/* One-Sided MPI 2-D Strided Accumulate Test * * Author: James Dinan * Date : December, 2010 * * This code performs N accumulates into a 2d patch of a shared array. The * array has dimensions [X, Y] and the subarray has dimensions [SUB_X, SUB_Y] * and begins at index [0, 0]. The input and output buffers are specified * using an MPI indexed type. */ #include #include #include #define XDIM 16 #define YDIM 16 #define SUB_XDIM 8 #define SUB_YDIM 8 #define ITERATIONS 1 int main(int argc, char **argv) { int i, j, rank, nranks, peer, bufsize, errors; double *win_buf, *src_buf; MPI_Win buf_win; MPI_Init(&argc, &argv); MPI_Comm_rank(MPI_COMM_WORLD, &rank); MPI_Comm_size(MPI_COMM_WORLD, &nranks); bufsize = XDIM * YDIM * sizeof(double); MPI_Alloc_mem(bufsize, MPI_INFO_NULL, &win_buf); MPI_Alloc_mem(bufsize, MPI_INFO_NULL, &src_buf); if (rank == 0) printf("MPI RMA Strided Accumulate Test:\n"); for (i = 0; i < XDIM*YDIM; i++) { *(win_buf + i) = 1.0 + rank; *(src_buf + i) = 1.0 + rank; } MPI_Win_create(win_buf, bufsize, 1, MPI_INFO_NULL, MPI_COMM_WORLD, &buf_win); peer = (rank+1) % nranks; // Perform ITERATIONS strided accumulate operations for (i = 0; i < ITERATIONS; i++) { MPI_Aint idx_loc[SUB_YDIM]; int idx_rem[SUB_YDIM]; int blk_len[SUB_YDIM]; MPI_Datatype src_type, dst_type; for (i = 0; i < SUB_YDIM; i++) { MPI_Get_address(&src_buf[i*XDIM], &idx_loc[i]); idx_rem[i] = i*XDIM; blk_len[i] = SUB_XDIM; } #ifdef ABSOLUTE MPI_Type_hindexed(SUB_YDIM, blk_len, idx_loc, MPI_DOUBLE, &src_type); #else MPI_Type_indexed(SUB_YDIM, blk_len, idx_rem, MPI_DOUBLE, &src_type); #endif MPI_Type_indexed(SUB_YDIM, blk_len, idx_rem, MPI_DOUBLE, &dst_type); MPI_Type_commit(&src_type); MPI_Type_commit(&dst_type); MPI_Win_lock(MPI_LOCK_EXCLUSIVE, peer, 0, buf_win); #ifdef ABSOLUTE MPI_Accumulate(MPI_BOTTOM, 1, src_type, peer, 0, 1, dst_type, MPI_SUM, buf_win); #else MPI_Accumulate(src_buf, 1, src_type, peer, 0, 1, dst_type, MPI_SUM, buf_win); #endif MPI_Win_unlock(peer, buf_win); MPI_Type_free(&src_type); MPI_Type_free(&dst_type); } MPI_Barrier(MPI_COMM_WORLD); // Verify that the results are correct MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, 0, buf_win); errors = 0; for (i = 0; i < SUB_XDIM; i++) { for (j = 0; j < SUB_YDIM; j++) { const double actual = *(win_buf + i + j*XDIM); const double expected = (1.0 + rank) + (1.0 + ((rank+nranks-1)%nranks)) * (ITERATIONS); if (actual - expected > 1e-10) { printf("%d: Data validation failed at [%d, %d] expected=%f actual=%f\n", rank, j, i, expected, actual); errors++; fflush(stdout); } } } for (i = SUB_XDIM; i < XDIM; i++) { for (j = 0; j < SUB_YDIM; j++) { const double actual = *(win_buf + i + j*XDIM); const double expected = 1.0 + rank; if (actual - expected > 1e-10) { printf("%d: Data validation failed at [%d, %d] expected=%f actual=%f\n", rank, j, i, expected, actual); errors++; fflush(stdout); } } } for (i = 0; i < XDIM; i++) { for (j = SUB_YDIM; j < YDIM; j++) { const double actual = *(win_buf + i + j*XDIM); const double expected = 1.0 + rank; if (actual - expected > 1e-10) { printf("%d: Data validation failed at [%d, %d] expected=%f actual=%f\n", rank, j, i, expected, actual); errors++; fflush(stdout); } } } MPI_Win_unlock(rank, buf_win); MPI_Win_free(&buf_win); MPI_Free_mem(win_buf); MPI_Free_mem(src_buf); MPI_Finalize(); if (errors == 0) { printf("%d: Success\n", rank); return 0; } else { printf("%d: Fail\n", rank); return 1; } }