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Abstract. A large number of MPI implementations are currently avail-
able, each of which emphasize different aspects of high-performance com-
puting or are intended to solve a specific research problem. The result is a
myriad of incompatible MPI implementations, all of which require sepa-
rate installation, and the combination of which present significant logisti-
cal challenges for end users. Building upon prior research, and influenced
by experience gained from the code bases of the LAM/MPI, LA-MPI,
FT-MPI, and PACX-MPI projects, Open MPI is an all-new, production-
quality MPI-2 implementation that is fundamentally centered around
component concepts. Open MPI provides a unique combination of novel
features previously unavailable in an open-source, production-quality im-
plementation of MPI. Its component architecture provides both a stable
platform for third-party research as well as enabling the run-time compo-
sition of independent software add-ons. This paper presents a high-level
overview the goals, design, and implementation of Open MPI, as well as
performance results for it’s point-to-point implementation.

1 Introduction
The face of high-performance computer systems landscape is changing rapidly,
with systems comprised of thousands to hundreds of thousands of processors
in use today. These systems vary from tightly integrated high end systems, to
clusters of PCs and workstations. Grid and meta computing add twists such as
a changing computing environment, computing across authentication domains,
and non-uniform computing facilities, such as variations in processor type and
bandwidths and latencies between processors.

This wide variety of platforms and environments poses many challenges for
a production-grade, high performance, general purpose MPI implementation,
requires it to provide a high degree of flexibility in many problem axes. One
needs to provide tunable support for the traditional high performance, scalable
communications algorithms, as well as address a variety of failure scenarios. In
addition items such as process control, resource exhaustion, latency awareness
and management, fault tolerance, and optimized collective operations for com-
mon communication patterns, need to be dealt with.

These types of issues have addressed in one way of another by different
projects, but little attention has been given to dealing with various fault scenar-
ios. In particular, network layer transmission errors—which have been considered



highly improbable for moderate-sized clusters—cannot be ignored when dealing
with large-scale computations [4]. This is particularly true when O/S bypass
protocols are used for high performance messaging on systems that do not have
end-to-end hardware data integrity. In addition, the probability that a parallel
application will encounter a process failure during its run increases with the
size of they system used. For an application to survive process failure it either
must regularly write checkpoint files (and restart the application from the last
consistent checkpoint [1, 10]) or the application itself must be able to adaptively
handle process failures during runtime [3] and use an MPI implementation that
deals with process failure. These issues are current, relevant research topics.
While some have been addressed at various levels by different research efforts,
no single MPI implementation is currently capable of addressing all these in a
comprehensive manner.

Therefore, a new MPI implementation is required: one that is capable of
providing a framework to address important issues in emerging networks and
architectures. The Open MPI project was initiated with the express intent of
addressing these, and other issues. Building upon prior research, and influenced
by experience gained from the code bases of the LAM/MPI [13], LA-MPI [4], FT-
MPI [3], and the PACX-MPI [5] project, Open MPI is an all-new, production-
quality MPI-2 implementation. Open MPI provides a unique combination of
novel features previously unavailable in an open source implementation of MPI.
Its component architecture provides both a stable platform for cutting-edge
third-party research as well as enabling the run-time composition of indepen-
dent software add-ons.

1.1 Goals of the Open MPI Project

While all participating organizations have significant experience in implement-
ing MPI, Open MPI represents more than a simple merger of the LAM/MPI,
LA-MPI, FT-MPI, and PACX-MPI code bases. While influenced by previous im-
plementation experiences, Open MPI uses a new software design to implement of
the Message Passing Interface. Focusing on production-quality performance, the
software implements the MPI-1.2 [7] and MPI-2 [8] specifications and supports
concurrent, multi-threaded applications (i.e., MPI THREAD MULTIPLE).

To efficiently support a wide range of parallel machines, high performance
“drivers” for established communications protocols have been developed. These
include TCP/IP, shared memory, Myrinet (GM and MX), and Infiniband (MVAPI
and OpenIB). Support for more devices will likely be added based on user, mar-
ket, and research requirements. For network transmission errors, ideas first ex-
plored in LA-MPI are being extended with optional support is being developed
for checking data integrity. In addition, by utilizing message fragmentation and
striping over multiple (potentially heterogeneous) network devices, Open MPI
is capable of both maximizing the achievable bandwidth to applications and is
developing the ability to dynamically handle the loss of network devices when
nodes are equipped with multiple network interfaces. Handling of these network
failovers is completely transparent to MPI applications.
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Fig. 1. Three main functional areas of Open MPI: the MCA, its component frame-
works, and the components in each framework.

