
Optimized Process Placement for Collective I/O Operations

Vishwanath Venkatesan
Department of Computer

Science
University of Houston

venkates@cs.uh.edu

Rakhi Anand
Department of Computer

Science
University of Houston
rakhi@cs.uh.edu

Edgar Gabriel
Department of Computer

Science
University of Houston
gabriel@cs.uh.edu

Jaspal Subhlok
Department of Computer

Science
University of Houston

jaspal@uh.edu

ABSTRACT
Mapping of MPI processes to the available resources is an
increasingly complex but important task on modern par-
allel systems. This paper presents a new approach to opti-
mize the process placement of a parallel application based on
its I/O access pattern. The paper introduces the SetMatch
process mapping algorithm, which significantly reduces the
cost of the communication occurring in collective I/O opera-
tions. The effectiveness of the approach has been evaluated
for multiple scenarios on a PVFS2 file system. Our results
demonstrate significant improvements in the communication
time of collective I/O operations as well as improvements
in the overall application execution time with our mapping
strategy. The generalized SetMatch algorithm was the only
mapping strategy that was able to provide adequate perfor-
mance for all scenarios used in this paper.

1. INTRODUCTION
The complexity of modern micro-processors and the uti-

lization of hierarchical networks makes process placement,
i.e., the decision on where to place each MPI process, an in-
creasingly difficult but important task. Various projects aim
to map the communication pattern of the application to the
underlying hardware such that process pairs with high com-
munication volume are close to each other from the hardware
perspective [4, 8], often focusing on specific network topolo-
gies such as torus or mesh networks [1, 13], hierarchical
networks [11] or by minimizng network congestions [7].

An often overlooked component in the process placement
research is the I/O occurring in the application. The time
spent in I/O operations dominates the overall execution time
for an increasing number of data intensive applications since
the communication and computational components of high-
end systems evolve at a faster rate than the storage compo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroMPI 2013, Madrid, Spain
Copyright 2013 ACM 978-1-4503-1903-4/13/09 ...$15.00.

nents. MPI I/O has been shown to be beneficial for the I/O
performance of many application due to features such as the
fileview – which allows registering the I/O access pattern of
processes in advance – and collective I/O operations, which
represent the counterpart of group communication opera-
tions for file I/O. In most applications the logical organiza-
tion of the processes within the fileview, i.e., the order in
which processes access the file based on their offset into the
file, is unique, since it is tightly coupled to the data distri-
bution strategy used by the application.

This paper presents an approach to optimize the process
placement of a parallel application based on their I/O ac-
cess pattern. Specifically, the paper focuses on optimizing
the communication occurring in collective I/O operations.
We present the SetMatch algorithm which calculates a near-
optimal process placement at minimal cost that minimizes
communication time in collective I/O operations. This work
makes a significant contribution towards the solution of the
general problem, and also presents a simplified approach for
commonly occurring data access patterns such as 2-D and
3-D data distributions and process topologies.

The organization of the document is as follows: section 2
discusses the collective I/O algorithms used, while section 3
presents the details of the approach that is at the core of this
paper. Section 4 discusses performance results obtained with
various process placement algorithms for multiple bench-
marks. Section 5 summarizes the paper and presents the
ongoing work in this domain.

2. BACKGROUND
The goal of this work is to optimize the communication

occurring in collective I/O operations based on the access
pattern of the application, and optimize the mapping of
processes to the hardware correspondingly. The two col-
lective I/O algorithms considered in this work are the two-
phase I/O algorithm [5] and the dynamic segmentation al-
gorithm [2].

As the name implies, the two-phase I/O algorithm con-
sists of two steps. For a write operation, the first phase –
the shuffle step – redistributes data among the processes to
match the layout of the data in the file, while the second
phase executes the actual write operation. In addition, the
two-phase I/O algorithm introduces two further optimiza-
tions. First, only a subset of the MPI application processes

have to touch the file, i.e., perform read or write operations.
The processes executing actual I/O operations are also re-
ferred to as the aggregators. Second, for very large collective
read and write operations, the two-phase I/O algorithm is
split into multiple cycles internally. This keeps memory re-
quirements on the aggregator processes within reasonable
limits, and allows for potential overlap of the shuffle step
and the write operation of subsequent cycles.

