
A practically constant-time MPI Broadcast Algorithm
for large-scale InfiniBand Clusters with Multicast

Torsten Hoefler,1,2 Christian Siebert,1 and Wolfgang Rehm1

1Dept. of Computer Science 2Open Systems Laboratory
Chemnitz University of Technology Indiana University

Strasse der Nationen 62 501 N. Morton Street
Chemnitz, 09107 GERMANY Bloomington, IN 47404 USA

{htor,chsi,rehm}@cs.tu-chemnitz.de htor@cs.indiana.edu

Abstract

An efficient implementation of the MPI BCAST op-
eration is crucial for many parallel scientific applica-
tions. The hardware multicast operation seems to be ap-
plicable to switch-based InfiniBand cluster systems. Sev-
eral approaches have been implemented so far, however
there has been no production-ready code available yet.
This makes optimal algorithms to a subject of active re-
search. Some problems still need to be solved in order
to bridge the semantic gap between the unreliable mul-
ticast and MPI BCAST. The biggest of those problems
is to ensure the reliable data transmission in a scalable
way. Acknowledgement-based methods that scale logarith-
mically with the number of participating MPI processes ex-
ist, but they do not meet the supernormal demand of high-
performance computing. We propose a new algorithm that
performs the MPI BCAST operation in a practically con-
stant time, independent of the communicator size. This
method is well suited for large communicators and (espe-
cially) small messages due to its good scaling and its ability
to prevent parallel process skew. We implemented our algo-
rithm as a collective component for the Open MPI frame-
work using native InfiniBand multicast and we show its
scalability on a cluster with 116 compute nodes, where it
saves up to 41% MPI BCAST latency in comparison to the
“TUNED” Open MPI collective.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1 Introduction

Cluster systems gain, due to their very good price-
performance ratio, more and more importance for scien-
tific applications. More than 72% of all supercomputers in
the 28th TOP500 list [22] are cluster systems. The Mes-
sage Passing Interface (MPI, [11, 12]) emerged in the last
years as today’s de facto programming model for paral-
lel high-performance applications on such systems. Within
this model, the use of collective operations is crucial for
the performance, performance portability among different
systems, and the parallel scaling of many applications [5].
That means that collective operations deserve special atten-
tion to achieve the highest throughput on those cluster ar-
chitectures. We investigate the widely used collective oper-
ation MPI BCAST in this work (Rabenseifner identified it
as one of the most time-consuming collective operations in
his usage analysis [18]). This operation provides a reliable
data-distribution from one MPI process, called root, to all
other processes of a specific communication context that is
called communicator in MPI terms. Since only the seman-
tics and the syntax of this function are standardized, we are
able to present an alternative implementation. We show a
new scheme for InfiniBandTM with the use of special hard-
ware support to achieve a practically1 constant-time broad-
cast operation.

A key property of many interconnects used in cluster sys-
tems is the ability to perform a hardware-supported multi-
cast operation. Ni [14] discusses the advantages of hard-
ware multicast for cluster systems and concludes that it
is very important for cluster networks. This feature is
very common for Ethernet-based systems and is supported

1practically in the meaning of average case for a wide variety of appli-
cation patterns; more details in Section 2.1

by the TCP/IP protocol suite. Other widely used high-
performance networks like Myrinet or Quadrics use similar
approaches to perform multicast operations [4, 23, 24, 25].
The new emerging InfiniBandTM [21] network technology
offers such a hardware-supported multicast operation too.
Multicast is commonly based on an unreliable datagram
transport that broadcasts data to a predefined group of pro-
cesses in almost constant time, i.e., independent of the num-
ber of physical hosts in this group. Multicast groups are
typically addressed by network-wide unique multicast ad-
dresses in a special address range. The multicast opera-
tion can be utilized to implement the MPI BCAST func-
tion, however, there are four main problems:

1. the transport is usually unreliable

2. there is no guarantee for in-order delivery

3. the datagram size is limited to the maximum transmis-
sion unit (MTU)

4. each multicast group has to be network-wide unique
(i.e., even for different MPI jobs!)

