwidth comparison between the tcp, xen and sm BTL
components. The horizontal axis is shown on a logarithmic scale for readability.
Once again it is clear that the xen component consistently outperforms the tcp
component. For 1048576 bytes, the bandwidth of the tcp component is 301MBp/s
in contrast with the xen component which is 608MBp/s, this is over double the
throughput. For the same amount of bytes, the sm component has a bandwidth
of 1163MBp/s which is roughly double the throughput of the xen component
and four times the throughput of the tcp component. Therefore the bandwidth
comparison is inversely proportional to the latency comparison. Similar to the
latency comparison, for smaller messages the margin of bandwidth is greater. For
512 bytes, the tcp component has a throughput of 10MBp/s, the xen component
has a throughput of 69MBp/s and the sm has a throughput of 104MBp/s. This
shows that for certain message sizes, the bandwidth of the xen component is almost
10x greater than that of the tcp component.

55

Figure 6.1: Latency of the tcp, xen & sm components

Figure 6.2: Bandwidth of the tcp, xen & sm components

56

6.2 CPU Usage

CPU activity on the virtual machines was measured using Xenoprof[19], a cus-
tomised version of OProfile[20]. A finite looping unidirectional blocking send/re-
ceive program was used for these benchmarks.

Figure 6.3 shows the CPU activity on the guest virtual machines executing the
Open MPI job. ompi btl refers to the activity in the tcp and xen BTL component
libraries themselves; ompi refers to any other stimulus in the three Open MPI code
sections. While the actual program and BTL components have roughly the same
amount of CPU activity, it’s clear that the tcp component has more interaction
with the rest of Open MPI as well as the standard C library. There is a significant
difference in kernel activity between both of components; the xen component has
only 12% of the tcp component’s kernel time. The xen component does have more
activity in the Xen hypervisor which is due the granting and mapping of pages
during the connection setup. In total, the xen component has over 5x less CPU
activity than the tcp component making it comparatively light weight.

Figure 6.4 shows the CPU activity on dom0 during the execution of the Open
MPI job run on two other guest virtual machines (i.e. dom0 did not run any
Open MPI code itself). Stimulus from the xen component job is 60% of the tcp
component job. It is interesting to note that there were only 12 samples taken
from the software bridge which may suggest that the activity in the dom0 isn’t
as significant as outlined in section 3. Various unofficial sources revealed that
networking had been improved since a lot of the initiatives described in section 3
took place, however the exact nature of what has been changed is not clear.

57

Figure 6.3: domU CPU activity of the tcp and xen components

Figure 6.4: dom0 CPU activity of the tcp and xen components

58

6.3 The Alternative Design

Section 5 detailed that there were two designs of the xen BTL component. While
the principle design was benchmarked against the tcp and sm components, we now
compare the principle design with the alternative design: xenalt.

Figure 6.5 shows the latency of the xen and the xenalt components. The hori-
zontal axis is shown at logarithmic scale for readability. The shape of the graphs
are very similar, however there is some variation. The xen component takes slightly
less time when it comes to shorter messages, but after 32768 bytes the xenalt com-
ponent shows signs of improvement, for example 131072 bytes takes 717µs using
the xen component and only 395µs using the xenalt component.

Figure 6.6 shows the bandwidth of the xen and the xenalt components. The
horizontal axis is shown at logarithmic scale for readability. The graphs take a
similar shape including the negative spike at 16384 bytes. After 32768 bytes, the
xenalt starts performing better than the original design and there is a significant
amount of bandwidth gained. By the time both components reach their peak at
1048576 bytes, the xen component has a throughput of 608MBp/s whereas the
xenalt component has a throughput of 757MBp/s which is an improvement by a
factor of 1.2x.

A reason this may be happening is because in the original xen design, the
XenSocket atomically updated its internal buffer size for each iovec structure in
the message being sent. There are usually three iovec structures in a message,
one for the BTL header, one for the PML header and another for the message
itself. This means the receiving process could poll the XenSocket just after one
of these iovec structures had been transferred and proceed to receive whatever
is in the XenSocket buffer. This would result in the receiving process making a
kernel call just to receive a relatively small header leaving the rest of the message
for the next polling cycle. In contrast, the alternative xenalt design modified its
XenSocket to have an internal counter that is only incremented on the receipt of
entire messages. Polling simply checks to see if this counter is above zero and
proceeds to receive a single message over the space two system calls. While there
are two system calls to receive a single message, they happen very close to each
other instead of between an additional circuit of the Open MPI progress engine.

59

Figure 6.5: Latency comparison of alternative xen designs

Figure 6.6: Bandwidth comparison of alternative xen designs

60

7 Summary

The following section looks at some of the problems encountered during the
project’s design and implementation and also concludes the project as a whole.