The Open MPI run-time layer provides basic services to start and man-
age parallel applications in interactive and non-interactive environments. Where
possible, existing run-time environments is leveraged to provide the necessary
services; a portable run-time environment based on user-level daemons is used
where such services are not already available.

2 The Architecture of Open MPI
Open MPI’s primary software design motif is a component architecture called the
Modular Component Architecture (MCA). The use of components forces the de-
sign of well contained library routines and makes extending the implementation
convenient. While component programming is widely used, it is only recently
gaining acceptance in the high performance computing community [2, 13]. As
shown in Fig. 1, Open MPI is comprised of three main functional areas:

– MCA: The backbone component architecture that provides management ser-
vices for all other layers;

– Component frameworks: Each major functional area in Open MPI has a
corresponding back-end component framework, which manages modules;

– Components: Self-contained software units that export well-defined inter-
faces and can be deployed and composed with other components.

The MCA manages the component frameworks and provides services to them,
such as the ability to accept run-time parameters from higher-level abstractions
(e.g., mpirun) and pass them down through the component framework to indi-
vidual components. The MCA also finds components at build-time and invokes
their corresponding hooks for configuration, building, and installation.

Each component framework is dedicated to a single task, such as providing
parallel job control or performing MPI collective operations. Upon demand, a
framework will discover, load, use, and unload components. Each framework has
different policies and usage scenarios; some will only use one component at a
time while others will use all available components simultaneously.

Components are self-contained software units that can configure, build, and
install themselves. Components adhere to the interface prescribed by the frame-
work that they belong to, and provide requested services to higher-level tiers.



The Open MPI software has three classes of components: Open MPI compo-
nents, Open Run Time Environment (ORTE) components, and Open Portable
Access Layer (OPAL) components.

The following is a partial list of MPI component frameworks in Open MPI
(only MPI functionality is described; ORTE and OPAL frameworks and compo-
nents are not covered in this paper):

– Point-to-point Management Layer (PML): this component manages all full
message delivery. It implements the the semantics of a given point-to-point
communications protocol, such as MPI.

– Byte-Transfer-Layer Layer (BTL): this component is handles point-to-point
data delivery over the network, and is unaware of upper-level point-to-point
communications protocols, such as MPI.

– BTL Management Layer (BML): this component provides services during
job startup and dynamic process creation to discover and maintain the set
of BTLs that may be used for point-to-point communications between a
given pair of end-points.

– Collective Communication (COLL): the back-end of MPI collective opera-
tions, supporting both intra- and intercommunicator functionality.

– Process Topology (TOPO): Cartesian and graph mapping functionality for
intracommunicators. Cluster-based and Grid-based computing may benefit
from topology-aware communicators, allowing the MPI to optimize commu-
nications based on locality.

– Parallel I/O: I/O modules implement parallel file and device access. Many
MPI implementations use ROMIO [14], but other packages may be adapted
for native use (e.g., cluster- and parallel-based filesystems).

The wide variety of framework types allows third party developers to use
Open MPI as a research platform, a deployment vehicle for commercial products,
or even a comparison mechanism for different algorithms and techniques.

The component architecture in Open MPI offers several advantages for end-
users and library developers. First, it enables the usage of multiple components
within a single MPI process. For example, a process can use several networks
simultaneously. Second, it provides a convenient possibility to use third party
software, supporting both source code and binary distributions of components.
Third, it provides a fine-grained, run-time, user-controlled component selection
mechanism.

2.1 Module Lifecycle
The Byte Transfer Layer (BTL) framework provides a good illustrative example
of the complete usage and lifecycle of a module in an MPI process:

1. During MPI INIT, the BTL Management Layer (BML) framework (described
below) discovers all available BTL components. Components may have been
statically linked into the MPI library or can be loaded from shared libraries
located in well-known locations.



2. Each BTL component is queried to see if its want to run in the process. Com-
ponents may choose not to run; for example, an Infiniband-based component
may choose not to run if there are no Infiniband NICs available.

3. Components that are selected and successfully initialized will return a set of
BTL modules to the BML, each representing distinct network interfaces or
ports. Each module may cache resources and addressing information required
for communication on the underlying transport.

4. The BML queries each of the BTL modules to determine the set of processes
with which they are able to communicate. For each peer, the BML maintains
a list of BTLs through which that peer is reachable. These tables are exposed
to the upper layers for efficient message delivery and striping.

5. BTL modules exist for the duration of the process. During MPI FINALIZE,
each BTL module is given the opportunity to cleanup any allocated resources
prior to closing its corresponding component.

3 Implementation details
Several aspects of Open MPI’s design are discussed in this section.

3.1 Object Oriented Approach
Open MPI is implemented using a simple C-language object-oriented system
with single inheritance and reference counting-based memory management us-
ing a retain/release model. An “object” consists of a structure and a singly-
instantiated “class” descriptor. The first element of the structure must be a
pointer to the parent class’ structure.

