
Preserving Collective Performance Across Process
Failure for a Fault Tolerant MPI

Joshua Hursey, Richard L. Graham

Oak Ridge National Laboratory Oak Ridge, TN USA 37831

Email: {hurseyjj,rlgraham}@ornl.gov

Abstract—Application developers are investigating Algorithm
Based Fault Tolerance (ABFT) techniques to improve the effi-
ciency of application recovery beyond what traditional techniques
alone can provide. Applications will depend on libraries to sustain
failure-free performance across process failure to continue to
efficiently use High Performance Computing (HPC) systems even
in the presence of process failure. Optimized Message Passing
Interface (MPI) collective operations are a critical component of
many scalable HPC applications. However, most of the collective
algorithms are not able to handle process failure. Next generation
MPI implementations must provide fault aware versions of such
algorithms that can sustain performance across process failure.
This paper discusses the design and implementation of fault
aware collective algorithms for tree structured communication
patterns. The three design approaches of rerouting, lookup
avoiding and rebalancing are described, and analyzed for their
performance impact relative to a similar fault unaware collective
algorithm. The analysis shows that the rerouting approach causes
up to a four times performance degradation while the rebalancing
approach can bring the performance within 1% of the fault
unaware performance. Additionally, this paper introduces the
reader to a set of run-through stabilization semantics being
developed by the MPI Forum’s Fault Tolerance Working Group
to support ABFT. This paper underscores the need for care to
be taken when designing new fault aware collective algorithms
for fault tolerant MPI implementations.

Keywords-MPI; Fault Tolerance; Collective Communication;
Algorithm Based Fault Tolerance; Run-through Stabilization

I. INTRODUCTION

As scientists run their High Performance Computing (HPC)
applications longer and scale them further to address complex
scientific questions, they often exceed the reliability of a given
HPC system. Today, administrators of large HPC systems often
measure system reliability, in terms of mean time to failure
(MTTF), in days or weeks [1]. It is anticipated that future
exascale HPC systems will reduce the MTTF to minutes or
hours, further exposing the application to the risk of failure
during normal computation. Process failures, in particular, will
no longer be rare events, but normal events that the application
must be prepared to handle [2].

In preparation for these next generation HPC systems,
applications are looking to augment (or replace) their exist-
ing checkpoint/restart fault tolerance techniques with more
application focused, Algorithm Based Fault Tolerance (ABFT)
techniques to improve the efficiency of application recovery
after process failure. Unfortunately, application developers are
hindered by the lack of resilience necessary for ABFT in
fundamental supporting libraries like the Message Passing

Interface (MPI) [3]. The current MPI standard does not address
how an implementation should behave after a failure, except
in the default, abort case (i.e., MPI ERRORS ARE FATAL).
The MPI Forum created the Fault Tolerance Working Group
in response to this growing need for portable, fault tolerant
semantics and interfaces in the MPI standard.

While implementing a fault tolerant MPI implementation
care must be taken to ensure that the failure-free performance
is preserved, to the greatest possible extent, after the recovery
from the process failure. MPI collective algorithms play a
central role in many scalable HPC applications. Maintain-
ing the performance of optimized MPI collective operations
through process failure will continue to enable such scalable
HPC applications to efficiently use available computational
resources. By making small adjustments to existing collec-
tive algorithms it is easy for a implementer to degrade the
post-failure performance of or hang processes participating
in a collective algorithm previously optimized for failure-
free performance. For example, one common approach is to
recursively route around failed processes during the collective
operation. As we will show in Section IV, this can lead to
significant slowdown even at relatively small scales, up to four
times in one case.

This paper will discuss the design of fault aware collective
algorithms for a binomial tree structured communication opti-
mization pattern. Though the designs variations are applied to
this specific communication topology they are relevant to other
optimized collective communication patterns. We will analyze
the impact of these three design decisions on MPI collective
algorithm performance. Additionally, this paper will introduce
the reader to a set of run-through stabilization semantics
being developed by the MPI Forum’s Fault Tolerance Working
Group. The developing prototype implementation in Open
MPI [4] will be used for the experimentation in Section IV.