The dynamic segmentation algorithm [2] is an extension
of the two-phase collective I/O algorithm, which subdivides
processes into independent groups. In contrast to two-phase
I/O, this algorithm does not create a globally sorted data
array based on the offsets in the file. Instead, each aggrega-
tor performs the data gathering/scattering and sorting only
within its group. This replaces the Alltoall(v) type com-
munication in the two-phase I/O algorithm by a number
of independent Allgather(v) operations in the dynamic seg-
mentation algorithm.

3. PROCESS PLACEMENT FOR COLLEC-
TIVE I/O

For the subsequent discussion, the process placement prob-
lem can be formally described as follows. Given an architec-
ture matrix P , where each element of the matrix Pij is the
bandwidth capacity between processors i and j; and an ap-
plication matrix R, where each element of the matrix Rij is
the amount of data communicated between processes i and
j. The goal is to find a mapping of processes onto processors
which optimizes the total communication costs, where the
costs between a pair of processes i, j is Rij/Pij .

From the technical perspective, the problem can be broken
down into three components: i) generating the architecture
matrix; ii) generating a description of the communication
pattern to create the application matrix; and map appli-
cation processes to underlying node architecture such that
communication cost is minimized. In the following, we dis-
cuss the most relevant aspects of our work in more details.

The architecture matrix is generated by providing a de-
scription of the hardware used for the application and is
based, within the context of this work, on bandwidth values
between pairs of processors. The bandwidth values are de-
termined by using a ping-pong benchmark between cores on
the same node, and cores on different nodes.

3.1 Application Matrix
The application matrix contains the amount of data com-

municated between each pair of processes. The fundamen-
tal assumption in the work is, that MPI processes read-
ing/writing neighboring portions of a file communicate with
the same aggregator processes during the collective I/O op-
erations.

To support arbitrary access patterns, the order in which
processes access the file based on the offset into the file has to
be recorded. This can be done during MPI_File_set_view

and written into a separate file, that can be used when re-
executing the same problem/application. For applications
not setting the file view, the offsets of each file access can be
recorded during the MPI_File_read/write operations, al-
though this is not supported in the current implementation.
To minimize the size of the output file during the record
operation, a compressed row storage (CRS) format is used
to record the matrix. In the following, we illustrate how

the application matrix is constructed based on the file I/O
access pattern.

Consider an application in which the file view is set such
that processes access the file in the following order:

0; 4; 1; 0; 4; 1; 5; 2; 3; 4; 1; 3; 2; 5; 4; 2; 5; 4; 0; 4; 1

with each number representing the rank of the process ac-
cessing the next portion of the file. Every time two processes
have a neighboring region in the file, i.e. they are adjacent
in the list shown above, the value representing the amount
of communication between those processes is increased by
one in the application matrix. For example, processes 0 and
4 have four neighboring file regions in the sequence shown
above and consequently have a value of 4 in the matrix, while
the processes 1 and 5 only have one common boundary. This
results in the following matrix:

0 1 0 0 4 0
1 0 0 1 4 1
0 0 0 2 1 3
0 1 2 0 1 0
4 4 1 1 0 2
0 1 3 0 2 0


While creating the application matrix by recording the

file view works for arbitrary access patterns, it requires run-
ning the application to build the application matrix. Note,
that the same problem occurs in many other projects work-
ing on process placement problems [4, 8], and is therefore
not specific to our approach. However, we also developed a
significantly simplified methodology to generate the appli-
cation matrix for certain common data distributions. The
most important scenario covered by this simplified approach
are applications using a 2-D data distribution and a 2-D
cartesian process topology. In this particular scenario, the
vast majority of the communication in the collective I/O
operation will occur between processes having the same co-
ordinate in the outermost dimension of the cartesian process
topology, assuming that one process per row will act as an
aggregator in the collective I/O operation. The application
matrix can be created in this case by assigning process pairs
with the same coordinate in the outermost dimension of the
cartesian grid a larger value than between process pairs in
different rows of the cartesian process topology.

