
Implementation of Open MPI on Red Storm

Brian W. Barrett, Jeffrey M. Squyres, and Andrew Lumsdaine

September 30, 2005

Abstract

The Open MPI project provides a high quality MPI
implementation available on a wide variety of plat-
forms. This technical report describes the porting of
Open MPI to the Cray Red Storm platform (as well
as the Cray XT3 platform). While alpha quality, the
port already provides acceptable performance. Re-
maining porting work and future enhancements are
also discussed.

1 Introduction

The Open MPI [10] project seeks to provide a high
quality MPI implementation for a wide variety of
hardware. The performance on commodity Linux
clusters with high speed interconnects is well estab-
lished [21]. In addition to Linux, Open MPI also
supports a variety of commodity and commercial op-
erating systems, including AIX, Mac OS X, and So-
laris. Until recently, Open MPI had not been ported
to tightly integrated supercomputing environments.

Cray Red Storm is a distributed memory massively
parallel architecture designed to scale to tens of thou-
sands of processors. The platform was originally de-
signed for Sandia National Laboratories to fulfill their
large-scale high performance computing needs. Cray
has since productized the machine as the Cray XT3,
a number of which have been delivered to research
computing centers across the United States.

This technical report details the porting of Open
MPI to Red Storm, providing details on both the run-
time environment changes necessary to support such
a unique platform and the development of a commu-
nication channel to support Red Storm’s high-speed

interconnect. Performance results from both micro-
benchmarks and real-world benchmarks are provided.
As the port is currently in an alpha stage, the future
work section provides a detailed discussion of devel-
opment required to make Open MPI a first class MPI
implementation on Red Storm.

2 Background

This section provides a brief overview of both Open
MPI [3, 7, 10, 19, 21, 22] and the Cray Red Storm
platform [1, 4, 6]. A familiarity with both is assumed
for the remainder of this report.

2.1 Open MPI

Open MPI is the result of a collaboration between the
authors of the LAM/MPI [5, 20], LA-MPI [2, 12], and
FT-MPI [8, 9] implementations of the MPI standard.
Open MPI supports the MPI-1 standard [15, 18] and
much of the MPI-2 standard [11, 13]. One-sided sup-
port is currently missing, but should be available dur-
ing FY’06. Open MPI is designed to offer high per-
formance and scalability on a variety of platforms. In
order to support a wide range of interconnections and
platforms, Open MPI utilizes a low overhead compo-
nent infrastructure, the MCA [3, 19].

Open MPI leverages the Open Run-Time Environ-
ment (ORTE) [7] for run-time support. ORTE was
developed as part of the Open MPI project, but it
is slowly becoming an independent project. ORTE
utilizes a number of component frameworks for pro-
viding process control and out-of-band messaging be-
tween processes. ORTE currently provides out-of-
band messaging over TCP, and process control us-

1

ing RSH/SSH, PBS TM, SLURM, Apple XGrid, and
IBM POE.

2.2 Cray Red Storm

The Red Storm machine at Sandia National Labora-
tories in Albuquerque, New Mexico currently consists
of 10,368 processors. Each node contains a single 2.0
GHz Opteron CPU with 2 GB of main memory and a
Cray SeaStar NIC/router attached via HyperTrans-
port. The network is a 27x16x24 mesh topology, with
2.0 GB/s bidirectional link bandwidth and 1.5 GB/s
bidirectional node bandwidth. The nearest neighbor
NIC to NIC latency is specified to be 2 µsec, with
5 µsec worst case latency.1 The compute nodes run
the Catamount lightweight kernel, a follow-on to the
Cougar/Puma [17] design used on ASCI Red [14].
The I/O and administrative nodes run a modified
version of SuSE Linux.

The Cray-designed SeaStar [1] communication pro-
cessor / router is designed to offload network commu-
nication from the main processor. It provides both
send and receive DMA engines, a 500MHz PowerPC
440 processor, and 384 KB of scratch memory. Com-
bined with the Catamount lightweight kernel, the
SeaStar is capable of providing true OS-bypass com-
munication.