7.1 Problems Encountered

Open MPI is industry-ready software, so it’s no surprise that it is both large and
complicated. In theory, a component could be implemented by following a simple
interface, but in reality the dependencies go right down to the core components
of the framework. While the BTL component/module isnt too large, its API and
expected behaviour remain quite undocumented. Most of the research for Open
MPI was done by examining previously written BTL components and stepping
through them with a debugger to observe their interaction with the rest of system.

From the beginning it had been decided to work from the most current stable
release of Open MPI (version 1.2). At the time the team were preparing the
next major version and it was decided not to use it as the version was still in
beta stages. After the component had been implemented, there was a reoccurring
but non-deterministic deadlock issue. It took some time to trace where it was
happening, but it was eventually found to be caused by higher layers of the Open
MPI framework. This was a known bug and fixing the problem meant upgrading
to a newer release of Open MPI (version 1.3). The new version had fixed the
problem but had also changed the API for the BTL framework. The problem
promptly vanished after the xen component was upgraded to work with this new
release.

In the original design of the xen BTL an alternative operation phase was im-
plemented based on Linux real-time signals instead of polling. A signal would be
sent to the receiving process whenever there was data pending in the XenSocket
buffer. The reasoning behind this decision was that real-time signals could contain
an additional piece of data that could be sent to the signal handler. In order to
avoid the polling system completely, the file descriptor of the socket was passed
with the signal. The problem with this was that a signal was generated for every
message in the XenSocket buffer and the receiving process could become oversub-
scribed with signals too easily. It was found that signals were being lost, and while
it is possible to increase the amount of real-time signals queued for a process, it
became apparent that the design wasn’t very scalable. The real-time signal de-
sign was abandoned in favour of polling which better suited the Open MPI model
anyway.

The biggest problem came in the form of data being lost in the XenSocket
buffers. This happened non-deterministically and was incredibly difficult to trace

61

and debug. It was eventually found that Xen was not guaranteeing atomicity of
atomic * kernel instructions in XenSocket. After some correspondence with the
developers’ mailing list, it was found that Xen will dynamically remove the LOCK

PREFIX from the standard atomic.h header when run on a virtual machine with
a single virtual processor. Although both virtual machines had guest operating
systems with CONFIG SMP defined, all the locking assembly was getting filtered
out. To fix this, a custom atomic.h was made replacing all references to LOCK

PREFIX with explicit assembly locking code.

7.2 Conclusion

In the course of this project, an efficient transport system for co-resident virtual
machines running MPI jobs was created. The transport system outperformed
the default networking model, having decreased its latency down to as much as
15% of the original time; increased its throughput by up to 1000% and reduced
its CPU utilisation by more than a factor of 5. The transport system bypasses
the native inter-VM communication system by making direct channels between
virtual machines; this was shown to be both efficient and safe without breaking
the virtual machine’s security or isolation. The transport system works without
any modification to the dom0, making it more favourable over alternative solutions
described in section 3. The transport mechanism comes in the form of an easily
installable Open MPI component which can be used without modification.

The additional goal of this project was to have BTL failover on live migration.
This was not successful, however the nature of the problem preventing this from
working was identified. With some more research into Xen’s API a solution might
be found. The problem itself is simple in nature and once resolved there should
be nothing to prevent the xen module from using Open MPI’s failover mechanism.

Aside from the component implementation, there may be some valuable infor-
mation in the report itself. When starting the project, it was found that Open
MPI was quite an overwhelming piece of software. It was hard to find details
on the functionality and behaviour of many of its features outside of the usual
function annotations. This report was written with a meticulous amount of detail
in the hope that it might benefit programmers new to Open MPI.

This project successfully demonstrated that some of the overhead incurred
from virtualization can be eradicated. Although the xen component didn’t per-
form as well as the inter-process sm component, there was definitely a significant
improvement over the tcp component. This may give some incentive to the HPC
community to consider adopting virtualized solutions. The points outlined in sec-
tion 1 show there are great benefits to virtualization and although there is, and
will always be, some overhead involved, using this efficient transport system can
reduce it significantly.