II. FAULT TOLERANT MPI SEMANTICS AND INTERFACES

The MPI Forum’s Fault Tolerance Working Group is
charged with defining a set of semantics and interfaces to
enable fault tolerant applications and libraries to be portably
constructed on top of the MPI interface. This paper analyses
the design of fault aware collectives that conform to the
run-through stabilization component of the developing pro-
posal which is being extended to include flexible recovery
strategies [5]. Run-through stabilization is sufficient for many
applications and is a necessary step for applications that

1 MPI Rank info {
2 rank, /∗ Rank in the communicator ∗/

3 generation, /∗ Generation of this rank ∗/

4 state {
5 MPI RANK OK, /∗ Normal running state ∗/

6 MPI RANK FAILED, /∗ Failed, not recognized ∗/

7 MPI RANK NULL /∗ Recognized as failed ∗/

8 }
9 }

10 /∗ Local operations ∗/

11 MPI Comm validate rank(comm, rank, rank info);
12 MPI Comm validate(comm, incount, outcount,
13 rank infos[]);
14 MPI Comm validate clear(comm, count,
15 rank infos[]);
16 /∗ Collective operation ∗/

17 MPI Comm validate all(comm, outcount);
18 MPI Icomm validate all(comm, outcount, request);

Fig. 1: MPI Communicator Management Extensions

may require process recovery. The run-through stabilization
component of the proposal provides an application with the
ability to continue running and using MPI even when one
or more processes in the MPI universe fail. The proposal
assumes fail-stop process failure meaning that a process is
permanently stopped, often due to a crash [6]. For a discussion
on how transient failures should be handled by the MPI
implementation see the proposal [5]. Other types of faults not
currently addressed by the MPI standard (i.e, reliable message
delivery), like Byzantine failures [7], are left to the application
to address, as necessary.

The proposal currently assumes that the MPI implementa-
tion provides the application with a view of the failure detector
that is both strongly accurate and strongly complete, thus a
perfect failure detector [8]. This means that eventually every
failed process will be known to all processes in the MPI uni-
verse (strong completeness), and that no process is reported as
failed before it actually fails (strong accuracy). The application
is notified of a process failure once it attempts to communicate
directly (e.g., point-to-point operations) or indirectly (e.g.,
collective operations) with the failed process through the
return code of the function, and error handler set on the
associated communicator. This proposal does not change the
default error handler of MPI ERRORS ARE FATAL, so the
application must explicitly change the error handler to, at least,
MPI ERRORS RETURN on all communicators involved in
fault handling in the application to use these semantics.

The subset of the new interfaces that relate to our discussion
are presented in Figure 1. The proposal and corresponding
prototype implementation in Open MPI used in this paper cur-
rently support all of MPI-1 functionality including collective
and group management operations. We are currently extending
both the proposal and prototype to support the remainder of the
MPI standard including parallel I/O and one-sided operations.

The proposal is based in the principle that the application
should explicitly recognize process failures that affect them
in each communicator they intend to continue using. Unrec-
ognized process failures continue to generate errors when the
failed process is referenced, while recognized failures have
MPI PROC NULL semantics and do not generate errors
when referenced.

A process can locally query for the state of an indi-
vidual process using the MPI Comm validate rank func-
tion, or access an array of all failed ranks using the
MPI Comm validate function. A process can recognize a
set of process failures locally on a specific communicator
using the MPI Comm validate clear function. Local recog-
nition of the process failure allows for the continued use
of point-to-point operations with the specified processes, but
not collective operations. Additionally, a process can col-
lectively recognize all failures in a communicator by using
the MPI Comm validate all function. The collective val-
idate function returns the total number of failures in that
communicator as agreed upon by all of the alive processes
in the communicator, and re-enables collective operations on
that communicator. This operation will return either success
everywhere or some error at each alive rank. This means
that the MPI Comm validate all function provides the ap-
plication with an implementation of a fault tolerant consensus
algorithm [9]. Failures are recognized on a per-communicator
basis to guarantee that libraries are able to receive notification
of the failure, even if the main application has previously
recognized the failure on a duplicate communicator. In the
prototype, we maintain a bitfield with each communicator
handle to account for the recognition of process failures on that
communicator. Though this bitfield does contribute slightly
to the memory footprint of a communicator handle, other
implementation techniques could be used to help mitigate the
memory impact of tracking recognized failures.

The MPI Rank info object is used by the validate func-
tions to express the rank, generation, and state of a specific
process. The rank field indicates the rank in the associ-
ated communicator. The generation field is a monoton-
ically increasing number that is used to distinguish between
multiple recovered versions of a process. The state field
indicates which one of the three states that the rank is in.
The MPI RANK OK state indicates that the rank is running
normally. The MPI RANK FAILED state indicates that the
rank has failed, and not yet been recognized by this process
on this communicator. The MPI RANK NULL state indicates
that the rank has failed, and has been recognized by this
process on this communicator.