The Red Storm platform utilizes the Portals 3.3
communication interface [4], developed by Sandia Na-
tional Laboratory and the University of New Mexico
for enabling scalable communication in a high perfor-
mance computing environment. The Portals interface
provides true one-sided communication semantics.
Unlike traditional one-sided interfaces, the remote
memory address for an operation is determined by the
target, not the origin. This allows Portals to act as a
building block for high performance implementations
of both one-sided semantics (Cray SHMEM) and
two-sided semantics (MPI-1 send/receive). Matching
and communication processing on Red Storm is cur-
rently done in interrupt handlers running on the main
Opteron CPU. In the near future, it is expected that

1The Red Storm machine does not currently provide these
performance characteristics — nearest neighbor latency is
closer to 5 µsec. Firmware performance tuning is ongoing and
a new revision of the SeaStar should greatly improve latency.

matching and most communication processing will be
offloaded into the firmware running on the SeaStar’s
PowerPC 440 CPU, greatly lowering latency.

The Cray XT3 commercial offering is nearly iden-
tical to the Red Storm machine installed at Sandia.
The notable difference is that while the Red Storm
communication topology is a 3-D mesh, the XT3 uti-
lizes a 3-D torus configuration. The difference is to
allow a significant portion of the Red Storm machine
to switch between classified and unclassified opera-
tion. For the remainder of the paper, the term Red
Storm refers to both the Sandia Red Storm machine
and the Cray XT3, unless otherwise noted.

3 Run-Time Environment

The initial concern for porting Open MPI to the Red
Storm platform was the Open Run-Time Environ-
ment and it’s ability to integrate with the YOD pro-
cess control system utilized on Red Storm. The yod
command will be used to start the MPI job instead of
the traditional mpirun command, removing the cen-
tralized startup mechanism available on other plat-
forms supported by Open MPI. yod handles process
startup, process monitoring, and standard I/O in a
scalable fashion. Node allocation and communication
setup is handled by the Cray run-time environment.

Many components in ORTE had configure scripts
added or modified to check for functionality that is
not available on the Red Storm platform. For exam-
ple, the TCP OOB component now checks for TCP
support and the RSH PLS checks for the fork() sys-
tem call before building. These checks are not strictly
Red Storm specific, but were motivated by the need
to support the platform.

Complicating the porting was that the Red Storm
environment would be the first environment Open
MPI would encounter that did not provide a TCP
stack available for out-of-band communication — the
compute nodes only provide the Portals interface for
communication. Portals does not require any out-
of-band communication for process wire-up and the
run-time system is not designed to support the MPI-
2 dynamic process chapter, so it was decided that the
initial port should forego out-of band communication.

2

This had a trickle down effect on other aspects of the
run-time environment, discussed below.

As there are no available OOB components on Red
Storm, the OOB Run-Time Messaging Layer (RML)
is not available. A Red Storm specific RML com-
munication channel — CNOS — was added to sup-
port the barrier functionality available as part of the
compute node runtime support (both as rml bcast()
with a NULL payload and rml barrier()). No other
communication functionality is support by the CNOS
RML. Blocking communication calls return an er-
ror immediately (ORTE ERR NOT IMPLEMENTED), while
non-blocking calls succeed, but the message callback
is never fired.

A new General Purpose Registry (GPR) compo-
nent — NULL — was added in order to handle the
lack of a central “daemon” process that is found in
most Open MPI environments. The NULL GPR com-
ponent will return an error on all immediate functions
(gpr put(), for example) and will succeed for all non-
blocking calls, but the callback will never be fired.
The MPI layer registers a number of non-blocking
GPR triggers, but does not use blocking GPR calls.
By setting reasonable defaults before registering the
non-blocking call, it is possible to execute with the
NULL GPR component — the callback never fires, so
the default values are used. For example, the universe
size MPI parameter is initially set to be the size of
MPI COMM WORLD. A GPR trigger is registered to
update the value if there is a larger universe size, but
if the trigger is never fired, a reasonable value still
exists.

One new framework was required in order to sup-
port Red Storm. The System Discovery Service
(SDS) was implemented to provide a component in-
frastructure for providing the starting process both
its current ORTE name2 and the list of names for
the current jobid. As there is a one to one map-
ping between jobs and MPI COMM WORLDs, it is
possible to determine both the rank in and the size
of MPI COMM WORLD. Generally, this information
is provided by the starting agent, almost always
through environment variables set by the process

2All ORTE processes are assigned a unique name. Cur-
rently, the name consists of a triple of (cellid, jobid, vpid),
although this may change in the near future.

starter (mpirun, MPI COMM SPAWN, etc.). Previ-
ously, this information was provided by code in the
base library of the NS framework. Moving to a new
component framework allowed for conditional compi-
lation of the components which provide process nam-
ing information. The CNOS SDS component, added
to support Red Storm, utilizes the information pro-
vided by the Cray run-time environment in order to
provide process group information.