We examine and resolve all those problems in this ar-
ticle and introduce a fast scheme that ensures reliabil-
ity and makes the implementation of MPI BCAST over
InfiniBandTM viable.

The terms (MPI) process and node are used throughout
the paper. We consider a “process” similarly to MPI as an
activity that may join a multicast group and a “node” as a
physical machine. Although multiple processes are allowed
on a single physical machine, we used only one process per
node for our benchmarks in Section 4. Node-locally, the un-
derlying communication library is responsible to deliver the
received hardware multicast datagrams efficiently to all reg-
istered processes. Furthermore, this work addresses mainly
cluster systems with flat unrouted InfiniBandTM networks.
We assume and we show with our benchmarks that the mul-
ticast operation finishes in an almost constant time on such
networks. However, the ideas are also applicable to huge
routed networks, but the hardware multicast might loose its
constant-time property on such systems. Anyhow, it is still
reasonable to assume that the hardware multicast operation
is, even on routed InfiniBandTM networks, faster than equiv-
alent software-initiated point-to-point communication.

The next section describes related work and shows the
most critical problems with those existing approaches. We
propose new ideas to solve the four main problems (de-
scribed above) in Section 2. Our implementation for the
Open MPI framework is described in the following Sec-
tion 3. A performance analysis of the new broadcast is
presented in Section 4 before we give a conclusion and an
outlook to future work in Section 5.

1.1 Related Work

Some of the already mentioned issues have been ad-
dressed by other authors. However, all schemes use some
kind of acknowledgement (positive or negative) to en-
sure reliability. Positive acknowledgements (ACK) lead to
“ACK implosion” [8] on large systems. Liu et al. proposed
a co-root scheme that aims at reducing the ACK traffic at
a single process. This scheme lowers the impact of ACK
implosion but does not solve the problem in general (the
co-roots act as roots for smaller subgroups). The necessary
reliable broadcast to the co-roots introduces a logarithmic
running time. This scheme could be used for large messages
where the ACK latency is not significant. Other schemes,
that use a tree-based ACK, do also introduce a logarith-
mic waiting time at the root process. Negative acknowl-
edgement (NACK) based schemes do usually not have this
problem because they contact the root process only in case
of an error. However, this means that the root has to wait,
or at least store the data, until it is guaranteed that all pro-
cesses have received the data correctly. This waiting time
is not easy to determine and usually introduces unneces-
sary process skew at the root process. Sliding window
schemes can help to mitigate the negative influence of the
acknowledgement-based algorithms, but they do not solve
the related problems.

Multicast group management schemes have been pro-
posed by Mamidala et al. [10] and Yuan et al. [26]. Both
approaches do not consider having multiple MPI jobs run-
ning concurrently in the same subnet. Different jobs that
use the same multicast group receive mismatched packets
from each other. Although errors can be prevented by using
additional header fields, a negative performance impact is
usually inevitable.

Multicast group management should be done with the
standardized MADCAP protocol [6]. However, the lack of
available implementations induced us to search for a more
convenient scheme.

The multicast operation has also been applied to im-
plement other collective operations like MPI BARRIER,
MPI ALLREDUCE or MPI SCATTER [2, 7, 9]. We use
the scheme proposed in [19] for MPI BCAST and adapt it
for the use with the InfiniBandTM multicast technology.

2 The Multicast-Based Broadcast Algorithm

Several multicast-based broadcast algorithms have been
proposed in the past. The most time-critical prob-
lem, especially for smaller broadcast messages, is the
re-establishment of the reliability which is needed by
MPI BCAST but usually not supported by hardware mul-
ticast. We propose a two-stage broadcast algorithm as il-
lustrated in Figure 1. The unreliable multicast feature of

2

the underlying network technology is used in a first phase
to deliver the message to as many MPI processes as possi-
ble. The second phase of the algorithm ensures that all MPI
processes finally receive the broadcast message in a reliable
way, even if the first stage fails partially or completely.