3.2 Mapping Algorithm
Generally speaking, once the architecture and the applica-

tion matrix are available, any graph mapping algorithm from
literature could be used for the mapping step. Our initial
focus was on the algorithm used by the MPIPP toolset [4].
This algorithm uses a random mapping of processes to avail-
able cores as a starting point, swaps a pair of processes and
recalculates an objective function for each new mapping. In
case the new configuration processes shows benefits, i.e. a
lower value of the objective function, the modified configu-
ration is kept, otherwise it is undone. The algorithm stops
if no improvement can be made over multiple iterations.

The main drawback of this algorithm is the time it takes
to run to completion for large process counts. In our study
we found that for the 256 processes test case the algorithm
can take up to 90 minutes on a typical desktop system to
compute the mapping with two passes, and still produces
suboptimal mapping due to the low number of passes.

Therefore, we developed a much simpler algorithm called

SetMatch which is a simplified version of the Treematch [8]
algorithm for these type of communication and architecture
matrices. Similarly to Treematch, this algorithm first par-
titions the application and architecture matrix into smaller,
independent sets. For the architecture matrix this can be
achieved by grouping all processors/cores on the same node.
For the application matrix, this is typically achieved by
grouping all processes with high communication volumes.
In the second step of the algorithm, each subgroup of pro-
cesses that resulted from subdividing the application matrix
is mapped to subgroups of the architecture matrix.

There are two main differences between the SetMatch and
the Treematch algorithm: first, SetMatch only uses one level
of hierarchy; second, we choose to ignore insignificant values
in the application matrices, and replace them by a value of
0. Specifically, any value that falls within a certain percent-
age of the maximum value found (e.g. 10%) in the appli-
cation matrix is used for creating independent application
sets while other values are ignored. This reduces the cost
involved in creating the independent groups of the appli-
cation matrix, which is the main cost of the Treematch [8]
algorithm. Pseudo-code for the SetMatch algorithm is pro-
vided in Algorithm 1.

Once the initial sets are created, they are checked for in-
terleaving, to ensure that they are completely independent.
In case of the specialized application matrix this approach
will result in independent sets. This cannot be guaranteed
however for the generalized application matrix scenario, and
necessitates a merging of interleaved sets. This is shown in
Phase II of the algorithm. Once all sets are independent,
each application set has to be matched to an architecture
set. The goal is always to fit an entire application set into
an architecture set.To accomplish this, the algorithm locates
the largest possible architecture set to match the application
set. Once the architecture processes are matched, the exist-
ing architecture set is fragmented to be used for another
application set. If there are no architecture sets found that
could match the application sets, the algorithm fragments
the application matrix and maps it to the next biggest ar-
chitecture set available. This is shown in Phase III from line
number (36) of the algorithm.

3.3 Implementation
The work has been implemented in OMPIO [3], a parallel

I/O framework in Open MPI [6]. While the implementation
is specific to OMPIO, the conceptual aspects of this work
can easily be extended and transferred to other implemen-
tations. A new component of the rank mapping framework
(rmaps) has been created, the Data Locality Aware Map-
ping (dla) component. Generally speaking, an rmaps com-
ponent retrieves information about the allocated resources,
the number of processes requested, and creates a mapping
for them. The output is an array of ranks which is used
to associate application processes to actual nodes. The new
dla rmaps component takes an additional input file, which
allows to specify either the cartesian topology or the actual
application matrix generated from the fileview as an input.
The module is available for free download on the authors’
webpage, and will be contributed to the Open MPI source
code in the near future.