Macros are used to effect C++-like semantics (e.g., new, construct, destruct,
delete). Upon construction, an object’s reference count is set to one. When the
object is retained, its reference count is incremented; when it is released, its
reference count is decreased. When the reference count reaches zero, the class;
destructor (and its parents’ destructor) is run and the memory is freed.

The experience with prior software projects based on C++ and the according
compatibility and compilation problems on some platforms has encouraged us to
take this approach instead of using C++ directly. For example, C++ compilers
may layout the same class or structure differently in memory. This can lead to
problems when serializing data and sending it across a network if the sender was
compiled with a different compiler than the receiver.

3.2 Component Discovery and Management
Open MPI offers three different mechanisms for adding a component to the MPI
library (and therefore to user applications):

– During the configuration of Open MPI, a script traverses the build tree and
generates a list of components found. These components will be configured,
compiled, and linked statically into the MPI library.

– Similarly, components discovered during configuration can also be compiled
as shared libraries that are installed and then re-discovered at run-time.



– Third party library developers who do not want to provide the source code of
their components can configure and compile their components independently
of Open MPI and distribute the resulting shared library in binary form. Users
can install this component into the appropriate directory where Open MPI
can discover it at run-time.

At run-time, Open MPI first “discovers” all components that were statically
linked into the MPI library. It then searches several directories to find available
components and sorts them by framework type.

Components are identified by their name and version number. This enables
the MCA to manage different versions of the same component, ensuring that the
components used in one MPI process are the same—both in name and version
number–as the components used in a peer MPI process. Given this flexibility,
Open MPI provides multiple mechanisms both to choose a given component and
to pass run-time parameters to components: command line arguments to mpirun,
environment variables, text files, and MPI attributes (e.g., on communicators).

3.3 Point-To-Point Components
The Open MPI point-to-point (p2p) design and implementation is based on
multiple MCA frameworks. These frameworks provide functional isolation with
clearly defined interfaces. Fig. 2 illustrates the p2p framework architecture.
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Fig. 2. Open MPI p2p framework

As shown in Fig. 2 the architecture consists of four layers. Working from the
bottom up these layers are the Byte Transfer Layer (BTL), BTL Management
Layer (BML), Point-to-Point Messaging Layer (PML) and the MPI layer. Each
of these layers is implemented as an MCA framework. Other MCA frameworks
shown are the Memory Pool (MPool) and the Registration Cache (RCache).
While these frameworks are illustrated and defined as layers, performance-critical
send/receive paths bypass the BML, as it is used primarily during initialization
and BTL component selection.

MPool The memory pool provides memory allocation/deallocation and regis-
tration/deregistration services. OS-bypass networks such as Infiniband and
Myrinet require memory to be registered (physical pages present and pinned)



before send/receive or RDMA operations can use the memory as a source
or target. Separating this functionality from other components allows the
MPool to be shared among various layers. For example, MPI ALLOC MEM
uses these MPools to register memory with available interconnects.

RCache The registration cache allows memory pools to cache registered mem-
ory for later operations. When initialized, MPI message buffers are regis-
tered with the MPool and cached via the RCache. For example, during an
MPI SEND the source buffer is registered with the memory pool and this
registration may be then be cached, depending on the protocol in use. Dur-
ing subsequent MPI SEND operations the source buffer is checked against
the RCache, and if the registration exists the PML may RDMA the entire
buffer in a single operation without incurring the high cost of registration.

BTL The BTLs expose a set of communication primitives appropriate for both
send/receive and RDMA interfaces. The BTL is not aware of any MPI se-
mantics; it simply moves a sequence of bytes (potentially non-contiguous)
across the underlying transport. This simplicity will enable early adoption
of novel network devices and encourages vendor support.

BML The BML acts as a thin multiplexing layer allowing the BTLs to be shared
among multiple upper layers. Discovery of peer resources is coordinated by
the BML and cached for multiple consumers of the BTLs. After resource
discovery, the BML layer is bypassed by upper layers for performance.

PML The PML implements all logic for p2p MPI semantics including standard,
buffered, ready, and synchronous communication modes. MPI message trans-
fers are scheduled by the PML based on a specific policy. This policy incor-
porates BTL specific attributes to schedule MPI messages. Short and long
message protocols are implemented within the PML. All control messages
(ACK/NACK/MATCH) are also managed at the PML. The benefit of this
structure is a separation of transport protocol from the underlying intercon-
nects. This significantly reduces both code complexity and code redundancy
enhancing maintainability.
Althought there are currently three PML components available in the Open

MPI, this paper only discusses the OB1 PML component. OB1 is Open MPI’s lat-
est generation PML, reflecting the most recent communications research. There
is currently only one BML component – “R2.” Finally, there are several BTL mod-
ules available, providing support for the following networks: TCP, shared mem-
ory, Portals, Myrinet/MX, Myrinet/GM, Mellanox VAPI, and OpenIB VAPI.

