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Abstract. Selecting the close-to-optimal collective algorithm based on the parameters of the collective
call at run time is an important step in achieving good performance of MPI applications. In this paper,
we focus on MPI collective algorithm selection process and explore the applicability of the quadtree
encoding method to this problem. We construct quadtrees with different properties from the measured
algorithm performance data and analyze the quality and performance of decision functions generated
from these trees. The experimental data shows that in some cases, the decision function based on
a quadtree structure with a mean depth of 3 can incur as little as a 5% performance penalty on
average. The exact, experimentally measured, decision function for all tested collectives could be fully
represented using quadtrees with a maximum of 6 levels. These results indicate that quadtrees may be a
feasible choice for both processing of the performance data and automatic decision function generation.

1 Introduction

The performance of MPI collective operations is crucial for good performance of MPI application which
use them [1]. For this reason, significant efforts have been put on design and implementation of efficient
collective algorithms both for homogeneous and heterogeneous cluster environments [2–8]. Performance of
these algorithms varies with the total number of nodes involved in communication, system and network
characteristics, size of data being transferred, current load, and if applicable, the operation that is being
performed as well as the segment size which is used for operation pipelining. Thus, selecting the best possible
algorithm and segment size combination (method) for every instance of collective operation is important.

To ensure good performance of MPI applications, collective operations can be tuned for the particular
system. The tuning process often involves detailed profiling of the system possibly combined with commu-
nication modeling, analyzing the collected data, and generating a decision function. During run-time, the
decision function selects close-to-optimal method for a particular collective instance. This approach relies
on the ability of the decision function to accurately predict algorithm and segment size to be used for the
particular collective instance. Alternatively, one could construct an in-memory decision system which could
be queried/searched at the run-time to provide the optimal method information. In order for either of these
approaches to be feasible, the memory footprint and the time it takes to make decisions need to be minimal.

This paper studies the applicability of the quadtree encoding method as a storage and optimization
technique within the MPI collective method selection process. We assume that the system of interest has been
benchmarked and that detailed performance information exists for each of available collective communication
algorithm. With this information, we focus our efforts on investigating whether the quadtree encoding is a
feasible way to generate static decision functions as well as, to represent the decision function in memory.

The paper proceeds as follows: Section 2 discusses existing approaches to the decision making/algorithm
selection problem; Section 3 describes the quadtree construction and analysis of quadtree decision function
in more detail; Section 4 presents experimental results; Section 5 concludes the paper with discussion of the
results and future work.

2 Related work

The MPI collective algorithm selection problem has been addressed in many MPI implementations.



In the FT-MPI [9], the decision function is generated manually using visual inspection method augmented
with Matlab scripts used for analysis of the experimentally collected performance data. This approach results
in a precise albeit complex decision functions. In the MPICH-2 MPI implementation, the algorithm selection
is based on bandwidth and latency requirements of an algorithm, and the switching points are predetermined
by the implementers [5]. In the tuned collective module of the Open MPI [10], the algorithm selection can be
done in either of the following three ways: via compiled decision function, via user-specified command line
flags, or using rule-based run-length encoding scheme which can be tuned for particular system.

In this work, we treat the information about the optimal collective implementation on a system as a bit
pattern which we encode using a similar technique to an image encoding process. We then use the encoded
structure to generate decision function code. To the best of our knowledge, we are the only group which has
approached the MPI collective tuning process in this way.

3 Quadtrees and MPI collective operations

We use the collective algorithm performance information on a particular system to extract the information
about the optimal methods and construct a decision map for the collective on that system. An example of a
decision map is displayed in Table 1. The decision map which will be used to initialize the quadtree must be
a complete and square matrix with a dimension size that is a power of two, 2k × 2k. Complete decision map
means that tests must cover all message and communicator sizes of interest. Neither of these requirements
are real limitations, as the missing data can be interpolated and the size of the map can be adjusted by
replicating some of the entries.

Communicator size Message size Algorithm Segment Method
(y-axis) (x-axis) size index

3 1 Linear none 1
3 2 Linear none 1
... ... ... ... ...
128 64KB BinaryTree 8KB 13

Table 1. Decision map example. The axis information relates to the decision maps in Figure 1.

Once a decision map is available, we initialize the quadtree from it using user specified constraints such
as accuracy threshold and maximum allowed depth of the tree. The accuracy threshold is the minimum
percentage of points in a block with the same “color”, such that the whole block is “colored” in that “color”.
The quadtree with no maximum depth set and threshold of 100% is an exact tree. The exact tree truthfully
represents the measured data. A quadtree with either threshold or maximum depth limit set allows us to
reduce the size of the tree at the cost of prediction accuracy. Limiting the absolute tree depth limits the
maximum number of tests we may need to execute to determine the method index for specified communicator
and message size. Setting the accuracy threshold helps smooth the experimental data, thus possibly making
the decision function more resistant to inaccuracies in measurements.