4. EVALUATION
The efficiency of the approach discussed in section 3 is

Algorithm 1 SetMatch

Input: num procs, comm matrix, arch matrix, min value
Output: ranklist
1: procedure map SetMatch
2: make sets . app sets
3: merge sets . remove interleaving
4: make sets . Independent arch sets
5: match sets . generate ranklist

Phase - I Creating Initial Sets

Input: num procs, matrix, matrix type, min value
Output: num sets, sets
6: function make sets
7: availList[1..|N];Boolean, numsets, sets
8: Initialize availList
9: for i=0 to N do

10: if availList then
11: continue
12: numsets + +
13: Allocate new set of size N and initialize
14: for j=0 to N do
15: if matrix type = APP MATRIX then
16: if matrix[i][j] ≤ min value then
17: Add process to the current app set
18: Update Availability List

19: if matrix type = ARCH MATRIX then
20: if matrix[i][j] ≤ min value then
21: Add this process to the current arch set
22: Update Availability List

Phase - II Merging Interleaved Sets

Input: set, numSets, numProcs
Output: finalSets, final set
23: function merge sets
24: Allocate and initialize final set and finalSets
25: copy (final set[0], set[0])
26: num final sets++
27: for i ← 1 to numSets do
28: setFound ← false
29: for j ← 0 to finalSets do
30: if groups interleave(final set[j], set[i]) then
31: copy (final set[j], set[i])
32: setFound ← true
33: break
34: if ¬setFound then
35: finalSets++
36: copy (final set[finalSets - 1], set[i])

Phase - III Match application and architecture sets

Input: app set, arch set, archSets, appSets, numProcs
Output: ranklist
37: function match sets
38: while mappedProcs 6= numProcs do
39: for i ← 0 to appSets do
40: archFragment ← false
41: for j ← 0 to archSets do
42: if (arch set[j].nprocs is higher) then
43: archFragment ← true
44: map(ranklist, archSet[i], appSet[j])

45: if ¬archFragment then
46: map(ranklist, archSet[j], appSet[i])

47: sort(appSet)
48: sort(archSet)

evaluated for several scenarios. The platform used is the
crill cluster at the University of Houston which consists of
16 nodes with four 12-core AMD Opteron (Magny Cours)
processors each (48 cores per node, 768 cores total), 64 GB of
main memory and two dual-port InfiniBand HCAs per node.
The cluster has a PVFS2 (v2.8.2) parallel file system with
15 I/O servers and a stripe size of 1 MB. The file system is
mounted onto the compute nodes over the second InfiniBand
network interconnect of the cluster.

Six different mapping approaches were taken into con-
sideration for evaluation are i) Byslot : Linear mapping on
available slots; ii) Bynode: Round robin based mapping;
iii) MPIPP : MPIPP with cartesian topology; iv) MPIPPG:
Generalized MPIPP using the application matrix generated
by recording the fileview; v) SetMatch: SetMatch algorithm
with cartesian topology; vi) SetMatchG: SetMatch algorithm
using the application matrix generated by recording the file-
view.

A pre-release version of OpenMPI v1.7 was used for the
measurements.A simple point-to-point benchmark from the
OSU microbenchmark suite [9] was used to determine the
intra-node and inter-node bandwidth for the architecture
matrix. The intra-node bandwidth obtained with these tests
were peaking at around 5800MB/s – although the band-
width dropped for larger message lengths to around 3500MB/s.
The inter-node bandwidth using the DDR InfiniBand net-
work interconnect is up to 2100 MB/s.

4.1 Tile I/O
The MPI Tile I/O benchmark is widely used to study per-

formance of MPI-IO for tiled accesses to a two-dimensional
dense dataset [10]. The benchmark uses a cartesian commu-
nicator to access the file which makes it an ideal benchmark
to study the effectiveness of our mapping strategies. In our
measurements we select the number of tiles in the x and y
dimension based on the number of processes. We use two
different tile sizes (1KB, 1MB) with (768x800, 40x15) ele-
ments respectively. All tests were executed three times and
the maximum achieved bandwidth across those runs is se-
lected.