4 Communication

Open MPI provides a layered architecture for point-
to-point communication, shown in Figure 1. The low-
est layer, the Byte Transport Layer (BTL) provides
active-message-like send and true RDMA put/get se-
mantics. The BTL interface is extremely small, con-
sisting of eleven functions and has no concept of MPI
structures or semantics. The BTL Management Layer
(BML) provides scheduling and multiplexing of BTL
instances, allowing a single BTL to be shared be-
tween multiple higher level protocols. The PML pro-
vides MPI point-to-point semantics, and may use the
BML/BTL design if desired. The OB1 PML provides
message striping and fragmenting over the BTL com-
ponents. Ongoing research seeks to add fault toler-
ance and message reliability to OB1.

MPI

OB1 PML

R2 BML

Self BTL

Portals
BTL

Figure 1: Component design for point-to-point com-
munication.

Given the ease of mapping Portals functionality to
MPI semantics, it was not clear whether it was better

3

to implement Portals communication support at the
PML or BTL level. The decision was made to imple-
ment Portals support at the BTL level for two rea-
sons: it was believed that performance would be com-
petitive with a PML implementation and the MPI-2
one-sided support utilizes the BTL interface, bypass-
ing the PML interface. If the Red Storm implemen-
tation is to support the MPI-2 one-sided chapter, it
will require either a Portals BTL or a Portals-specific
one-sided implementation. Therefore, it was decided
to implement Portals support at the BTL level to re-
duce the amount of Red Storm-specific code.

ptl_portals_send()
called

Send frag created
with floating MD

Send queue
space?

queue for later
delivery

NO
PtlPut() fragYES

Progress Events

debug output

SEND_BEGIN

debug output

SEND_END

mlength == 0

ACK

Frag not recved -
try again

YES

message
received -

Release md

NO

FRAG_ACK?

progress_send()

NO

wait for ACK to be
received YES

Figure 2: Flow chart of the btl send() logic for Por-
tals.

The Portals BTL provides implements both send
and RDMA communication. The send commu-
nication is implemented utilizing a design similar
the method used for unexpected short messages de-
scribed in [16]. Messages are put into pre-posted

receive buffers. The BTL tag is sent to the receiv-
ing process as the user data option of the PtlPut()
function, allowing messages to be sent with no BTL
specific headers. A complete flowchart of the send
logic utilized by the Portals BTL is provided in Fig-
ure 2. The number of outstanding send fragments is
limited to ensure there is space in the send message
event queue to receive any pending acknowledgments.
Because send fragments may be dropped during pe-
riods of heavy traffic and need to be retransmitted,
the calling component is not notified of completion
until a successful acknowledgment is received. The
OB1 PML can return from MPI send functions be-
fore the completion notification is received and still
maintain MPI semantics, so this is not a performance
concern in most situations. Portals vectored puts and
the BTL SEND IN PLACE option are used so that user
data is only copied into a temporary buffer if it is
non-contiguous. Otherwise, the only memory copies
necessary within the PML or BTL are for the PML
header protocols.

Unexpected
frags First frag me

First frag me

First frag me

truncate me

First frag md

First frag md

First frag mdPortals Table

frag recv eq

Figure 3: Match list and memory descriptor configu-
ration for receiving message fragments.

Receiving send messages is done via a set of large
memory segments (approximately 1 MB each) at-
tached to the Open MPI receive portal table entry.
Figure 3 provides an outline of the Portals struc-
tures for receiving btl send() fragments. A “reject”
match entry / memory descriptor sits as the last en-
try in the match list, which has no associated event
queue and truncates all messages to 0 byte length.
This allows the sending process to be notified (via the
standard Portals acknowledgment mechanism) that a
message was not received and should be retransmit-
ted. The receive message descriptors share an event

4

queue with RDMA operations. The initial design uti-
lized three event queues (one for send, one for re-
ceives, and one for RDMA operations), but it was re-
duced to two event queues (one for send and one for
receives/RDMA) because there is a small overhead
for each event queue polled, increasing latency. When
events are received from the shared receive/RDMA
queue, the user data field of the event structure is
used to determine whether the event was for a receive
or RDMA operation.