A property of any decision tree is that an internal node of the tree corresponds to an attribute test,
and the links to children nodes correspond to the particular attribute values. In our encoding scheme, every
non-leaf node in the quadtree corresponds to a test which matches both communicator and message size
values. The leaf nodes contain information about the optimal method for the particular communicator and
message size ranges. Thus, leaves represent the rules of the particular decision function. In effect, quadtrees
allow us to perform a recursive binary search in a two-dimensional space.

3.1 Generating decision function source code

We provide functionality to generate decision function source code from the initialized quadtree. Recursively,
for every internal node in the quadtree we generate the following code segment:
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if (NW) {...} else if (NE) {...} else if (SW) {...} else if (SE) {...} else {error}.1

The current implementation is functional but lacks optimizations, i.e. ability to merge conditions with same
color2. The conditions for boundary points (minimum and maximum communicator and message sizes) are
expanded to cover that region fully. For example, the rule for minimum communicator size will be used for
all communicator sizes less than the minimum communicator size.

3.2 In-memory quadtree decision structure

Alternative to generating the decision function source code is maintaining an in-memory quadtree decision
structure which can be queried during the run time.

An optimized quadtree structure would contain 5 pointers and 1 method field, which could probably
be a single byte or an integer value. Thus, the size of a node of the tree would be around 44B on 64-bit
architectures3. Additionally, the system would need to maintain in memory the mapping of (algorithm,
segment size) pairs to method indexes as well. The maximum depth decision quadtree we encountered in
our tests had 6 levels. This means that in the worst case, the 6-level decision quadtree could take up to
47−1
4−1 = 5461 nodes, which would occupy close to 235KB of memory. However, our results indicate that the
quadtrees with 3 levels can still produce reasonably good decisions. Three-level quadtree would occupy at
most 3740B and as such could fit into 4 1KB pages of main memory. Even so, the smaller quadtree if cached
would still occupy significant portion of the cache. Based on these memory requirements we decided not to
implement the in-memory quadtree-based decision structure yet, and to focus our efforts on decision function
source code generation.

4 Experimental results and analysis

Under the assumption that the collective operations parameters are uniformly distributed across communi-
cator size and message size space, we expect that the average depth of the quadtree is the average number
of conditions we need to evaluate before we can determine which method to use. In the worst case, we will
follow the longest path in the tree to make the decision, and in the best case the shortest.

The performance data for broadcast and reduce collective algorithms was collected on Grig cluster located
at the University of Tennessee at Knoxville and Nano cluster located at the Lawrence Berkeley National
Laboratory.

4.1 Broadcast decision maps

Figure 1 shows six different quadtree decision maps for a broadcast collective on the Grig cluster. We
considered five different broadcast algorithms (Linear, Binomial, Binary, Splitted-Binary, and Pipeline),4

and four different segment sizes (no segmentation, 1KB, 8KB, and 16KB). The measurements covered all
communicator sizes between 2 and 28 processes and message sizes in 1B to 384KB range.

The exact decision map in Figure 1 exhibits trends, but there is a considerable amount of information for
intermediate size messages (between 1KB and 10KB) and small communicator sizes. Limiting the maximum
tree depth smoothes the decision map and subsequently decreases the size of the quadtree. Table 2 shows
the mean tree depth and related statistics for the decision maps presented in Figure 1.

1 NW, NE, SW, and SE correspond to north-west, north-east, south-west, and south-east quadrants of the region.
2 The code segment generated for each internal node contains at least 21 lines – 5 lines for conditional expressions,

10 lines for braces, a line for error handling, and at least a line per condition.
3 In this analysis, we ignore data alignment issues which would lead to even larger size of the structure.
4 For more details on these algorithms, refer to [8].
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Fig. 1. Broadcast decision maps from Grig cluster. Different colors correspond to different method indexes. The trees
were generated by limiting the maximum tree depth. The x-axis scale is logarithmic. The crossover line for 1-level
quadtree is not in the middle due to the “fill-in” points used to adjust the original size of the decision map from
25× 48 to 64× 64 form.

4.2 Performance penalty of decision quadtrees

One possible metrics of merit is the performance penalty one would incur by using a restricted quadtree
instead of the exact one. To compute this, one can use the performance information for methods suggested
by the restricted tree for particular set of communicator and message size values, and compare them to the
performance results for methods suggested by the exact tree.

The reproducibility of measured results is out of scope of this paper, but we followed the guidelines from
[11] to ensure good quality measurements. Even so, the “exact” decision function corresponds to a particular
data set, and the performance penalty of other decision functions was evaluated against the data that was
used to generate them in the first place.