Tests were executed using 128 processes on four nodes and
256 processes on eight nodes. Note, that 128 processes could
be executed on three nodes of our cluster, and 256 processes
on six nodes. However, we choose to allocate a slightly larger
number of nodes due to performance considerations of our
parallel file system. This leads in most scenarios to a higher
number of cores being available for the process placement
algorithm than actually requested by mpirun. In addition,
the number of aggregators used in the collective I/O algo-
rithms was kept constant and same as the number of nodes
used.

Figures 1 and 3 show the average communication time
in the communication step of the dynamic segmentation
and the two-phase I/O algorithm with the different mapping
strategies, since the variance in these measurements was neg-
ligible. Our mapping methods show significant reduction in
communication times compared to the standard bynode and
byslot mapping strategies of Open MPI with the dynamic
segmentation algorithm, except for the 256 processes case
with the MPIPP algorithm. Our analysis of the degraded
performance for this scenario revealed a suboptimal mapping
by the MPIPP algorithm, since the number of internal iter-
ations had to be limited to two due to the exceeding amount

of time spent in the mapping algorithm. The SetMatch al-
gorithm provides the best performance in comparison to all
other methods at significantly lower costs for the mapping
step: calculating the process placement for the 256 process
scenario took around 100 ms on this platform.

Fig 2 shows the resulting I/O bandwidth for Tile I/O
benchmark using the dynamic segmentation algorithm. The
results indicate a significant improvement in the write band-
width along the lines of what is expected based on the sav-
ings in the communication time.

20

30

40

50

60

70

80

90

100

110

120

bynode byslot mpipp mpippg setmatch setmatchg

A
v

e
ra

g
e

 C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

 [
s

]

Mapping Methodology

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 1: Communication time for different map-
ping strategies in the dynamic segmentation algo-
rithm on crill.

 0

200

400

600

800

1000

bynode byslot mpipp mpippg setmatch setmatchg

W
ri

te
 B

a
n

d
w

id
th

 [
M

B
/s

]

Mapping Methodology

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 2: Bandwidth comparison for different map-
ping strategies using the dynamic segmentation al-
gorithm on crill.

Trends are mostly similar with the two-phase I/O algo-
rithm, with some interesting deviations as shown in figure 3.
The first difference is evident when comparing the commu-
nication times obtained with the default bynode and byslot
mappings. Based on the analysis of the data access and
communication pattern of the benchmark, the byslot map-
ping should lead to lower communication times compared to
the bynode mapping, similar to the results obtained using
dynamic segmentation algorithm. This is however not the
case in this test. The reason for this behavior is that the
byslot mapping in Open MPI will fill up all the 48 cores
on an individual node before assigning processes to another
node, which increases the memory pressure on each node
dramatically and negates the performance benefits of the

intra-node communication. Fig. 4 shows a slightly modified
version of the same test, in which we compare the default
byslot mapping of Open MPI to a byslot mapping restricting
the maximum number of processes per node to 32, which is
the number of MPI processes per node in the bynode sce-
nario. In this case, byslot clearly outperforms bynode for
the two-phase I/O algorithm as expected.

 0

50

100

150

200

250

bynode byslot mpipp mpippg setmatch setmatchg

A
v

e
ra

g
e

 C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

 [
s

]

Mapping Methodology

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 3: Communication time for different map-
ping strategies in the two-phase I/O algorithm on
crill.

50

100

150

200

250

300

byslot byslotr

A
v

e
ra

g
e

 C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

 [
s

]

Mapping Methodology

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 4: Average communication time for 48 and
32 processes per node using the byslot mapping with
the two-phase I/O algorithm.

Second, there is no significant difference in the bandwidth
observed using the two-phase I/O algorithm for any mapping
approach (graph not shown due to space limitations). Two
reasons have been identified for contributing to this behav-
ior. First, the overall bandwidth achieved was in the range
of 800 MB/s, which is close to the peak bandwidth sup-
ported by this parallel file system. Second, we added a file
synchronization call using MPI_File_sync to the benchmark
to avoid caching effects, which was originally not part of the
Tile I/O benchmark. Removing this call led to bandwidth
improvements up to 45% in the write bandwidth, although
the improvement can be attributed mostly to caching effects
on the server side. Ultimately, we are confident that the re-
sults observed in this test are an artifact of our parallel file
system, since we did observe the expected improvements in
the communication time using the two-phase I/O algorithm
as well.