RDMA operations are largely a one-to-one map-
ping between the BTL put / get functions and
the PtlPut() / PtlGet() functions. Memory de-
scriptors are created during btl prepare src() and
btl prepare dest(), and match entries are created
and attached to a portals table entry for RDMA oper-
ations. The semantics of the BTL descriptor sharing
means that the target of the RDMA operation can
pass a unique 64 bit match key to the origin, allow-
ing the use of Portals matching for RDMA messages.
Because there is currently not enough information
passed to btl prepare src() to determine whether
the descriptor will be the origin of a put or the target
of a get operation, the match entry is always created
(the btl prepare dest() function has the symmet-
ric problem). This causes a slight overhead in cre-
ating descriptors for RDMA operations, but that la-
tency is generally masked by the eager send and the
RDMA protocol setup used by the OB1 PML.

5 Results

5.1 Alpha Requirements

The goal for FY’05 was to provide an alpha qual-
ity release of Open MPI for the Red Storm platform.
Alpha quality was defined as successfully executing
the non-performance C tests in the Intel Test suite
that is part of the Open MPI test repository and pro-
vide reasonable performance comparable to MPICH.3

Subversion revision number 7507 from the Open MPI
trunk was used to successfully run the Intel test suite

3The version of the Intel test suite in the test repository is
slightly modified from the stock version, correcting some bugs
and tests that do not conform to the MPI standard.

on a 28 node test cage at Sandia National Laboratory,
Albuquerque.4

5.2 Performance

Open MPI’s support of Red Storm currently lacks
some features required to achieve performance com-
parable to either Sandia’s MPICH 1.2.6 or Cray’s
MPICH-2 implementations, namely hardware mes-
sage matching and zero-copy receives. Implementa-
tion improvements are discussed in Section 6.1.

5.2.1 Latency

Figure 4 shows the best case message latency for the
three MPI implementations tested and direct Por-
tals communication. The lack of hardware message
matching has a clear effect on latency. There is also
a small amount of overhead for Open MPI due to the
header required for software matching (there is no ex-
tra message header for MPICH 1.2.6 or MPICH-2).
It is possible to save .25 - .75 µsec on the zero byte
latency by implementing a copy protocol that reuses
small message memory descriptors, but the decision
was made to delay such implementation until after
hardware matching was implemented (see Section 6
for more information).

Implementation 0 Byte 1 Byte
Portals 5.15 µsec 5.20 µsec
MPICH 5.49 µsec 5.78 µsec
MPICH-2 7.19 µsec 7.90 µsec
Open MPI 9.63 µsec 12.50 µsec

(a)

Figure 4: Latency for zero and one byte messages
using mpi-ping.

The drastic difference between 0 and 1 byte la-
tency for Open MPI is due to a combination of fac-
tors. There is a small amount of overhead because
0 byte messages follow an optimized communication
path and do not initialize the datatype engine. Ap-
proximately 2 µsec of the latency difference is due to

4Due to two node failures, only 26 nodes were available for
testing.

5

the Portals implementation running on Red Storm.
Portals is able to handle a 16 byte payload in one in-
terrupt, but any more requires at least two interrupts
to properly handle. The match header in Open MPI
is currently 16 bytes, so a 0 byte message can be sent
in one interrupt, but a 1 byte message will take two
interrupts to send.

5.2.2 Bandwidth

Figure 5 shows the achievable unidirectional band-
width achievable on Red Storm for the three available
MPI implementations and direct Portals communica-
tion. For very small messages, the extra latency due
to software matching adversely effects bandwidth.
For messages up to 64 KB, the lower bandwidth than
MPICH appears to be due to a combination of soft-
ware message matching and the need to copy mes-
sages from the receive buffers into user memory. At
64 KB, an RDMA get protocol is used. The first por-
tion of the message, along with the source BTL de-
scriptor for the RDMA get is sent. Once the message
is matched, the receiving side performs a PtlGet()
to receive the remainder of the message. A comple-
tion acknowledgment is then sent from the receiver to
the sender. While peak bandwidth is comparable to
MPICH, the bandwidth for medium sized messages
(64 KB - 238 KB) is lower, due to the latencies added
by the extra protocol messages.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 10 100 1000 10000 100000 1e+06 1e+07

B
an

dw
id

th
 in

 M
bp

s

Message Size in Bytes

Portals
MPICH 1.2.6

MPICH 2
Open MPI

(b)

Figure 5: NetPIPE bandwidth on Red Storm.