Once any process fails in a communicator, all collective
operations on that communicator will return an error in the
class MPI ERR RANK FAIL STOP until the communica-
tor is repaired using the collective MPI Comm validate all
function. This requirement allows the MPI implementation
an opportunity to re-optimize collective operations for im-
proved performance after the failure, the mechanism for do-
ing so is the focus of this paper. Once the communicator

has been collectively validated, then recognized failed ranks
participate as if they were MPI PROC NULL (see [5] for
more details). In order to preserve failure-free performance
of collective operations, the working group decided to not
require consistent return codes from collective operations (with
the exception of MPI Comm validate all). This means that
collective algorithms must be fault aware, but not necessarily
fault tolerant. For example, if the MPI implementation uses
a tree implementation for MPI Bcast then it is possible for
a process to successfully leave the collective early once it
has received the message and propagated the message to its
children. However, a failure may occur while traversing the
remainder of the tree that would cause some processes to
return error. The MPI Comm validate all function is useful
in creating recovery blocks for sets of MPI operations [10].

III. FAULT AWARE COLLECTIVES

Collective operations allow an application developer using
MPI to leverage years of scalable algorithmic optimization
research without needing to know exactly how the collective
is implemented. Little attention has been given to preserving
these optimizations across process failure. After a process
failure, communication structures must be adapted to operate
not just on dense communicators without process failures, but
also on sparse communicators containing recognized failed
processes. Collective algorithms can be classified into three
major categories: fault unaware, fault aware, and fault tol-

erant. Existing collective algorithms are often fault unaware,
whereas the run-through stabilization proposal requires at
least fault aware collectives algorithms, and, optionally, fault
tolerant algorithms.

Fault unaware collective algorithms operate only over dense
communicators without failed processes. If a process failure is
recognized or emerges during the collective then the collective
may hang on some ranks while returning from others. Given
the tendency of an MPI implementation to abort the MPI
job after a process failure, the hang is often remedied by
the preemption of the entire job. Take for example a tree
based MPI Barrier implementation in which a leaf child fails
just before entering the collective operation. If the root is not
directly connected to the child in the tree then a fault unaware
collective algorithm may hang at the root. The hang can be
avoided if the intermediary ranks forward the error information
throughout the tree unblocking the remainder of the ranks.
If the collective algorithm contains such logic to propagate
failure information, we no longer classify it as fault unaware,
but as fault aware.

Fault aware collective algorithms recognize that failures can
occur during the collective operation and that the commu-
nicator may contain failed processes. At minimum, a fault
aware collective should not hang when a failed process is
encountered. The run-through stabilization proposal requires
that, to the greatest possible extent, the fault aware collectives
should work around recognized failures in the communica-
tor to complete the collective successfully. If a new failure
is encountered during the collective operation, fault aware

collectives are allowed to return success in some ranks and
some error in other ranks depending upon when the error
was detected in the course of the algorithm. As an example,
Section II discussed how such behavior may emerge in a tree
implementation of MPI Bcast.

Fault tolerant collective algorithms are fault aware col-
lectives that guarantee that the collective operation com-
pletes successfully everywhere or returns some error at ev-
ery participating rank. A fault tolerant collective can be
built from a fault aware collective followed by a collective
MPI Comm validate all since it requires a fault tolerant
consensus protocol at the bottom of the operation. The strict
consistency provided by fault tolerant collective algorithms
provides consistency guarantees at the cost of performance
for each collective operation. By decoupling the fault aware
collective from the consensus protocol, an MPI application
developer can group many collective operations into a recovery
block, and preserve the performance of each individual collec-
tive operation. MPI implementors are provided the opportunity
to add fault tolerant semantics to the proposed fault aware
collective semantics as an implementation specific option
without breaking the existing proposal.

A. Design Options

This paper analyzes three implementation options for fault
aware collective algorithms that conform to the existing pro-
posal. In our discussion, we use a binomial tree structure for
communication, though the concepts relate to any tree-based
communication structure and likely others. The three design
options are rerouting, lookup avoiding, and rebalancing. The
goal of the design is to regain as much performance as possible
after process failure, ideally matching the performance of the
fault unaware collective algorithm over the reduced number of
processes.