62

8 Bibliography

[1] David Chisnall (2007), The Definitive Guide to the Xen Hypervisor, Prentice
Hall

[2] Jeanna N. Matthews, Eli M. Dow; Todd Deshane, Wenjin Hu, Jeremy Bongio,
Patrick F. Wilbur and Brendan Johnson (2008), Running Xen: A Hands-On
Guide to the Art of Virtualization, Prentice Hall

[3] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman (2005), Linux
Device Drivers, Third Edition, O’Reilly

[4] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J.
Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian
Barrett, Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L.
Graham, and Timothy S. Woodall (2004), Open MPI: Goals, Concept, and
Design of a Next Generation MPI Implementation

[5] Richard L. Graham, Timothy S. Woodall and Jeffrey M. Squyres (2005), Open
MPI: A Flexible High Performance MPI

[6] Brian Barrett, George Bosilca, Rich Graham, Galen Shipman, Tim Woodall
and Jeff Squyres (2006), Open MPI Developer’s Workshop, available at http:
//www.open-mpi.org/papers/workshop-2006/

[7] Mark F. Mergen, Volkmar Uhlig, Orran Krieger and Jimi Xenidis (2006), Vir-
tualization for High-Performance Computing

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt and Andrew Warfield (2003), Xen and the Art of
Virtualization

[9] Padma Apparao, Srihari Makineni and Don Newell (2006), Characterization
of network processing overheads in Xen

[10] Hyun-Sup Shin, Kang-Ho Kim, Chei-Yol Kim and Sung-In Jung (2007), The
new approach for inter-communication between guest domains on Virtual Ma-
chine Monitor

[11] Kangho Kim, Cheiyol, Kim Sung-In Jung, Hyun-Sup Shin and Jin-Soo Kim
(2008), Inter-domain Socket Communications Supporting High Performance
and Full Binary Compatibility on Xen

[12] Jian Wang, Kwame-Lante Wright and Kartik Gopalan (2008), XenLoop: A
Transparent High Performance Inter-VM Network Loopback

63

http://www.open-mpi.org/papers/workshop-2006/
http://www.open-mpi.org/papers/workshop-2006/

[13] Xiaolan Zhang, Suzanne McIntosh, Pankaj Rohatgi and John Linwood Grif-
fin (2007), XenSocket: A High-Throughput Interdomain Transport for Virtual
Machines

[14] François Diakhaté, Marc Perache, Raymond Namyst and Hervé Jourdren
(2008), Efficient Shared Memory Message Passing for Inter-VM communica-
tions

[15] Message Passing Interface Forum (2008), MPI: A Message-Passing Interface
Standard Version 1.3

[16] Message Passing Interface Forum (2008), MPI: A Message-Passing Interface
Standard Version 2.1

[17] Dan Kegel (2006), The C10K problem - Why can’t Johnny serve 10000
clients?, available at http://www.kegel.com/c10k.html

[18] Niels Provos, libevent - an event notification library, available at http://www.
monkey.org/~provos/libevent/

[19] Xenoprof - System-wide profiler for Xen VM, available at http://xenoprof.
sourceforge.net/

[20] OProfile - A System Profiler for Linux, available at http://oprofile.

sourceforge.net/

64

http://www.kegel.com/c10k.html
http://www.monkey.org/~provos/libevent/
http://www.monkey.org/~provos/libevent/
http://xenoprof.sourceforge.net/
http://xenoprof.sourceforge.net/
http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/

A Source Code

A.1 CD-ROM Contents

open-mpi-1.3.2.tgz contains a complete copy of Open MPI 1.3.2-stable.

xen.tgz contains the code for the xen BTL component.

xensocket.tgz contains the code for the updated custom XenSocket.

A.2 Installing Software

To use the xen BTL component, first install the customised XenSocket. Untar
xensocket.tgz and as a root user, issue the following commands.

make

insmod xensocket.ko

Listing A.1: Building and installing XenSocket

After XenSocket is installed, untar open-mpi-1.3.2.tgz and then untar xen.tgz
into open-mpi-1.3.2/ompi/mca/btl/ and issue the following commands. The make

install command may require root privileges.

./ autogen.sh

mkdir build

cd build

../ configure --with -platform=optimized

make

make install

Listing A.2: Building and installing Open MPI with the xen component

65

	Introduction
	Background Information
	Message Passing Interface
	Open MPI
	Virtualization
	Xen

	Xen Inter-VM Communication
	Xen - An Unenlightened Network
	Previous Work
	XenLoop
	Xway
	XenSocket

	Design Research
	Introduction to the Open MPI architecture
	The Point to Point Messaging Layer
	The BTL Management Layer
	The Byte Transfer Layer
	The Event System
	Object Orientation

	Introduction to the Xen architecture
	Hypercalls
	Grant Tables
	XenStore

	Design and Implementation
	A Custom XenSocket
	The xen BTL
	The Initialisation Phase
	The Process Selection Phase
	The Operation Phase
	The Shutdown Phase
	Live Migration

	Analysis
	Latency & Bandwidth
	CPU Usage
	The Alternative Design

	Summary
	Problems Encountered
	Conclusion

	Bibliography
	Source Code
	CD-ROM Contents
	Installing Software