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���

���
���
���
���

stage 1: multicast (unreliable)

stage 2: chain broadcast (reliable)

7 3

5

1
28

6 4

7 3

8

5

1
2

6 4

Figure 1. The two-stage broadcast algorithm

2.1 Stage 1: Unreliable Broadcast

Multicast datagrams usually get lost when the corre-
sponding recipient is not ready to receive them or due to
network congestion. Therefore, a common approach is to
use a synchronizing operation (similar to MPI BARRIER)
that waits until all P processes are prepared to receive the
datagrams. If such an operation is build on top of re-
liable point-to-point communication this synchronization
will need Ω(log P) communication rounds to complete. In-
stead of targeting at a 100% rate of ready-to-receive pro-
cesses, it is more than sufficient if only a subset of all MPI
processes is already prepared, provided that a customized
second stage is used for the broadcast algorithm. A further
disadvantage of such a complete synchronization operation

is the fact that real-world applications are usually subject
to the principle of process skew which can lead to a further
increment of the operation’s time consumption.

It can be shown that a wide variety of applications works
perfectly without any synchronization operation during this
stage. However, when the root process is the first process
that calls MPI BCAST, all non-root processes would not
be ready to receive the multicast message and therefore an
immediately executed multicast operation might become to-
tally useless. This remaining fraction of applications, with
such a worst-case broadcast usage pattern, can be handled
by explicitely delaying the root process. A user-controlled
delay variable (e.g., MCA parameter for Open MPI) is not
only the simplest solution for implementors of this algo-
rithm, but also very effective because an optimal value for a
given application can be determined using a small number
of test runs. Adaptive delay parameter adjustments at run-
time, e.g., based on heuristic functions, might be feasible
too. A randomized single-process synchronization (instead
of a complete MPI BARRIER synchronization) is a third
solution to this problem: a seed value is distributed at com-
municator creation time to all MPI processes. Within each
MPI BCAST operation, a certain non-root process is cho-
sen globally with the help of a pseudorandom number gen-
erator and the current seed. The root process than waits until
this single non-root process joins this collective operation.
On average, such a procedure prevents the worst broadcast
scenarios and is thereby independent of the application type.
However, the first solution (without any delay) offers nat-
urally the highest performance for applications where the
root process rarely arrives too soon.

The first phase of the new broadcast algorithm starts with
this optional root-delay and uses multicast to transmit the
complete message (fragmenting it if necessary) from the
root process to all recipients. A process-local status bitmap
can be utilized to keep track of correctly received data frag-
ments.

2.2 Stage 2: Reliable Broadcast Comple-
tion

Even without any preceding synchronization, it is not un-
usual that a large proportion (typically about 50%) of all
MPI processes have correctly received the broadcast mes-
sage during the unreliable broadcast stage. The third syn-
chronization method ensures this 50% proportion in the av-
erage case even if the application processes always arrive in
the worst-case broadcast pattern. This second stage of our
new algorithm guarantees that those MPI processes which
have not yet received the data (whether partially or com-
pletely) will accomplish this eventually. The common ap-
proach is to use some kind of acknowledgement scheme
to detect which processes have failed and to retransmit the

3

message to these recipients. Unfortunately, existing ACK
schemes (positive or negative ones) are quite expensive be-
cause of the introduced performance bottleneck at the root
process and the necessary time-out values.

Instead of using this kind of “feedback” channel, which
can be efficient for large messages where those overheads
are negligible, it is more efficient for smaller messages to
send the message a second time using a fragmented chain
broadcast algorithm. This means that every MPI process
has a predefined predecessor and successor in a virtual ring
topology. The root process does not need to receive the
message because it is the original source of this broadcast.
Therefore, the connection with its predecessor (e.g., 8 → 1
in Figure 1) is redundant and can be omitted. As soon as a
process owns a correct fragment of the broadcast message,
it sends it in a reliable way to its direct successor. Whether
a fragment has been received via multicast or via reliable
send is not important - the second receive request can be
cancelled or ignored.