In the rerouting design, the collective checks for a failed
process before interacting with it, and recursively routes
around failed processes. The check for recognized failure is
needed to distinguish between a recognized failed process and
an alive process in point-to-point operations. Since recognized
failures have semantics equal to MPI PROC NULL, sending
to an alive process and a recognized failed process will both
return success, though each case must be handled differently. If
a recognized failure is detected, then the parent will recursively
adopt the children of the failed child, and the children will
search for the nearest alive grandparent. Root failure is handled
by choosing the lowest numbered rank from the next level of
the tree. So in the rerouting design, recognized failures are
routed around while maintaining the original communication
structure. This approach is often considered sufficient when
first approaching fault aware collectives since it is the often the
most direct way to create a functional fault aware collective.

Rerouting in a binomial tree containing recognized failures
can hurt performance if the tree becomes imbalanced. Figure 2
shows a binomial tree with zero, one, four, and eight failures.
This figure highlights that, depending on which ranks fail,
the tree could become significantly imbalanced causing some

Fig. 2: Binomial tree representation with 0, 1, 4, and 8 failures
in a 16 process job, using the rerouting method.

ranks to become overloaded. In the case of four failures, the
root (rank 0) goes from 4 outgoing edges in the failure-free
case to 8 outgoing edges. Also notice that at 8 failures the
outgoing edges from the root is reduced to 7 as the tree
flattens into a linear operation. This aspect will be revisited in
Section IV as the cause for some performance improvement
for large numbers of failures.

In the lookup avoiding design, the check for recog-
nized failures is removed from the collective algorithm by
calculating the parent/child relationship at the end of the
MPI Comm validate all function. Each rank stores its par-
ent/child relationship in a data structure associated with the
communicator. This design also removes the recursive descent
of the rerouting algorithm since a full list of children is
predetermined. By removing the check from the collective
algorithm, this optimization is useful in determining the per-
formance impact of frequent state lookup operations, and
functional recursion in high process failure scenarios. This
optimization does not address the potential for imbalance in
the communication structure.

Fig. 3: Binomial tree representation with 0, 1, 4, and 8 failures
in a 16 process job, using the rebalancing method.

In the rebalancing design, the check for recognized failures
is removed, and the tree is rebalanced at the end of the
MPI Comm validate all function. The tree is rebalanced
by projecting the alive ranks into a dense rank ordering,
determining the new tree structure, and then projecting the
ranks back into the sparse rank ordering. This design both
avoids the recognized failure check in the collective algorithm,
and the performance penalty of an unbalanced communication
structure. Figure 3 illustrates rebalancing the binomial tree
structure after zero, one, four and eight failures. This illustrates
how the tree structure is maintained by repositioning ranks in
the tree, and pruning at the leaves.

B. Other Implementation Considerations

As mentioned earlier, fault aware collective algorithms must
avoid hanging processes during the collective operation when
new process failures emerge. The Open MPI prototype marks
each collective point-to-point operation with a flag indicating
that if any new failure is detected on this communicator then
this operation should complete immediately with a specific
error even if the specified target is not failed. Once a failure is
detected the collective algorithm returns an appropriate error
code to the application. Since all processes eventually know
of all process failures, this prevents any one process from
hanging in the collective operation. All of the fault aware

collective operations are built using these fault aware point-
to-point operations.

Recall from Section II that collectives are disabled whenever
there is an unrecognized failure and are reenabled when
the application calls the collective MPI Comm validate all
function. With this in mind, we chose to rebalance the commu-
nication structure at the end of this function when all processes
have the same list of know failures in the communicator. The
time to determine the new communication structure is a local,
small operation (on the order of a few microseconds). The cost
of the collective validate operation is beyond the scope of this
paper and left to future work for further analysis.

One alternative to rebalancing at the bottom of
MPI Comm validate all is to rebalance after notification of
every process failure. This may potentially reduce the time to
complete the MPI Comm validate all function by shifting
the rebalance operation to the failure notification operation.
In the case of new failures detected at validate time (due to
the synchronization of the failure detectors) the rebalance
would occur at this time anyway, negating the performance
benefits. Additionally, in the case of many process failures,
the rebalance operation would be called once for each process
failure instead of once at validate time, a step necessary to
continuing to use collectives on this communicator. With
these cases in mind, we chose to only rebalance at the bottom
of the collective validate when the same failure set is know
to all ranks.

IV. RESULTS

The following analysis used a prototype of the run-through
stabilization proposal based on the development trunk of the
Open MPI implementation of the MPI standard [4]. We created
a new component of the coll Modular Component Architecture
(MCA) [11] framework based on the basic component, called
ftbasic. The ftbasic component contains the fault aware ver-
sions of the collectives in the basic component. By separating
the fault unaware and fault aware collectives into different
components we were able to switch between them at runtime
to compare their performance.