The noisy bandwidth measurements for large mes-
sages when using MPICH 1.2.6 and MPICH-2 on the
Red Storm machine is likely due to unexpected re-
ceives. Both implementations are designed to provide
the best performance for small messages and large
expected messages, at the cost of unexpected large
message performance. While there are options to re-
duce the cost of unexpected receives, they generally
come at the expense of either expected receives or
true asynchronous progress.

6 Future Work

The 2005 Open MPI milestone to support the Red
Storm architecture required an “alpha quality” MPI
implementation. While we believe this goal has been
met, there is still much remaining before the port can
be defined as complete. This section discusses the re-
maining issues and possible implementation options.

6.1 Portals-level matching

Currently, all message matching logic is performed
in the OB1 PML, at the MPI software layer. MPICH
1.2.6 and MPICH-2 on Red Storm utilizes the match-
ing capabilities of the Portals interface for message
matching, resulting in much lower short message la-
tencies and better medium-sized message bandwidth.
We believe that it is necessary to push matching into
the Portals layer to achieve better performance. Two
proposals exist for pushing message matching into the
portals layer: extend the BTL interface to support
hardware matching or developing a PML for Portals.

6.1.1 BTL with NIC matching

The current OB1 PML / BTL interface does all
message matching inside the OB1 interface. Mes-
sage fragments transmitted via btl send() are un-
expected messages and not received directly into user
buffers. In order to allow for hardware-based receives,
the BTL interface would have to be extended to no-
tify BTLs to expect a receive. In addition, the PML
would have to be modified (or possibly a new PML

6

added) to only allow one BTL to send match frag-
ments, and to take advantage of the hardware match-
ing. The advantage of this approach is a high reuse
of existing code. The semantics of the BTL interface
could remain largely unchanged, with the addition
of some type of matching key on btl send() oper-
ations and a receive function. In addition, the one-
sided interface could be extended to make use of the
hardware matching features, enhancing performance
of the MPI-2 one-sided interface. There are some
disadvantages to this approach — the RDMA setup
protocol required by the BTL may be too much over-
head to deliver performance comparable to MPICH
and the polling for unexpected messages may require
a third event queue, slightly increasing best case la-
tency. Because the exact requirements of such a de-
sign are unknown, no reasonable estimate of imple-
mentation time is available.

6.1.2 Portals PML

Another implementation option for improving point-
to-point performance is to implement a Portals-
specific PML interface. This approach would allow
for all optimizations described in the various liter-
ature on MPI implementations for Portals. All ex-
pected sends and receives should be able to occur
with zero copies (provided the datatype used is some-
what contiguous), increasing bandwidth for mid-sized
messages. The disadvantage of this approach is a
complete rewrite of the communication code — the
BTL code that is currently operational would not be
reusable in this scenario. Given the easy of imple-
menting most MPI semantics with the Portals API,
it is not expected to take more than a man-month to
implement a reasonably optimized Portals PML.

6.2 Small message optimization

Currently, all short messages in the Portals BTL are
using iovecs, with the calling layer’s header in the
first iovec entry (space for which is part of the BTL
descriptor), and the second entry pointing directly
to the user buffer.5 A memory descriptor is cre-

5Unless the user buffer is non-contiguous, in which case the
data will be memory copied into a send fragment.

ated during btl alloc() / btl prepare src() and
unlinked during btl desc free(). Memory descrip-
tor creation and deletion requires a kernel trap, so it
may be faster to pre-allocate a small number of small
memory descriptors for use in sending very small mes-
sages, copying the data into the buffers rather than
sending in place. If a Portals PML is implemented,
a similar optimization is available, including creating
memory descriptors for the entire memory space and
sending small messages without ever creating mem-
ory descriptors.