4.2 Modified Tile I/O
In addition to the normal Tile-IO benchmark we also cre-

ated a new version where the communicator used in the
benchmark is modified to reorder ranks internally and thus
create a more irregular scenario. In the previous tests, the
byslot mapping would have provided ’accidentally’ a correct
mapping, except for the fact that it overloads each node with
processes. For the modified Tile I/O test, neither byslot
nor bynode provides the correct mapping. The goal there-
fore is to demonstrate that the SetMatch algorithm provides
the optimal mapping also for this irregular scenario. Fig. 5
shows that only the SetMatch algorithm with the general-
ized application matrix is able to provide consistently low
communication times across all scenarios. The version of
the MPIPP and SetMatch using the cartesian topology as
an input can not correctly map in this scenario, since the
cartesian topology is not created from MPI_COMM_WORLD, but
from a different communicator. The generalized MPIPP al-
gorithm can correctly describe the application matrix, but
still produces a suboptimal mapping, especially for 256 pro-
cesses. Also shown in this graph are numbers for a restricted
byslot mapping, i.e. the mapping which limits the number
of processes per node to 32. Neither bynode nor any ver-
sion of the byslot produces a configuration leading to sim-
ilar improvements in the communication time as the gen-
eralized SetMatch algorithm. Similar performance has been
observed in our experiments with even the dynamic segmen-
tation algorithm, which we are omitting here due to space
constraints.

 0

50

100

150

200

250

300

bynode byslot byslotr mpipp mpippg setmatch setmatchg

A
v

e
ra

g
e

 C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

 [
s

]

Mapping Methodology

128 procs 1K tiles
128 procs 1M tiles
256 procs 1K tiles
256 procs 1M tiles

Figure 5: Communication time for different map-
ping strategies using the two-phase algorithm for the
modified Tile I/O test.

4.3 BT-I/O
BT-I/O is a part of the NAS parallel benchmarks (NPB)

suite [12]. It has been developed based on one of the kernels
of the BT computational kernels. The class D of the BT-I/O
benchmark used in this study writes 135 GB data over 250
iterations, i.e. around 600MB of data per-iteration. Due
to the smaller amount of data written per function call, the
communication times per iteration will also be low, which
fundamentally limits the improvement per-iteration that can
be achieved. Nevertheless, the results shown in Table 1 for
the two-phase I/O algorithm indicate that using the set-
matchg algorithm leads up to 30% reduction in I/O time
in the benchmark and 17% reduction in total application

Table 1: I/O time and total execution time of BT
I/O using two-phase I/O algorithm.

Mapping No.of Pro-
cesses

Avg Total
Time (s)

Avg I/O
Time (s)

Bynode 144 838.91 264.09
256 549.27 193.58

Byslot 144 1100.88 407.3
256 1020.7 637.75

mpipp 144 769.49 223.46
256 461.28 134.38

mpippg 144 819.25 228.01
256 493.84 151.96

setmatch 144 805.25 243.67
256 477.36 135.13

setmatchg 144 792.25 232.96
256 458.42 134.98

time. Similar performance was obtained using the dynamic
segmentation algorithm, which we skip here due to space
constraints.

5. CONCLUSIONS
This paper presents an approach to optimize the process

placement of a parallel application based on its I/O access
pattern. We extended the OMPIO library to record the ac-
cess pattern of an application using the file view, and used
the resulting data to map processes to the underlying hard-
ware such that the communication occurring in collective
I/O operations is minimized. A simplified approach which
does not require to record the file view has been demon-
strated for a regular 2-D data distribution and process topol-
ogy. Furthermore, we present the SetMatch algorithm as a
simple method to calculate a near-optimal process place-
ment at a low cost. Our results demonstrate significant
improvements in the communication time of collective I/O
operations and the application scenarios overall due to our
mapping strategy. When applicable, the simplified approach
for 2-D and 3-D data distributions shows significant benefits
without requiring to record the file view of an application
first. For generic and irregular scenarios, the generalized Set-
Match algorithm that we presented in this paper was able to
provide adequate performance for all scenarios used in this
paper. This work can be expanded in multiple directions, in-
cluding more and larger application scenarios and platforms.
We can also support process placement approaches for cases
without fileview information. In addition, the special case
that we demonstrated for the 2-D pattern can be extended
to various other regular process distributions.
Acknowledgments. Partial support for this work was