Using this technique, each MPI process that gets the
message via multicast serves as a new “root” within the vir-
tual ring topology. After forwarding this message to its sin-
gle successor, a process can immediately finalize its broad-
cast participation. Only those processes that have failed to
receive the multicast datagram(s) need to wait until they get
the message in the second stage. If its predecessor received
the message via multicast then only a single further message
transfer operation, called “penalty round” in the following,
is necessary. But the predecessors might have failed too in
the first stage and the number of “penalty rounds” would
increase further. For a given failure probability ε of a sin-
gle message transmission, the chance that P processes fail
in a row is εP . Therefore, the average number of “penalty
rounds” is reasonably small (given that ε = 50%, the num-
ber of penalty rounds is just 1.0). Nevertheless, the worst-
case (i.e., all processes failed to receive the multicast mes-
sage) leads to a number of “penalty rounds” (and therewith
time) that scales linearly with the communicator size. How-
ever, real-world applications that call MPI BCAST multi-
ple times are mainly affected by the average case time and
only minor by this worst-case time.

A different kind of virtual distribution topology (e.g.,
a tree-based topology) for the second stage could help to
reduce this worst-case running time. However, with the
knowledge about the applications broadcast usage-pattern
or a proper synchronization method, this worst-case sce-
nario will rarely occur. While a process in the virtual ring
topology needs to forward the message only to a single
successor, a process in a virtual tree-based topology would
need to serve several successors (e.g., two in a binary tree)
which usually increases the time for the second stage by
this fan-out factor. In addition, the broadcast duration per
process would not be as balanced as in the proposed chain

broadcast. When a single MPI process enters the collective
operation late, it can not delay more than one other process
in the ring topology but it will delay all its direct successors
in a tree-based topology.

3 Implementation Details

Our prototype is implemented as a collective component
within the Open MPI [3] framework. The component uses
low-level InfiniBandTM functionality to access the hardware
multicast directly for the first stage of our algorithm (cf.
Section 2.1). The reliable message transmission in step
2 uses the send/receive functionality of the Point-to-point
Management Layer (PML) of the Open MPI framework.

3.1 Multicast Group Management

A single cluster system is often used by several inde-
pendent MPI jobs. Thus, a proper multicast group manage-
ment is necessary to prevent multicast group collisions. An
ideal solution to provide a global (i.e., cluster-wide) multi-
cast group management would be the implementation of a
server-based allocation protocol like MADCAP [6], with a
single master server for every cluster system. However, to
the best of the authors knowledge, there is no MADCAP im-
plementation available that is able to handle InfiniBandTM

multicast global identifiers (MCGIDs).
Our approach is to statically assign a network-wide

unique multicast group to every new communicator at
creation time (cf. [26]). As alternative to the MAD-
CAP solution, we choose these groups at random using
a cryptographically secure pseudorandom number genera-
tor (“BBS” [1]). This does not implicate any performance
problems because our unoptimized implementation is able
to produce 52 KiB of random data per second on an or-
dinary 2 GHz computer, which is sufficient considering
that only 14 bytes are necessary for each new InfiniBandTM

MCGID. This generator is seeded at application startup us-
ing a pool of collected data from the following sources:

1. dynamic data from a high-resolution time stamp
(MPI Wtime)

2. inter-node data derived from host-specific identifiers
(MPI Get processor name; this resolves the concur-
rency problem)

3. intra-node altering data using temporary file names
(tmpname; e.g., needed when some MPI processes re-
side on the same node)

4. other sources like the /dev/urandom Linux device
(only if available)

4

This randomized selection of multicast groups with due
diligence makes collisions much more unlikely than, e.g., a
catastrophic hardware failure because of the large MCGID
address space of m = 2112. If there are n multicast groups
in use, the probability that no collisions occur at all is
Prob(n, m) = m!

mn·(m−n)! according to the “Birthday para-
dox”. This will be almost 1.0 in practical scenarios, e.g.,
99.99999999999999999999999999% for 1000 groups that
are concurrently in use.