Figure 2 shows the performance penalty of decision quadtrees from Figure 1 and the Table 2 summarizes
the properties and performance penalties for the same data. The analysis shows that even for noisy decision

Tree Depth Performance Penalty [%] Number of Function size
Max Min Mean Min Max Mean Median Leaves [# of lines]

1 1 1.0000 0.00 346.05 37.11 0.00 4 24
2 2 2.0000 0.00 436.02 18.63 0.00 16 82
3 2 2.9655 0.00 436.02 08.83 0.00 58 330
4 2 3.8554 0.00 391.53 06.29 0.00 166 932
5 2 4.7783 0.00 356.47 05.41 0.00 442 2,496
6 2 5.6269 0.00 000.00 00.00 0.00 973 5,505

Table 2. Statistics for broadcast decision quadtrees in Figure 1. The number of leaves corresponds to the number of
regions we divided the (communicator size, message size) space into. The number of lines in decision function includes
lines containing only braces, error handling, etc.
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Fig. 2. Performance penalty of broadcast decision function from Grig cluster. Colorbar represents relative performance
penalty in percents. White color means less than 5%, yellow/light gray is between 10% and 25%.

map in Figure 1, a 3-level quadtree would have less than 9% performance penalty on average, while the exact
decision could be represented with a total of 6 levels.

4.3 Quadtree accuracy threshold

In Section 3.1 we mentioned that an alternative way to limit the size of quadtree is to specify the tree
accuracy threshold.

Figure 3 shows the effect of varying the accuracy threshold on the mean performance penalty of a reduce
quadtree decision function on two different systems. On both systems, the mean performance penalty of the
reduce decision was below 10% for an accuracy threshold of approximately 45%. This threshold corresponds
to the quadtree structures of maximum depth 3. This means that the quadtree decision which would on
average potentially cause a 10% performance penalty would be evaluated at most in 3 expressions.

4.4 Accuracy threshold vs. limiting maximum depth

Figure 4 shows the mean performance penalty of broadcast and reduce decisions on Grig cluster (See Figures
1, 2, and 3, and Table 2) as a function of the mean quadtree depth for quadtrees constructed by specifying
accuracy threshold and maximum depth. The results indicate that in the cases we considered, constructing the
decision quadtree by restricting the maximum depth of the tree directly incurs a smaller mean performance
penalty than the tree of similar mean depth constructed by setting the accuracy threshold.

The results for the broadcast decision function show that when the quadtree is deep enough to cover
almost the whole initial data set, the tree constructed using an accuracy thresholds achieves the smaller
mean performance penalty. This is not the case for the quadtree-based reduce decision functions most likely
due to the fact that this decision function was smoother to start with, so smoothing it with an accuracy
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Fig. 3. Effect of the accuracy threshold on mean quadtree depth and performance penalty.

Fig. 4. Accuracy threshold vs. maximum depth quadtree construction.

threshold had no further positive effects. Still, we believe that the example of the broadcast decisions indicates
that the accuracy threshold setting could be used to avoid over-fitting the data when the tree depth is not
a concern.

5 Discussion and future work

In this paper, we studied the applicability of a modified quadtree encoding method to the algorithm selec-
tion problem for the MPI collective function optimization. We analyzed the properties and performance of
quadtree decision functions constructed by either limiting the maximum tree depth or specifying the accuracy
threshold a the construction time.

Our experimental results for broadcast and reduce collectives, show that in some cases, the decision
function based on a quadtree structure with a mean depth of 3, incurs less than a 5% performance penalty
on the average. In other cases, deeper trees (5 or 6 levels) were necessary to achieve the same performance.
However, in all cases we considered, a quadtree with 3 levels would incur less than a 10% performance penalty
on average. Our results indicate that quadtrees may be a feasible choice for processing the performance data
and decision function generation.

In this work we chose not to explore the performance of the in-memory quadtree decision systems due
to relatively large memory requirements associated with storing the tree. The performance of an in-memory
system will depend greatly on the implementation efficiency and the application access pattern. It is possible
that in some cases and or in combination with other methods, it could achieve very good performance. We
plan to explore this issue in more depth in the future.

One of the limitations of the quadtree encoding method is that since the decision is based on a 2D-region
in communicator size - message size space, it will not be able to capture decisions which are optimal for
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single communicator values, e.g. communicator sizes which are power of 2. The same problem is exacerbated
if the performance measurement data used to construct trees is too sparse.

The decision map reshaping process to convert measured data from n×m shape to 2k×2k affects encoding
efficiency of the quadtree. In our current study, we did not address this issue, but in future work we plan to
further improve the efficiency of the encoding regardless of initial data space.

The major focus of future research will be comparing the quadtree-based decision functions, to the ones
generated using run-length encoding and standard decision tree algorithms such as C4.5.
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