In these tests, we used 64 nodes of a 128 node, Dual AMD
2.0 GHz Dual-Core Opteron machine with 4 GB of memory
per compute node. Compute nodes are connected with gigabit
Ethernet and InfiniBand. Only the Ethernet (tcp) and shared
memory (sm) Open MPI network drivers (BTL components)
were used for these tests since they are the only fully supported
interconnects provided by the prototype at this time.

Our analysis focuses on the performance of MPI Barrier
since it is a latency sensitive collective operation, and will best
illustrate the performance impact of the various fault aware
collective design choices. The implementation of MPI Barrier
uses a binomial tree to gather and broadcast control informa-
tion. In testing, specific ranks are forcibly terminated before
the performance testing by sending them the SIGKILL signal.
Ranks were selected for termination in rank order starting at
rank 1 to incur maximal tree imbalance as the number of
failures increases. For example, 4 failures will be represented

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 8 16 32 64 128 256

T
im

e
 (

m
ic

ro
se

co
n

d
s)

Job Size

Barrier Performance (0 failures)

Fault Unaware
Reroute

No Lookup
Rebalanced

Fig. 4: Barrier performance with no failures.

by the failure of ranks 1, 2, 3 and 4, similar to the illustration
in Figure 2.

The basic component provides the baseline, fault unaware
performance. Baseline performance was assessed using a com-
municator of size N −F where N is the number of processes
in the job, and F is the number of failures in the job. The fault
unaware performance represents the target performance for the
fault aware variations. Care was taken to place processes in
the same physical location on the machine during the baseline
runs as in the fault aware testing, so that the results are not
skewed due to the position of a process in the system.

The ftbasic component provides three implementations of
the fault aware collectives able to be selected at runtime via
MCA parameters. The rerouted implementation checks for and
recursively routes around recognized failures in the commu-
nicator. The lookup avoiding implementation determines the
proper routing at validate time avoiding both the process state
lookup and the recursive descent, but still uses a potentially
unbalanced tree structure. The rebalanced implementation
rebalances the tree at validate time in addition to avoiding
the state lookups and recursive descent.

Figure 4 shows the performance of the barrier operation
for each of the design variations when there are no failures.
This figure illustrates that as scale increases the fault aware
algorithm designs are able to achieve performance equal within
1% of the baseline performance.

Figure 5 shows the performance of a 256 process job as
the number of failures is increased. As the number of failures
increases the overhead due to load imbalance becomes more
significant. After about 8 process failures the time to complete
the barrier operation starts to grow substantially. The growth
continues until it reaches half of the job size, at which point
the unbalanced tree becomes flat, as shown for 16 processes
with 8 failures in Figure 2. Once the tree becomes flat the
number of outgoing edges to the root are reduced by each
subsequent failure. As the number of outgoing edges decrease
the performance starts to return to nearly the performance of
the rebalanced version.

Figure 5 also shows the additional overhead of the recursive
nature of the rerouting technique as compared with the lookup

Failures Baseline Fault Aware No Lookup Rebalance
0 858.74 854.48 (0.5 %) 852.46 (0.7 %) 851.26 (0.9 %)
1 880.83 860.93 (2.3 %) 860.37 (2.3 %) 872.86 (0.9 %)
2 875.06 867.91 (0.8 %) 867.12 (0.9 %) 862.74 (1.4 %)
4 837.35 840.88 (-0.4 %) 828.98 (1.0 %) 842.76 (-0.6 %)
8 832.62 910.20 (-9.3 %) 885.57 (-6.4 %) 837.15 (-0.5 %)
16 825.11 1317.16 (-59.6 %) 1244.39 (-50.8 %) 833.61 (-1.0 %)
32 815.06 2275.98 (-179.2 %) 2111.94 (-159.1 %) 823.07 (-1.0 %)
64 806.89 3245.06 (-302.2 %) 2978.67 (-269.2 %) 814.99 (-1.0 %)
96 789.39 3323.22 (-321.0 %) 2925.42 (-270.6 %) 795.53 (-0.8 %)
128 787.71 3396.60 (-331.2 %) 2869.00 (-264.2 %) 787.59 (0.0 %)
160 685.89 2572.30 (-275.0 %) 2002.26 (-191.9 %) 690.38 (-0.7 %)
192 653.65 1780.34 (-172.4 %) 1127.87 (-72.5 %) 659.10 (-0.8 %)
224 518.93 1105.24 (-113.0 %) 522.44 (-0.7 %) 522.01 (-0.6 %)

TABLE I: Barrier performance analysis with up to 224 process failures for a 256 process job. Times in microseconds.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 1 2 4 8 16 32 64 128 256

T
im

e
 (

m
ic

ro
se

co
n
d

s)

Num Failures

Barrier Performance (256 procs)

Fault Unaware
Reroute

No Lookup
Rebalanced

Fig. 5: Barrier performance with up to 224 process failures
for a 256 process job.