6.3 MPI topology component

The Red Storm machine provides access to the X,Y,Z
coordinates on the mesh to each process. From this,
it is possible during MPI INIT to determine the topol-
ogy of the entire job. The TOPO framework allows
for intelligent implementations of the MPI topology
functions. Currently, the UNITY component is used
on Red Storm, providing no real topology informa-
tion to the MPI process. It is believed that similar
information is available on the Cray XT3.

6.4 Topology aware collectives

While not strictly an optimization specific to the Red
Storm / XT3 architectures, the collective routines
currently in use on the platform are generic routines
that have no awareness of topology. Given the low
latencies of nearest neighbor communication on Red
Storm, collectives could see great improvements if
made aware of network topology. There is also dis-
cussion among Sandia researchers of pushing some
collectives logic into the Portals API — if such an
optimization was made available, a new TOPO com-
ponent for Portals would be required.

6.5 MPI-2 I/O

Open MPI uses the ROMIO package from Argonne
National Laboratory for MPI-2 I/O routines. The
stock ROMIO 1.2.4 included in version 1.0 of Open
MPI does not properly support cross-compiling, so
it is currently disabled on Red Storm. It also does
not have direct support for the Red Storm parallel

7

file system, although it appears that an ADIO im-
plementation is available that can be integrated into
Open MPI’s release of ROMIO.6

6.6 Fortran Bindings

The configure script for Open MPI’s Fortran bindings
do not support cross compiling, so current builds of
Open MPI on Red Storm lack Fortran support. The
tests that require cross compiling are to determine
size and padding of Fortran types. Unfortunately,
while Autoconf has support for determining size and
alignment of C types when cross compiling, it does
not have such support for Fortran. In fact, it is not
clear that it is possible to determine size and align-
ment of Fortran types without running a test pro-
gram. The current best solution for this problem is
to provide a small test program for determining the
required information, which is given to the configure
script. Support for Fortran on the Red Storm plat-
form is planned for FY’06. It is believed that once
configuration issues are resolved, there should be no
remaining issues with the Fortran bindings on Red
Storm.

7 Conclusions

Open MPI has shown the ability to operate in tightly
integrated supercomputing environments, such as
Red Storm. Performance is adequate, and can be im-
proved greatly by the addition of hardware matching
and the reduction of protocol overhead in the OB1
or by the addition of a Portals-specific PML compo-
nent. A small number of build and implementation
issues must be resolved before the port can be called
complete, but all are minor in scope.

Thanks

This work was supported by a grant from the
Lilly Endowment, National Science Foundation grant
ANI-0330620, and University of California (Los

6Pending the inevitable licensing issues.

Alamos National Lab) subcontract number 15043-
001-05. Thank you to Ron Brightwell for providing
both advice and machine time for the development of
Open MPI on Red Storm.

References

[1] Robert Alverson. Red storm. In Invited Talk,
Hot Chips 15, 2003.

[2] Rob T. Aulwes, David J. Daniel, Nehal N.
Desai, Richard L. Graham, L. Dean Risinger,
Mitchel W. Sukalski, Mark A. Taylor, and Tim-
othy S. Woodall. Architecture of LA-MPI,
a network-fault-tolerant mpi. In Los Alamos
report LA-UR-03-0939, Proceedings of IPDPS,
2004.

[3] B. Barrett, J. M. Squyres, A. Lumsdaine, R. L.
Graham, and G. Bosilca. Analysis of the com-
ponent architecture overhead in open mpi. In
Proceedings, 12th European PVM/MPI Users’
Group Meeting, Sorrento, Italy, September 2005.

[4] Ron Brightwell, Tramm Hudson, Arthur B. Mac-
cabe, and Rolf Riesen. The portals 3.0 message
passing interface. Technical Report SAND99-
2959, Sandia National Laboratories, 1999.

[5] G. Burns, R. Daoud, and J. Vaigl. LAM: An
Open Cluster Environment for MPI. In Proceed-
ings of Supercomputing Symposium, pages 379–
386, 1994.

[6] W. Camp and J.L. Tomkins. Thor’s hammer:
The first version of the red storm mpp architec-
ture. In Proceedings of the SC 2002 Conference
on High Performance Networking and Comput-
ing, Baltimore, MD, 2002.