3.2 Fragmentation and Packet Format

Number
Sequence CRC−32BID

Data (Payload)

Figure 2. Structure of a packed multicast
datagram

All multicast datagrams, that are used by our broadcast
implementation, start with a four byte header containing a
sequence number and a broadcast identifier (“BID”, see Fig-
ure 2). Hardware multicast has a limited datagram size and
does not guarantee in-order delivery. This makes a frag-
mentation of large messages necessary and the sequence
number indicates the corresponding position of every frag-
ment within the data buffer. The broadcast identifier corre-
sponds to a communicator-specific counter that keeps track
of the last issued broadcast operation. Individual broadcast
messages can potentially pass each other because our algo-
rithm does not explicitly synchronize; the BID field in the
header prevents any possible mismatches. A final cyclic re-
dundancy check value is used to detect defective datagrams.
Although this was meant to be optional, we observed dur-
ing our benchmarks that CRC errors occured with 0.287%
of all transmitted datagrams on our test systems.

3.3 Implementation in Open MPI

The framework for the modular architecture and the col-
lective components in Open MPI is described in detail in
[20]. A context-wide agreed multicast group is assigned
to each communicator within the module_init function
that is called during the creation of a new communicator.
All involved processes join this new group and build one
unreliable datagram queue pair (UD QP) per communicator
for the transmission of the multicast packets. Because the
protocol for UD is connectionless, a single QP is sufficient
and any scalability problems are avoided.

To further improve the implementation, we pre-post n
receive requests (RRs) in module_init to buffer n in-

coming multicast packets (they are dropped if no pre-posted
RR is found). This adds a constant memory overhead of
n× MTU per MPI process. Useful values for n are highly
system and even application dependent. We chose a default
value of n = 5 to achieve a good balance between memory
overhead and multicast performance. As long as there are
pre-posted receive requests at the non-root processes, they
will very likely get the next broadcast message during the
first stage of the algorithm (at least if it is small enough to
fit in the pre-posted buffers) even if they call MPI BCAST
after the root process had issued the multicast operation.
Therefore pre-posting can also help to diminish the effect
of the mentioned worst-case scenarios in real-world appli-
cations.

The bcast function itself decides at runtime upon the
current scenario (message size, number of processes and
user parameters) if it should execute an existing broadcast
from the “TUNED” component, or our new multicast-based
broadcast (described in Section 2).

During the destruction of every communicator the
module_finalize function is called. All resources that
were previously allocated by the init function are freed here.

Our InfiniBandTM API-independent macro layer was
used to access both the OpenFabrics (formerly known as
OpenIB) and the MVAPI interface with the same source
code. We proved in another study [13] that the introduced
overhead is negligible and the programming effort to sup-
port both interfaces is simplified.

4 Performance Evaluation

We evaluated our implementation with the Intel Mi-
crobenchmark suite version 3.0 (formerly known as Pallas
Microbenchmark [16]) and a second, more realistic, mi-
crobenchmark that uses the principles mentioned in [15].
The following results show a comparison of our collective
component called “IB” with the existing “TUNED” compo-
nent in Open MPI 1.2b3. We focus on small messages be-
cause their performance is extremely important for the par-
allel speedup of strong scaling problems (a constant prob-
lem size with an increasing number of processes causes
small messages) and the new broadcast is especially suited
for this use case.

4.1 Classical Implementation

The classical way to implement MPI BCAST for small
messages uses point-to-point communication with the pro-
cesses arranged in a virtual tree topology. However, for
very small communicators a linear scheme, where the root
process sends its message to all ranks sequentially, might
be faster. Therefore, the used Open MPI “TUNED” com-
ponent leverages such a linear scheme for communicators

5

with at most 4 MPI processes and a binomial tree distribu-
tion scheme for larger communicators. The binomial tree
communication is staged into �log2P � rounds and (assum-
ing that the root process has rank #0, which can be acom-
plished by a rank rotation) each MPI rank sends every round
to the MPI rank with the rank #round − 1 greater than its
own. The resulting communication pattern for a communi-
cator of size 8 is shown in Figure 3.