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1 2 4 8 16

T
im

e
 (

m
ic

ro
se

co
n
d
s)

Num Failures

Barrier Performance (256 procs)

Fault Unaware
Reroute

No Lookup
Rebalanced

Fig. 6: Barrier performance with up to 16 failures for a 256
process job.

avoiding performance. As the number of failures increases
the depth of the recursion to find the alive children of a
descendant increases. The depth of recursion and the frequent
state lookups contribute to this difference in performance,
though the recursion overhead was the main contributor to
the performance overhead.

Figure 5 and Table I also show that the rebalanced approach
achieves performance within 1% of the baseline, fault unaware

version. Figure 6 focuses the graph on just failures between 1
and 16 processes. This figure shows that the performance gains
from rebalancing start to become noticeable after 4 process
failures, and avoiding the lookup time is always beneficial.

V. RELATED WORK

Applications have already started to experiment with inte-
grating fault tolerance techniques into their code to improve
the efficiency of application recovery. ABFT techniques re-
quire specialized algorithms that are able to adapt to and
recover from process loss [12]. ABFT techniques typically
require data encoding, algorithm redesign, and diskless check-
pointing [13] in addition to a fault tolerant message passing
environment (e.g., MPI). Although matrix operations have
been the focus of much of the research into ABFT [14], [15],
[16], there has also been research in other domains [17].

Related to ABFT is natural fault tolerance techniques [18],
[19]. Natural fault tolerance techniques focus on algorithms
that can withstand the loss of a process and still return an
approximately correct answer, usually without the use of data
encoding or checkpointing. So natural fault tolerance can be
viewed as a more general form of ABFT.

When it comes to extending the fault semantics of the
MPI standard, the run-through stabilization proposal used
in this paper is closely related to the FT-MPI project. FT-
MPI is an MPI-1 implementation that extended the MPI
communicator states and modified the MPI communicator
construction functions [20]. Fault tolerant MPI applications
use these extensions to stabilize MPI communicators and, op-
tionally, recover failed processes by relaunching them from the
original binary and rejoining them into the MPI communicator.
The run-through stabilization proposal behaves similar to FT-
MPI’s blank communicator mode, where failed processes
are replaced by MPI PROC NULL. Additionally, the two
proposals have complementary semantics regarding point-to-
point and collective operations. The main difference between
these projects is in the handling of communicator and group
objects. Upon process failure, FT-MPI destroys all MPI objects
with non-local information (e.g., communicators and groups),
except MPI COMM WORLD, requiring the application to
manually recreate these objects after every failure in the
same order. In contrast, the run-through stabilization proposal

preserves all communicators and groups. Additionally, FT-MPI
required that every process failure be recognized globally by
all alive processes in order to complete the recovery stage.
In the run-through stabilization proposal, process failures can
be recognized locally, and on a per-communicator basis. These
two differences allow the run-through stabilization proposal to
more flexibly support libraries, and, by allowing for localized
failure recognition, open the door to more scalable fault toler-
ant solutions. However, the run-through stabilization proposal
does not, at the moment, handle process recovery and rejoining
recovered processes to existing communicators.

Application developers rely on optimized collective algo-
rithms to efficiently use large scale HPC systems. There exists
a substantial body of collective optimization research that use
a variety of communication patterns that may be tuned to
specific system designs [21], [22], [23], [24]. Though most
of these algorithms are fault unaware, only the FT-MPI and
Adaptive MPI (AMPI) projects provide fault aware collective
variations. Though FT-MPI provides a set of tuned collec-
tive operations [25], [23], after code inspection (of version
1.0.1 [26]) it was determined that only the linear, not tree based
or tuned, algorithms were used when the blank communication
mode was enabled. In FT-MPI, a dense shadow communicator,
associated with every communicator, is used for collective
operations internally. In the designs presented in this paper,
instead of a shadow communicator a structure containing a
reference to the root, parent, and list of children is associated
with a communicator for use in the collective operation. In
the lookup avoiding and rebalanced designs, the binomial
tree based algorithms use this structure to determine the
communication pattern over the original communicator. The
recursively rerouted design routes around recognized failed
processes in the tree during the collective operation. Since
FT-MPI does not provide fault aware, tree-based collective
operations we were not able to directly compare the designs
beyond this analysis.