[7] R. H. Castain, T. S. Woodall, D. J. Daniel,
J. M. Squyres, B. Barrett, and G .E. Fagg.
The open run-time environment (openrte): A
transparent multi-cluster environment for high-
performance computing. In Proceedings, 12th
European PVM/MPI Users’ Group Meeting,
Sorrento, Italy, September 2005.

8

[8] G. E. Fagg, A. Bukovsky, and J. J. Dongarra.
HARNESS and fault tolerant MPI. Parallel
Computing, 27:1479–1496, 2001.

[9] Graham E. Fagg, Edgar Gabriel, Zizhong
Chen, Thara Angskun, George Bosilca, Antonin
Bukovski, and Jack J. Dongarra. Fault tolerant
communication library and applications for high
perofrmance. In Los Alamos Computer Science
Institute Symposium, Santa Fe, NM, October 27-
29 2003.

[10] E. Garbriel et al. Open MPI: Goals, concept, and
design of a next generation MPI implementa-
tion. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, 2004.

[11] A. Geist, W. Gropp, S. Huss-Lederman,
A. Lumsdaine, E. Lusk, W. Saphir, T. Skjellum,
and M. Snir. MPI-2: Extending the Message-
Passing Interface. In Euro-Par ’96 Parallel Pro-
cessing, pages 128–135. Springer Verlag, 1996.

[12] R. L. Graham, S.-E. Choi, D. J. Daniel, N. N.
Desai, R. G. Minnich, C. E. Rasmussen, L. D.
Risinger, and M. W. Sukalksi. A network-failure-
tolerant message-passing system for terascale
clusters. International Journal of Parallel Pro-
gramming, 31(4), August 2003.

[13] William Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, and Marc Snir. MPI — The Complete
Reference: Volume 2, the MPI-2 Extensions.
MIT Press, 1998.

[14] Timothy G. Mattson, David Scott, and S.R.W.
A teraflops supercomputer in 1996: The asci
tflop system. In Proceedings of the 1996 Inter-
national Parallel Processing Symposium, 1996.

[15] Message Passing Interface Forum. MPI: A Mes-
sage Passing Interface. In Proc. of Supercomput-
ing ’93, pages 878–883. IEEE Computer Society
Press, November 1993.

[16] Rolf Riesen Ron Brightwell, Arthur B. Mac-
cabe. Design, implementation, and performance
of mpi on portals 3.0. International Journal

of High Performance Computing Applications,
17(1), Spring 2003.

[17] L. Shuler, C. Jong, R. Riesen, D. van Dresser,
A.B. Maccabe, L.A. Fisk, and T.M. Stallcup.
The puma operating system for massively paral-
lel computers. In Proceedings of the 1995 Intel
Supercomputer User’s Group Conference, 1995.

[18] Marc Snir, Steve W. Otto, Steve Huss-
Lederman, David W. Walker, and Jack Don-
garra. MPI: The Complete Reference. MIT
Press, Cambridge, MA, 1996.

[19] Jeffrey M. Squyres and Andrew Lumsdaine. The
component architecture of open MPI: Enabling
third-party collective algorithms. In Vladimir
Getov and Thilo Kielmann, editors, Proceed-
ings, 18th ACM International Conference on Su-
percomputing, Workshop on Component Models
and Systems for Grid Applications, pages 167–
185, St. Malo, France, July 2004. Springer.

[20] J.M. Squyres and A. Lumsdaine. A Compo-
nent Architecture for LAM/MPI. In Proceed-
ings, 10th European PVM/MPI Users’ Group
Meeting, Lecture Notes in Computer Science,
Venice, Italy, September 2003. Springer-Verlag.

[21] T.S. Woodall et al. Open MPI’s TEG point-to-
point communications methodology : Compari-
son to existing implementations. In Proceedings,
11th European PVM/MPI Users’ Group Meet-
ing, 2004.

[22] T.S. Woodall et al. TEG: A high-performance,
scalable, multi-network point-to-point commu-
nications methodology. In Proceedings, 11th Eu-
ropean PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, September 2004.

9

	Introduction
	Background
	Open MPI
	Cray Red Storm

	Run-Time Environment
	Communication
	Results
	Alpha Requirements
	Performance
	Latency
	Bandwidth

	Future Work
	Portals-level matching
	BTL with NIC matching
	Portals PML

	Small message optimization
	MPI topology component
	Topology aware collectives
	MPI-2 I/O
	Fortran Bindings

	Conclusions