provided by the National Science Foundation’s Computer
Systems Research program under Award No. CNS-0834750.
and No. CRI-0958464. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

6. REFERENCES
[1] A. Bhatele, L. V. Kale, and S. Kumar. Dynamic

topology aware load balancing algorithms for

molecular dynamics applications. In Proceedings of the
23rd international conference on Supercomputing, ICS
’09, pages 110–116, New York, NY, USA, 2009. ACM.

[2] M. Chaarawi, S. Chandok, and E. Gabriel.
Performance Evaluation of Collective Write
Algorithms in MPI I/O. In Proceedings of the
International Conference on Computational Science
(ICCS), volume 5544, pages 185–194, Baton Rouge,
USA, 2009.

[3] M. Chaarawi, E. Gabriel, R. Keller, R. L. Graham,
G. Bosilca, and J. J. Dongarra. OMPIO: A Modular
Software Architecture for MPI I/O. In Y. Cotronis,
A. Danalis, D. Nikolopoulos, and J. Dongarra, editors,
Recent Advances in Message Passing Interface, pages
90–98, Santorini, Greece, September 2011. Springer.

[4] H. Chen, W. Chen, J. Huang, B. Robert, and
H. Kuhn. Mpipp: an automatic profile-guided parallel
process placement toolset for smp clusters and
multiclusters. In Proceedings of the 20th annual
international conference on Supercomputing, ICS ’06,
pages 353–360, New York, NY, USA, 2006. ACM.

[5] J. M. del Rosario, R. Bordawekar, and A. Choudhary.
Improved parallel I/O via a two-phase run-time access
strategy. SIGARCH Comput. Archit. News,
21(5):31–38, 1993.

[6] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J.
Daniel, R. L. Graham, and T. S. Woodall. Open MPI:
Goals, Concept, and Design of a Next Generation MPI
Implementation. In Proceedings of the 11th European
PVM/MPI Users’ Group Meeting, pages 97–104,
Budapest, Hungary, 2004.

[7] T. Hoefler and M. Snir. Generic Topology Mapping
Strategies for Large-scale Parallel Architectures. In
Proceedings of the 2011 ACM International
Conference on Supercomputing (ICS’11), pages 75–85.
ACM, Jun. 2011.

[8] E. Jeannot and G. Mercier. Near-optimal placement of
MPI processes on hierarchical NUMA architectures. In
Proceedings of the 16th international Euro-Par
conference on Parallel processing: Part II, pages
199–210. Springer-Verlag, 2010.

[9] OSU-micro benchmark homepage.
http://mvapich.cse.ohio-state.edu/benchmarks/, 2002.

[10] R. Ross. Parallel I/O Benchmarking Consortium.
http://www-unix.mcs.anl.gov/ross/pio-
benchmark.html.

[11] J. Traff. Implementing the MPI process topology
mechanism. In Supercomputing, ACM/IEEE 2002
Conference, pages 28–28, 2002.

[12] P. Wong and R. F. V. der Wijngaart. NAS Parallel
Benchmarks I/O Version 2.4. Technical Report.
NAS-03-002, Computer Sciences Corporation, NASA
Advanced Supercomputing (NAS) Division.

[13] H. Yu, I.-H. Chung, and J. Moreira. Topology mapping
for blue gene/l supercomputer. In Proceedings of the
2006 ACM/IEEE conference on Supercomputing, SC
’06, New York, NY, USA, 2006. ACM.