The AMPI project provides fault tolerant collective opera-
tions that can operate across process migration activities based
on a k-ary tree communication structure [27]. AMPI requires
that all failures be predictable so that effected processes can
be migrated before a failure. As a result the collectives are
able to rely on every process continuing to participate in
the collective across the process migration, and need not
account for permanent process failures, as in the run-through
stabilization scenario presented in this paper. The collective
algorithms provided by AMPI use a technique similar to the
recursive rerouting technique when handling a predicted fault
inside an active collective operation. Once the operation is
complete, AMPI then rebalances the communication topology
for successive operations. The performance results shown in
[27] complement the rerouting and rebalancing results pre-
sented in this paper, though this paper focuses on maintaining
the performance even when processes are permanently failed.

The MPI/FT and C3 projects approached MPI collective
operations in a slightly different manner than the FT-MPI and
AMPI projects. The model based approach of the MPI/FT

project provides customized solutions to a few different ap-
plication execution models. This project requires that either
failed processes be replaced (i.e., from a checkpoint or spare
process) or collective operations are prohibited, as in the man-
ager/worker model [28]. These restrictions indicate that the
MPI/FT project did not implement fault aware MPI collective
algorithms that handle permanently failed processes in the
communicator.

The C3 project elaborates on the challenges of handling
collective operations at the application level to support appli-
cation level checkpointing [29]. As with the MPI/FT project,
the C3 project replaces failed processes by restarting the
application from the last stable checkpoint, so the collective
algorithms also do not have to explicitly handle permanently
failed processes in the communicator.

VI. CONCLUSION

Collective operations are an important component of many
scalable HPC applications, and the focus of many years of
algorithmic optimization research. Unfortunately, most of this
research does not account for emergent and existing pro-
cess failure. A conventional approach to building fault aware
collectives is to recursively route around failed processes.
This paper demonstrated that such an approach can lead to
significant performance degradation, up to four times at a
relatively small scale. We explored two alternative approaches,
lookup avoiding and rebalancing, that yielded performance
benefits over the recursive rerouting approach. The lookup
avoiding approach was able to improve the performance in
all tests by avoiding the recursive descent and shifting the
check for recognized failures from every collective operation
to once at the end of the collective MPI Comm validate all
function. The rebalancing approach further improved this
by maintaining the balanced tree and achieved performance
within 1% of the fault unaware collective algorithm regardless
of the number of failures. Though the analysis used a binomial
tree communication pattern, the design techniques described
are applicable to other collective communication topologies.

As future work, we intend to investigate fault aware versions
of more advanced collective algorithms. Some such algorithms
use alternative communication structures that adjust to the
network and node topologies of a given system. Additionally,
we intend to investigate scalable implementation variations
of the collective MPI Comm validate all operation which
plays a key role in the run-through stabilization proposal.
Beyond these items, we will continue to work on extending
the prototype to support the full MPI standard on a wider
variety of platforms. The prototype development will match
the pace of the development of the fault tolerance proposal
being generated by the MPI Forum’s Fault Tolerance Working
Group.

ACKNOWLEDGMENTS

Research sponsored by the Mathematical, Information, and
Computational Sciences Division, Office of Advanced Scien-
tific Computing Research, U.S. Department of Energy, under

Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.
The Odin machine at Indiana University was provided by grant
EIA-0202048 from the National Science Foundation.

REFERENCES

[1] B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” Journal of Physics: Conference Series, vol. 78, 2007.

[2] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience,” International Journal of High Performance
Computing Applications, vol. 23, no. 4, pp. 374–388, 2009.

[3] Message Passing Interface Forum, “MPI: A Message Passing Interface,”
in Proceedings of Supercomputing ’93. IEEE Computer Society Press,
November 1993, pp. 878–883.

[4] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.
Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings of the 11th European PVM/MPI Users’ Group Meeting,
Budapest, Hungary, September 2004, pp. 97–104.

[5] Fault Tolerance Working Group, “Run-though stabilization inter-
faces and semantics,” svn.mpi-forum.org/trac/mpi-forum-web/wiki/ft/
run through stabilization.

[6] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” Journal of the ACM, vol. 35, no. 2, pp. 288–323,
1988.

[7] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[8] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of the ACM, vol. 43, no. 2, pp. 225–267,
1996.

[9] M. Barborak, A. Dahbura, and M. Malek, “The consensus problem in
fault-tolerant computing,” ACM Computing Surveys, vol. 25, no. 2, pp.
171–220, 1993.