1

0

2

4

3

5 67
ro

un
d

1
ro

un
d

2
ro

un
d

3

Figure 3. A classical binomial tree broadcast
scheme for 8 MPI processes, as used by the
“TUNED” implementation in Open MPI

A broadcast along a binomial tree has two main disad-
vantages. First, the communication time is clearly unbal-
anced when the communicator size is not a proper power
of two. And even if it is, the root process might return
immediately from a call to MPI BCAST when the outgo-
ing messages are cached by the underlying communication
system (e.g., in eager buffers), while the last process (e.g.,
rank #7 in Figure 3) needs �log2P � communication rounds
to complete the operation (cf. [17]). This introduces an ar-
tificial process skew regardless of the initial process skew
(the MPI processes might have been completely synchro-
nized). Second, the overall duration of the broadcast opera-
tion increases logarithmically with the number of participat-
ing MPI processes. Contrary, our new broadcast algorithm
is able to overcome both disadvantages.

4.2 Benchmark Environment

Our measurements have been executed on the “Odin”
cluster that is located at Indiana University. This system
consists of 128 compute nodes, each equipped with dual
2.0 GHz Opterons 246 and 4 GB RAM. The single Mel-
lanox MT23108 HCA on each node connects to a central

switch fabric and is accessed through the MVAPI interface.
We used one MPI process per node for all presented runs.
Our implementation has also been tested successfully on
different smaller systems using the MVAPI and OpenFab-
rics interface.

4.3 Results

The results gathered with the IMB and a 2 byte message
are shown in Figure 4. The small-message latency is, as ex-
pected, independent of the communicator size2. Our imple-
mentation outperforms the “TUNED” Open MPI broadcast
for communicators larger than 20 processes with the IMB
microbenchmark.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120

T
im

e
in

 m
ic

ro
se

co
nd

s

Communicator Size

IB
TUNED

Figure 4. (IMB) MPI BCAST latency in relation
to the communicator size

For this reason, our collective module calls the
“TUNED” component if the communicator contains less
than 20 MPI processes (this value is system-dependent and
therefore adjustable by the user with an Open MPI MCA
parameter to tune for the maximum performance).

Our own (more comprehensive) broadcast benchmark
gives a detailed insight into the performance of the new
implementation. We measured the time that every single
process needs to perform the MPI BCAST operation with a
2 byte message. The result for a fixed communicator size of
116 is shown in Figure 5. It can be seen that the “TUNED”
broadcast introduces a significant process skew (rank #1 fin-
ishes 79.4% earlier than rank #98), which can have a dis-
astrous impact on applications that rely on synchronity or
make use of different collective operations (that cause dif-

2the IB outlier with two processes exists because the virtual ring topol-
ogy is split up before the root process (this optimization saves a single send
operation at the last process in the chain)

6

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120

T
im

e
in

 m
ic

ro
se

co
nd

s

MPI Rank

IB
TUNED

Figure 5. MPI BCAST latency for each MPI
rank with a communicator size of 116

ferent skew patterns). Contrary, our multicast-based imple-
mentation delivers the data to all processes in almost the
same time (only a 14% deviation from the median), mini-
mizing the skew between parallel processes. Several (e.g.,
round-based) applications derive benefit from this charac-
teristic that reduces waiting time in consecutive communi-
cation operations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120

T
im

e
in

 m
ic

ro
se

co
nd

s

Communicator Size

IB
TUNED

Figure 6. Broadcast latency of rank #1 of a 2
byte message broadcasted from rank #0 for
varying communicator sizes