These components are used as follows: during startup, a PML component is
selected and initialized. The PML component selected defaults to OB1 but may
be overridden by a run-time parameter. Next the BML component R2 is selected
(since there is only one available). R2 then opens and initializes all available BTL
modules. During BTL module initialization, R2 directs peer resource discovery
on a per-BTL component basis. This allows the peers to negotiate which set of
interfaces they will use to communicate with each other for MPI communications.
This infrastructure allows for heterogeneous networking interconnects within a
cluster.



Table 1. Hardware and software setup used to generate results data.

Interconnect CPU RAM Bus Kernel Stack

Infiniband (2) Intel Xeon 3.6 GHZ 6GB PCIe 2.6.12 IB Gold 1.0
Myrinet (2) Intel Xeon 2.8 GHz 2GB PCI-X 2.6.11 GM 2.0.22
TCP/SM (2) AMD Opteron 2 GHz 8GB PCI-X 2.6.9

Table 2. Latency of zero byte ping-pong messages.

Implementation Latency

Open MPI GM 6.86µs
MPICH-GM 7.10µs

Open MPI Shared Memory 1.23µs
MPICH2 Shared Memory 2.21µs

Open MPI TCP 32.0µs
MPICH2 TCP 29.0µs

Open MPI OpenIB 5.13µs

Open MPI MVAPI 5.64µs
MVAPICH MVAPI (RDMA) 4.19µs
MVAPICH MVAPI (Send/Recv) 6.51µs

4 Performance Results

The data obtained in this section was using Open MPI version 1.0.1rc6 using the
OB1 PML with the MVAPI, GM, Shared Memory, and TCP BTL components.
These runs are compared with data from three other MPI implementations on
the same hardware. GM data was obtained with MPICH-GM version 1.2.6; the
shared memory and TCP data with MPICH2 version 1.0.3 [9]; the Infiniband
data with MVAPICH version 0.9.5 [6]. Latency is measured as half the round
trip time of zero byte MPI messages, using a ping-pong benchmark code, and
the bandwidth data is measured using NetPIPE version 3.6.2 [12]. The systems
used to make these measurements are described in the Table 1.

4.1 Point-To-Point Latency

Ping-pong latencies are listed in Table 2. As this table shows, Open MPI has
extremely competitive latencies. The latency of 6.86 µsec using GM is slightly
better than that obtained by MPICH-gm. The shared memory latency of 1.23
µsec is about 1 microsecond better than MPICH2, but the TCP latency of 32.0
µsec, is 3 microseconds higher than MPICH2 (tuning is ongoing). The latency
of 5.64 µsec using the MVAPI verbs is about 1.5 higher µsec than MVAPICH’s
remote queue management scheme. However, because Open MPI uses the Shared
Receive Queue support provided by the MVAPI verbs, it scales much better than
MVAPICH by using far less memory. MVAPICH’s latency increases linearly with
the number of processes in MPI COMM WORLD; Open MPI’s latency remains
essentially constant (and is lower than MVAPICH’s) [11]. Open MPI’s latency
is about one microsecond lower than MVAPICH’s send/receive semantics.
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4.2 Point-To-Point Bandwidth
Fig. 3 shows Open MPI obtaining slightly higher bandwidths than MPICH-GM,
peaking out around 235 MB/sec – very close to the raw GM bandwidth. Sim-
ilarly, Fig. 4 shows that Open MPI shows better shared memory bandwidths
than MPICH2, peaking out at 1020 MB/sec, with a message size of about
1 MB. MPICH2 and Open MPI over TCP (Gigabit Ethernet) exhibit similar
bandwidths, peaking out at 112 MB/sec, shown in Fig. 5. Open MPI’s MVAPI
bandwidth is shown in Fig. 6; it is quite similar to those obtained by MVAPI,
peaking out at 915 MB/sec. Finally, Open MPI’s Open IB bandwidth is shown
in Fig. 7; no other Open IB-native MPI is available to compare to.

5 Summary
Open MPI is a new implementation of the MPI 2.0 standard. It provides func-
tionality that has not previously been available in any single, production-quality
MPI implementation, including support for all of MPI-2, multiple concurrent
user threads, and multiple options for handling process and network failures.
Open MPI uses a flexible component architecture, and it’s point-to-point design
is such that it provides excellent point-to-point communications performance for
wide variety of interconnects, all within a single library implementation.
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