[10] B. Randell, “System structure for software fault tolerance,” in Proceed-
ings of the international conference on reliable software. New York,
NY, USA: ACM Press, 1975, pp. 437–449.

[11] J. M. Squyres and A. Lumsdaine, “The component architecture of Open
MPI: Enabling third-party collective algorithms,” in Proceedings of the
18th ACM International Conference on Supercomputing, Workshop on
Component Models and Systems for Grid Applications, V. Getov and
T. Kielmann, Eds. St. Malo, France: Springer, July 2004, pp. 167–185.

[12] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. 33, no. 6, pp.
518–528, 1984.

[13] J. S. Plank, K. Li, and M. A. Puening, “Diskless checkpointing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 9, no. 10, pp.
972–986, October 1998.

[14] Z. Chen and J. Dongarra, “Algorithm-based fault tolerance for fail-
stop failures,” IEEE Transactions on Parallel and Distributed Systems,
vol. 19, no. 12, pp. 1628–1641, 2008.

[15] Y. Du, P. Wang, H. Fu, J. Jia, H. Zhou, and X. Yang, “Building
single fault survivable parallel algorithms for matrix operations using
redundant parallel computation,” International Conference on Computer
and Information Technology, pp. 285–290, 2007.

[16] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra, “Recovery patterns for
iterative methods in a parallel unstable environment,” SIAM Journal of
Scientific Computing, vol. 30, no. 1, pp. 102–116, 2007.

[17] H. Ltaief, E. Gabriel, and M. Garbey, “Fault tolerant algorithms for
heat transfer problems,” Journal of Parallel and Distributed Computing,
vol. 68, no. 5, pp. 663–677, 2008.

[18] C. Engelmann and A. Geist, “Super-scalable algorithms for computing
on 100,000 processors,” in Proceedings of International Conference on
Computational Science (ICCS), vol. 3514, no. 1, May 2005, pp. 313–
320.

[19] A. Geist and C. Engelmann, “Development of naturally fault tolerant
algortihms for computing on 100,000 processors,” Journal of Parallel
and Distributed Computing, 2002.

[20] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca, J. Pjesivac-
Grbovic, and J. J. Dongarra, “Process fault-tolerance: Semantics, design
and applications for high performance computing,” International Journal
for High Performance Applications and Supercomputing, vol. 19, no. 4,
pp. 465–478, 2005.

[21] T. Kielmann, R. Hofman, H. Bal, A. Plaat, and R. Bhoedjang, “MagPIe:
MPI’s collective communication operations for clustered wide area
systems,” PPoPP ’99: Proceedings of the seventh ACM SIGPLAN
symposium on principles and practice of parallel programming, vol. 34,
no. 8, pp. 131–140, Aug 1999.

[22] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn, “On
optimizing collective communication,” IEEE International Conference
on Cluster Computing, pp. 145 – 155, 2004.

[23] G. Fagg, G. Bosilca, J. Pješivac-Grbović, T. Angskun, and J. Don-
garra, “Tuned: An Open MPI collective communications component,”
Distributed and Parallel Systems, pp. 67–72, Jan 2007.

[24] A. Faraj, X. Yuan, and D. Lowenthal, “STAR-MPI: self tuned adaptive
routines for MPI collective operations,” Proceedings of the 20th annual
international conference on supercomputing, Jan 2006.

[25] G. E. Fagg, T. Angskun, G. Bosilca, J. Pješivac-Grbović, and J. Don-
garra, “Scalable fault tolerant MPI: extending the recovery algorithm,”
Recent Advances in Parallel Virtual Machine and Message Passing
Interface, vol. 366/2005, pp. 67–75, Jan 2005.

[26] Innovative Computing Laboratory, “FT-MPI version 1.0.1,” http://icl.cs.
utk.edu/ftmpi/software.

[27] S. Chakravorty, C. Mendes, and L. Kalé, “Proactive fault tolerance in
MPI applications via task migration,” High Performance Computing,
vol. 4297, pp. 485–496, Jan 2006.

[28] R. Batchu, Y. S. Dandass, A. Skjellum, and M. Beddhu, “MPI/FT: a
model-based approach to low-overhead fault tolerant message-passing
middleware,” Cluster Computing, vol. 7, no. 4, pp. 303–315, Jan 2004.

[29] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Collective
operations in application-level fault-tolerant MPI,” Proceedings of the
17th annual international conference on Supercomputing, Jan 2003.