Figure 6 shows the MPI BCAST latency of rank 1 for
different communicator sizes (the sudden change at 64
nodes has to be attributed to the fact that we had to take the
measurements for 1− 64 processes and 64− 116 processes

separately due to technical problems). Figure 7 shows the

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120

T
im

e
in

 m
ic

ro
se

co
nd

s

Communicator Size

IB
TUNED

Figure 7. Broadcast latency of rank #N-1 of a
2 byte message broadcasted from rank #0 for
varying communicator sizes N

latency of the MPI BCAST operation at the last node in the
communicator. The increasing running time can be easily
seen. With the “TUNED” component, rank #1 leaves the
operation after receiving the message from the root process
- much earlier than it finishes in our implementation. How-
ever, process 1 is the only exception for this component that
achieves a constant behaviour like in our implementation.
Apart from that, the latency to the last rank (like to all other
processes) steadily increases with the size of the commu-
nicator. Whereas our “IB” component reveals a similar la-
tency for each process, without any noticeable influence of
the communicator size.

5 Conclusions and Future Work

We have shown that our new algorithm is able to de-
liver high performance using InfiniBandTM multicast. Con-
trary to all other known approaches, we are able to avoid
all scalability/hot-spot problems that occur with currently
known schemes. The new multicast-based broadcast im-
plementation accomplishes a practically constant-time be-
haviour in a double meaning: it scales independently of the
communicator size and all MPI processes within a given
communicator need the same time to complete the broad-
cast operation. Well-known microbenchmarks substanti-
ate these theoretical conclusions with practical results. We
proved it for up to 116 cluster nodes, but there is no reason
to assume scalability problems with our approach.

Future work includes the detailed modelling and error-
probability analysis of our new algorithm. Furthermore,

7

the influence of the better balance (all processes leave the
broadcast nearly at the same time) in comparison to tradi-
tional algorithms has to be analyzed in the context of real-
world applications. Since different broadcast usage pat-
terns are imaginable (even within a single application), the
three presented synchronization methods need to be anal-
ysed more carefully and might be mixed into an adaptive
function that decides at run-time for an optimal strategy or
root-delay parameter. Small communicators or large mes-
sages should be handled with different algorithms. How-
ever, the exact threshold values depend on several parame-
ters. We will analyze this behavior with a well-known net-
work model and try to find a better way to predict those
cross-over points.

References

[1] M. Blum, L. Blum, and M. Shub. A simple unpredictable
pseudo-random number generator. SIAM Journal on Com-
puting, 15(2):364–383, May 1986.

[2] H. A. Chen, Y. O. Carrasco, and A. W. Apon. MPI Col-
lective Operations over IP Multicast. In Proceedings of the
15 IPDPS 2000 Workshops on Parallel and Distributed Pro-
cessing, pages 51–60, London, UK. Springer-Verlag.

[3] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Don-
garra, J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett,
A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Graham,
and T. S. Woodall. Open MPI: Goals, Concept, and Design
of a Next Generation MPI Implementation. In Proceedings,
11th European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, September 2004.

[4] M. Gerla, P. Palnati, and S. Walton. Multicasting proto-
cols for high-speed, wormhole-routing local area networks.
In SIGCOMM ’96: Conference proceedings on Applica-
tions, technologies, architectures, and protocols for com-
puter communications, pages 184–193, New York, 1996.
ACM Press.

[5] S. Gorlatch. Send-receive considered harmful: Myths and
realities of message passing. ACM Trans. Program. Lang.
Syst., 26(1):47–56, 2004.

[6] S. Hanna, B. Patel, and M. Shah. Multicast Address Dy-
namic Client Allocation Protocol (MADCAP). RFC 2730
(Proposed Standard), Dec. 1999.

[7] S. P. Kini, J. Liu, J. Wu, P. Wyckoff, and D. K. Panda.
Fast and Scalable Barrier Using RDMA and Multicast
Mechanisms for InfiniBand-Based Clusters. In Recent Ad-
vances in Parallel Virtual Machine and Message Passing
Interface,10th European PVM/MPI Users’ Group Meeting,
Venice, Italy, September 29 - October 2, 2003, Proceedings,
pages 369–378, 2003.

[8] J. Liu, A. Mamidala, and D. Panda. Fast and Scalable
MPI-Level Broadcast using InfiniBand’s Hardware Multi-
cast Support, 2003.

[9] A. Mamidala, J. Liu, and D. Panda. Efficient Barrier and
Allreduce on IBA clusters using hardware multicast and
adaptive algorithms, 2004.

[10] A. R. Mamidala, H. Jin, and D. K. Panda. Efficient Hard-
ware Multicast Group Management for Multiple MPI Com-
municators over InfiniBand. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, 12th Eu-
ropean PVM/MPI Users’ Group Meeting, Sorrento, Italy,
September 18-21, 2005, Proceedings, volume 3666 of Lec-
ture Notes in Computer Science, pages 388–398. Springer.

[11] Message Passing Interface Forum. MPI: A Message Passing
Interface Standard. 1995.

[12] Message Passing Interface Forum. MPI-2: Extensions to the
Message-Passing Interface. Technical Report, University of
Tennessee, Knoxville, 1997.

[13] M. Mosch. Integration einer neuen InfiniBand-Schnittstelle
in die vorhandene InfiniBand MPICH2 Software. Technical
report, Chemnitz University of Technology, 2006.

[14] L. M. Ni. Should Scalable Parallel Computers Support Effi-
cient Hardware Multicasting? In International Conference
on Parallel Processing, Workshops, pages 2–7, 1995.

[15] N. Nupairoj and L. M. Ni. Benchmarking of Multicast Com-
munication Services. Technical Report MSU-CPS-ACS-
103, Department of Computer Science, Michigan State Uni-
versity, 1995.

[16] Pallas GmbH. Pallas MPI Benchmarks - PMB, Part MPI-1.
Technical report, 2000.

[17] J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg,
E. Gabriel, and J. J. Dongarra. Performance Analysis of MPI
Collective Operations. In Proceedings of the 19th Interna-
tional Parallel and Distributed Processing Symposium, 4th
International Workshop on Performance Modeling, Evalua-
tion, and Optimization of Parallel and Distributed Systems
(PMEO-PDS 05), Denver, CO, April 2005.

[18] R. Rabenseifner. Automatic MPI Counter Profiling. In 42nd
CUG Conference, 2000.

[19] C. Siebert. Efficient Broadcast for Multicast-Capable Inter-
connection Networks. Master’s thesis, Chemnitz University
of Technology, 2006.

[20] J. M. Squyres and A. Lumsdaine. The Component Archi-
tecture of Open MPI: Enabling Third-Party Collective Al-
gorithms. In Proceedings, 18th ACM International Confer-
ence on Supercomputing, Workshop on Component Models
and Systems for Grid Applications, St. Malo, France, 2004.

[21] The InfiniBand Trade Association. Infiniband Architecture
Specification Volume 1, Release 1.2, 2004.

[22] TOP500 List. http://www.top500.org/, November 2006.
[23] K. Verstoep, K. Langendoen, and H. Bal. Efficient Reliable

Multicast on Myrinet. In Proceedings of the 1996 Interna-
tional Conference on Parallel Processing, pages 156–165,
Washington, DC, USA.

[24] W. Yu, D. Buntinas, and D. K. Panda. High Performance and
Reliable NIC-Based Multicast over Myrinet/GM-2, 2003.

[25] W. Yu, S. Sur, and D. K. Panda. High Performance
Broadcast Support in La-Mpi Over Quadrics. Interna-
tional Journal of High Performance Computing Applica-
tions, 19(4):453–463, 2005.

[26] X. Yuan, S. Daniels, A. Faraj, and A. Karwande. Group
Management Schemes for Implementing MPI Collective
Communication over IP-Multicast, 2002.

8

